国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

建筑設(shè)計(jì)創(chuàng)新與可拓思維模式的研究

2018-02-06 03:45
智能城市 2018年3期
關(guān)鍵詞:共軛菱形逆向

賈 皓

江蘇時(shí)代建筑設(shè)計(jì)有限公司,江蘇揚(yáng)州 211400

事物有其自身的拓展性,可拓學(xué)就是通過研究事物的拓展性及創(chuàng)新方法來解決現(xiàn)實(shí)問題?,F(xiàn)階段,可拓學(xué)已經(jīng)廣泛應(yīng)用于各個(gè)領(lǐng)域,在與其他學(xué)科的交叉應(yīng)用中取得了一定的效果。通過可拓思維模式的運(yùn)用,推動(dòng)了建筑創(chuàng)新設(shè)計(jì)的發(fā)展,形成了一些新的理論及方法。

1 簡要概述建筑設(shè)計(jì)創(chuàng)新與可拓思維模式的內(nèi)涵

1.1 建筑設(shè)計(jì)創(chuàng)新的內(nèi)涵

建筑工程在建造之前,設(shè)計(jì)人員根據(jù)建設(shè)目標(biāo)進(jìn)行預(yù)案布置,針對(duì)施工過程和使用過程中存在或隱藏的問題,設(shè)計(jì)解決問題的方案、辦法,并且以文件和圖紙的形式呈現(xiàn),以此作為材料采購、施工準(zhǔn)備、工序安排、建設(shè)周期等工作協(xié)調(diào)合作的依據(jù),從而實(shí)現(xiàn)工程預(yù)算與方案設(shè)計(jì)的控制目標(biāo),滿足使用者需求及社會(huì)價(jià)值創(chuàng)造。

隨著時(shí)代的發(fā)展,我們對(duì)建筑設(shè)計(jì)的創(chuàng)新性提出了新的要求,創(chuàng)新意識(shí)在設(shè)計(jì)工作中占據(jù)著越來越重要的地位。建筑創(chuàng)新設(shè)計(jì)是國家創(chuàng)新發(fā)展戰(zhàn)略的重要組成部分,倡導(dǎo)設(shè)計(jì)人員根據(jù)職業(yè)靈感及感性思維進(jìn)行創(chuàng)新設(shè)計(jì),建設(shè)更多外觀新穎、結(jié)構(gòu)優(yōu)化、功能齊備的建筑,從而創(chuàng)新建筑模式,推動(dòng)現(xiàn)代建筑行業(yè)的發(fā)展[1]。

1.2 可拓思維模式的內(nèi)涵

可拓學(xué)是一種從新的角度認(rèn)識(shí)、分析現(xiàn)實(shí)世界并解決現(xiàn)實(shí)問題的新學(xué)科,致力于研究事物拓展的可能性和開拓創(chuàng)新的規(guī)律和方法,是類似于數(shù)學(xué)、系統(tǒng)論、控制論、信息論等橫斷學(xué)科??赏貙W(xué)研究產(chǎn)生創(chuàng)意的方法和理論,是生產(chǎn)創(chuàng)意的方法來源和理論依據(jù)??赏厮季S源自于可拓學(xué),是研究事物拓展可能性及創(chuàng)新過程中應(yīng)該具有的思維模式的總稱,對(duì)創(chuàng)新、拓展過程的解決思維矛盾問題有著積極的作用,能夠有效引導(dǎo)相關(guān)人員完成拓展應(yīng)用和創(chuàng)新設(shè)計(jì)工作。

1.3 可拓思維模式與建筑設(shè)計(jì)創(chuàng)新的關(guān)聯(lián)

