陳美慧,李 晶,胡文佳,黃 輝,陳 晨,周克元,李祥勇
廣東醫(yī)科大學(xué) 生物化學(xué)與分子生物學(xué)研究所,廣東湛江 524023
EB病毒(Epstein-Barr virus,EBV)是一種普遍存在于人類淋巴細(xì)胞的皰疹病毒,最初發(fā)現(xiàn)于霍奇金病淋巴瘤的原代細(xì)胞培養(yǎng)過程中。已有研究表明,EBV是引起人類癌癥的主要病毒之一,與人類Burkitt's淋巴瘤、鼻咽癌、胃癌等惡性腫瘤的發(fā)生發(fā)展密切相關(guān)[1-6]。EBV是第一個(gè)被發(fā)現(xiàn)可以編碼miRNAs的人類病毒,近年來的大量研究表明EBV可通過表達(dá)多種miRNAs在病毒感染、細(xì)胞凋亡、免疫逃逸和重要信號通路等方面發(fā)揮重要的生物學(xué)功能。本文具體闡述了EBV microRNAs的合成及作用機(jī)制,旨在為EBV感染相關(guān)疾病的治療研究提供新的資料。
miRNAs是一類約22個(gè)核苷酸組成的非編碼小RNA,通過與靶mRNAs分子的3'端非編碼區(qū)域(3'-untranslated region,3'UTR)不完全互補(bǔ)配對的方式識別靶mRNA,利用RNAi沉默機(jī)制調(diào)控基因的轉(zhuǎn)錄后表達(dá)。大多數(shù)miRNA基因在細(xì)胞核中由RNA聚合酶Ⅱ轉(zhuǎn)錄生成具有莖-環(huán)二級結(jié)構(gòu)的pri-miRNAs,pri-miRNAs經(jīng)封頂、拼接、腺苷化[7]。隨之pri-miRNAs經(jīng)過微處理復(fù)合物(microprocessor)處理后形成65 ~ 70 bp的發(fā)卡狀小分子RNA(即Pre-miRNA前體),該微處理復(fù)合體由核糖核酸酶ⅢDrosha和亞基DGCR8組成[8]。Pre-miRNAs由輸出蛋白5(exportin 5,XPO5)和5'-三磷酸鳥苷作用完成胞核到胞質(zhì)的運(yùn)輸轉(zhuǎn)移[9],在胞質(zhì)中經(jīng)DICER1(一種核糖核酸酶Ⅲ)處理形成成熟的雙鏈miRNAs,包括導(dǎo)向鏈和隨從鏈,前者與DICER1、AGO蛋白結(jié)合形成沉默復(fù)合體(miRNA-induced silencing complex,miRISC)后,通過與靶mRNA結(jié)合進(jìn)而抑制翻譯起始或者通過引起mRNA的降解抑制蛋白的合成[10-12]。目前認(rèn)為miRNAs與許多疾病的發(fā)展密切相關(guān),特別是腫瘤。
2004年,Pfeffer等[13]首次發(fā)現(xiàn)EBV病毒可編碼出BART miRNAs。截至目前,研究表明EBV編碼至少44種miRNAs,它們分別位于病毒基因組中BHRF1和BART兩個(gè)區(qū)域[14],而且這兩類miRNAs的表達(dá)水平與細(xì)胞的病毒感染程度和細(xì)胞類型密切相關(guān)。相對于BART miRNAs可表達(dá)于病毒潛伏感染的所有時(shí)期,BHRF1 miRNAs則幾乎完全表達(dá)于潛伏感染Ⅲ期;BART miRNAs雖然表達(dá)于所有EBV感染的相關(guān)腫瘤(包括鼻咽癌),但其表達(dá)水平取決于受感染的細(xì)胞類型,研究發(fā)現(xiàn)BART miRNAs在上皮細(xì)胞的表達(dá)較其在B細(xì)胞的表達(dá)高出幾個(gè)數(shù)量級[15]。
研究發(fā)現(xiàn)EBV miRNAs在病毒周期中扮演著重要的角色,它可以靶向多種病毒編碼mRNAs的3'UTR。Barths等[16]發(fā)現(xiàn)miR-BART2-5p可以下調(diào)病毒DNA聚合酶BALF5的表達(dá)。Lo等[17]認(rèn)為LMP1是miR-BART17-5p、miR-BART1-5p和miR-BART16的靶點(diǎn),體外轉(zhuǎn)染后可減少外源性LMP1的合成,進(jìn)而降低細(xì)胞毒性,抑制細(xì)胞凋亡。同時(shí),LMP1還 是miR-BART19-5p、miR-BART5-5p、miR-BART3、miRBART5和miR-BART20的作用靶點(diǎn)[18-19],與病毒的潛伏感染密切相關(guān)。此外,Jung等[20]的研究表明miR-BART20-5p可作用于BZLF1和BRLF1,在維持EBV于潛伏感染狀態(tài)和抑制其裂解激活等方面發(fā)揮重要作用。病毒miRNAs調(diào)控細(xì)胞溶素mRNAs可穩(wěn)定或維持宿主細(xì)胞處于病毒感染潛伏期,且潛伏期相關(guān)的病毒基因的表達(dá)同樣也受病毒miRNAs調(diào)節(jié)。