可拓思維模式在設(shè)計(jì)創(chuàng)新工作中有著廣泛的應(yīng)用,對(duì)建筑設(shè)計(jì)的創(chuàng)新發(fā)展起著重要的推動(dòng)作用??赏厮季S模式是建筑設(shè)計(jì)創(chuàng)新的基礎(chǔ),能夠塑造建筑設(shè)計(jì)人員的創(chuàng)新設(shè)計(jì)、拓展設(shè)計(jì)思維,協(xié)助構(gòu)建理性駕馭感性、感性促進(jìn)理性的思維方式,運(yùn)用邏輯思維和非邏輯思維對(duì)設(shè)計(jì)思路進(jìn)行整理、集中、歸納,最終以數(shù)據(jù)、文字、圖形等方式表現(xiàn)出來,可拓思維模式能夠突破常規(guī)思維,從而提高建筑創(chuàng)新設(shè)計(jì)效率和效果。建筑設(shè)計(jì)創(chuàng)新中的可拓思維模式主要包括思維學(xué)、建筑學(xué)、可拓學(xué)、創(chuàng)新學(xué)等學(xué)科的綜合應(yīng)用,可分為菱形思維模式、共軛思維模式、逆向思維模式、傳導(dǎo)思維模式等四種主要類型[2]。

2 淺析可拓思維模式在建筑設(shè)計(jì)創(chuàng)新中的應(yīng)用

通過上述分析,我們了解了可拓思維模式對(duì)建筑設(shè)計(jì)創(chuàng)新的重要意義,下面我們將針對(duì)四種思維模式的應(yīng)用展開分析。

2.1 菱形思維模式在建筑設(shè)計(jì)創(chuàng)新中的應(yīng)用

2.1.1 菱形思維模式在建筑設(shè)計(jì)創(chuàng)新中的應(yīng)用方式

菱形思維模式主要包括收斂性思維和發(fā)散性思維,是一種發(fā)散-收斂、再發(fā)散-收斂的思考過程,由發(fā)散到收斂被稱為一級(jí)菱形思維,多次重復(fù)這個(gè)過程可以形成多級(jí)菱形思維。通常來講,菱形思維模式在建筑設(shè)計(jì)創(chuàng)新中的應(yīng)用是將發(fā)散思維模式及收斂思維模式的有效結(jié)合、重復(fù)分析,根據(jù)建筑工程的主要建設(shè)目標(biāo),進(jìn)行功能設(shè)計(jì)、結(jié)構(gòu)分布等方面的發(fā)散性思考,在取得初步成果后再進(jìn)行收斂性思考,將發(fā)散性思考中存在的不合理內(nèi)容進(jìn)行更改或修正,建筑創(chuàng)新設(shè)計(jì)正是建立在多重發(fā)散思維和收斂思維的應(yīng)用基礎(chǔ)上完成的。

2.1.2 菱形思維模式在建筑設(shè)計(jì)創(chuàng)新中的應(yīng)用原則

菱形思維模式在建筑設(shè)計(jì)創(chuàng)新中的應(yīng)用需要注意一些問題,主要應(yīng)該遵循以下幾個(gè)原則:目的性原則、創(chuàng)新性原則、可操作性原則。所謂目的性原則就是在面對(duì)設(shè)計(jì)過程中存在的問題必須明確目的要求,防止盲目選擇造成設(shè)計(jì)誤區(qū);創(chuàng)新性原則就是在建筑設(shè)計(jì)過程中一定要對(duì)創(chuàng)新性有充分的體現(xiàn);可操作性原則就是建筑設(shè)計(jì)要符合實(shí)際情況,應(yīng)該充分評(píng)估實(shí)現(xiàn)的可能性,盡可能避免不切實(shí)際的想法。菱形思維模式能夠?qū)⒔ㄖO(shè)計(jì)的目的性及根本性有效結(jié)合,形成操作性強(qiáng)的創(chuàng)新思維模式,從而在保證實(shí)現(xiàn)創(chuàng)新設(shè)計(jì)目的的同時(shí)提升設(shè)計(jì)人員的創(chuàng)新效率[3]。

2.2 共軛思維模式在建筑設(shè)計(jì)創(chuàng)新中的應(yīng)用

物具有物質(zhì)性、對(duì)立性、動(dòng)態(tài)性、系統(tǒng)性,這些統(tǒng)稱為物的共軛性。共軛思維通過對(duì)物的虛部與實(shí)部、潛部與顯部、軟部與硬部、負(fù)部與正部進(jìn)行形式化定性分析,能夠有效利用物的各個(gè)部分及各部分之間的相互關(guān)系去解決矛盾問題。任何事物的這四個(gè)共軛部分在一定情況下均可進(jìn)行轉(zhuǎn)換,建筑設(shè)計(jì)的共軛思維應(yīng)該建立在全面了解分析的基礎(chǔ)上,尋求事物解決問題的新途徑。在實(shí)際設(shè)計(jì)工作中,有些問題隱藏在事物之中,有些問題無法解決,這都需要運(yùn)用共軛思維進(jìn)行事物分析,共軛思維模式利用了物體及思維的共軛特性,對(duì)創(chuàng)新思維模式進(jìn)行共軛轉(zhuǎn)化,查找思維邏輯中的共同點(diǎn)和轉(zhuǎn)化點(diǎn),從而尋求解決方案。建筑設(shè)計(jì)人員應(yīng)該明確創(chuàng)新設(shè)計(jì)中的基本點(diǎn)、共同點(diǎn)、轉(zhuǎn)化點(diǎn),對(duì)建筑設(shè)計(jì)內(nèi)容進(jìn)行調(diào)整和優(yōu)化,解決創(chuàng)新設(shè)計(jì)過程中的不對(duì)稱問題,從而實(shí)現(xiàn)建筑設(shè)計(jì)創(chuàng)新目的[4]。

2.3 逆向思維模式在建筑設(shè)計(jì)創(chuàng)新中的應(yīng)用

逆向思維在創(chuàng)新思維模式中占據(jù)著重要的地位,是一種對(duì)定式思維的反向思考模式,通過探討思維的逆向發(fā)展,尋找解決問題的新思路。逆向思維具有普遍性、批判性、新穎性等特點(diǎn),逆向思維方式主要分為結(jié)構(gòu)逆向思維、狀態(tài)逆向思維、功能逆向思維、因果逆向思維四類。建筑設(shè)計(jì)創(chuàng)新過程中要勇于打破常規(guī),加強(qiáng)反向思考意識(shí),打破思維定式的束縛,從而改變建筑設(shè)計(jì)的單一性、單向性、邏輯性、習(xí)慣性等問題,提升創(chuàng)新思維的培養(yǎng)。可拓思維模式中的逆向思維主要包括利用反物元和非物元、利用逆事元、利用逆變換、利用逆蘊(yùn)涵四種,通過形式化描述的方法,為認(rèn)識(shí)、理解、運(yùn)用提供了便利。建筑設(shè)計(jì)創(chuàng)新過程中應(yīng)該加強(qiáng)逆向思維模式的本質(zhì)思考和運(yùn)用,并且進(jìn)行記錄、補(bǔ)充,從而提升逆向思維模式在建筑創(chuàng)新設(shè)計(jì)中的有效應(yīng)用。

2.4 傳導(dǎo)思維模式在建筑設(shè)計(jì)創(chuàng)新中的應(yīng)用

事物之間都有關(guān)聯(lián)性,當(dāng)一個(gè)事物發(fā)生變化時(shí)也會(huì)導(dǎo)致周邊事物的改變,這就是事物的傳導(dǎo)變換,傳導(dǎo)效應(yīng)就是指傳導(dǎo)變換所產(chǎn)生的效應(yīng)。在建筑設(shè)計(jì)創(chuàng)新的過程中,有時(shí)不能直接解決面臨的問題和矛盾,這時(shí)可以嘗試將傳導(dǎo)思維模式運(yùn)用其中,通過改變其他步驟的條件來影響關(guān)聯(lián)步驟的結(jié)果,這是對(duì)過往設(shè)計(jì)內(nèi)容的總結(jié)和反饋,尋找新舊內(nèi)容之間的共同點(diǎn)、轉(zhuǎn)換點(diǎn)、矛盾點(diǎn),從而解決建筑設(shè)計(jì)創(chuàng)新中存在的矛盾與問題。

自古以來,傳導(dǎo)思維模式在建筑設(shè)計(jì)創(chuàng)新中就有廣泛的運(yùn)用,比如北宋時(shí)期丁渭挖溝的案例。公元1015年,北宋都城開封皇宮失火,真宗皇帝派丁渭負(fù)責(zé)修復(fù)工作,而他面臨著諸如時(shí)間緊迫、材料短缺、交通不便等難題。丁渭經(jīng)過綜合分析,改變了修復(fù)皇宮的策略,他把皇宮前的街道開挖成溝,然后取土燒瓦、燒磚,并且把開封附近的沛水引入大溝,將建筑材料通過水路直接運(yùn)輸?shù)交蕦m前,等工程完成后,丁渭又命人把廢料進(jìn)行回填,將水溝恢復(fù)到街道模樣,這種傳導(dǎo)思維的運(yùn)用可謂一舉三得,成功完成了修復(fù)皇宮的旨意。所以,建筑設(shè)計(jì)創(chuàng)新中傳導(dǎo)思維模式有著非常重要的作用,需要引起足夠的重視[5]。

3 結(jié)語

綜上所述,可拓思維模式在建筑設(shè)計(jì)領(lǐng)域有著廣闊的應(yīng)用空間,有效推動(dòng)了建筑設(shè)計(jì)創(chuàng)新發(fā)展。本文簡要概述了建筑設(shè)計(jì)創(chuàng)新與可拓思維模式的內(nèi)涵,然后著重分析了可拓思維模式在建筑設(shè)計(jì)創(chuàng)新中的應(yīng)用,希望能夠?qū)Χ叩慕Y(jié)合研究提供積極的探索,更好的為建筑工程建設(shè)服務(wù)。

[1] 高義明. 建筑設(shè)計(jì)創(chuàng)新與可拓思維模式分析[J]. 住宅與房地產(chǎn),2017(5):107.

[2] 王楊. 建筑設(shè)計(jì)創(chuàng)新與可拓思維模式分析[J]. 建筑設(shè)計(jì)管理,2016,33(6):32-33,57.

[3] 汪世羨. 建筑設(shè)計(jì)創(chuàng)新與可拓思維模式概述[J]. 四川水泥,2016(4):94.

[4] 黃洛然. 關(guān)于建筑設(shè)計(jì)創(chuàng)新與可拓思維模式研究[J]. 科技創(chuàng)新與應(yīng)用,2016(6):252.

[5] 胡帆. 建筑設(shè)計(jì)可拓思維模式及創(chuàng)新方法的研究[J]. 江西建材,2015(4):24.

猜你喜歡
共軛菱形逆向
逆向而行
一個(gè)帶重啟步的改進(jìn)PRP型譜共軛梯度法
一個(gè)改進(jìn)的WYL型三項(xiàng)共軛梯度法
改進(jìn)的菱形解相位法在相位展開中的應(yīng)用
強(qiáng)Wolfe線搜索下的修正PRP和HS共軛梯度法
巧用共軛妙解題
菱形數(shù)獨(dú)2則
菱形數(shù)獨(dú)2則
菱形數(shù)獨(dú)2則
阳高县| 邛崃市| 九龙城区| 应用必备| 湟中县| 中方县| 永年县| 平顶山市| 游戏| 鄄城县| 武定县| 靖宇县| 成武县| 阳春市| 宝鸡市| 武威市| 铁岭市| 九台市| 新河县| 宽城| 山阳县| 正阳县| 敦化市| 台东市| 福泉市| 沙洋县| 本溪市| 轮台县| 新化县| 平谷区| 罗源县| 淳化县| 潞城市| 黄山市| 安龙县| 嵊州市| 洛阳市| 鱼台县| 宝应县| 土默特右旗| 扶沟县|