目前普遍認(rèn)為EBV感染宿主細(xì)胞后可通過作用于一些細(xì)胞因子參與免疫反應(yīng),進(jìn)而逃避宿主的免疫防御。干擾素誘導(dǎo)的T細(xì)胞α趨化因子(CXCL11/I-TAC)是第一個(gè)被報(bào)道的EBV miRNAs的胞內(nèi)靶點(diǎn),其可選擇性地結(jié)合T細(xì)胞趨化因子受體(CXCR3)。Pfeffer等[13]發(fā)現(xiàn)miR-BHRF1-3p的靶點(diǎn)為CXCL11 3'UTR的三個(gè)結(jié)合位點(diǎn)。同時(shí)Xia等[21]的研究發(fā)現(xiàn)抑制miR-BHRF1-3的表達(dá)可促進(jìn)EBV+淋巴瘤細(xì)胞CXCL11 mRNA的合成,結(jié)果表明miR-BHRF1-3p可直接或間接地調(diào)控CXCL11的表達(dá)。此外Haneklaus等[22]研究表明miR-BART15可以通過感染淋巴B細(xì)胞的外泌體抑制未感染細(xì)胞的NLRP3炎癥小體形成和IL-1β的合成。進(jìn)一步的研究發(fā)現(xiàn),自然殺傷(NK)細(xì)胞活化受體MICB是一種應(yīng)急誘導(dǎo)的配體蛋白,已被證明是miR-BART2-5p的靶點(diǎn),同時(shí)也發(fā)現(xiàn)miR-BART2-5p是機(jī)體感染EBV期間引起免疫逃逸的原因[23]。EBV感染的個(gè)體會(huì)對EB病毒產(chǎn)生強(qiáng)烈的免疫反應(yīng),尤其是細(xì)胞毒性CD8+T細(xì)胞,然而病毒感染從未被清除。Albanese等[24]發(fā)現(xiàn)EBV miRNAs可以通過多種分子和機(jī)制干擾細(xì)胞毒性CD8+T細(xì)胞識別及清除EBV感染細(xì)胞,這可能是EBV實(shí)現(xiàn)免疫逃逸的機(jī)制。IL-1信號在病毒感染后的炎癥和宿主先天免疫反應(yīng)的早期激活中起著重要的作用。Skinner等[25]發(fā)現(xiàn)EBV miRNA在EBV感染過程中降低IL-1受體1水平,從而改變了細(xì)胞對IL-1刺激的反應(yīng),并改變了受感染細(xì)胞數(shù)量的細(xì)胞因子表達(dá)水平。
在EBV編碼的miRNAs中,miR-BARTs被認(rèn)為與細(xì)胞凋亡密切相關(guān),表現(xiàn)出明顯的抗凋亡作用。2015年,Kang等[26]研究認(rèn)為miR-BARTs在EB病毒感染的上皮細(xì)胞中發(fā)揮抗凋亡作用,其作用靶基因大多為促凋亡因子(如Bim)或凋亡相關(guān)基因受體(如Bax受體TOM22)。與此同時(shí),Marquitz等[27]的研究也證實(shí)了BART miRNAs在抗凋亡刺激方面的作用。此外,Bad是一種Bcl-2家族促凋亡基因,Kim等[28]發(fā)現(xiàn)miR-BART20-5p通過調(diào)控促凋亡基因Bad的表達(dá)發(fā)揮抑凋亡的作用。最近的研究發(fā)現(xiàn),凋亡終末剪切 酶Caspase 3是EBV miR-BART1、miR-BART16和miRBART22的直接靶點(diǎn)[29],可有效地抑制內(nèi)源性Caspase 3的表達(dá),從而抑制細(xì)胞發(fā)生凋亡。MAP3K5也被稱為凋亡信號調(diào)節(jié)激酶1(ASK1),是P38MAPK通路中重要的早期應(yīng)答基因和與細(xì)胞凋亡相關(guān)的基因。Chen等[30]研究發(fā)現(xiàn)MAP3K5是miR-BART22的作用靶點(diǎn),后者可通過與MAP3K5 mRNA的3'UTR結(jié)合,導(dǎo)致MAP3K5表達(dá)下調(diào),進(jìn)而抑制細(xì)胞凋亡的發(fā)生。另外,miR-BART-6-3p通過下調(diào)PTEN的表達(dá),從而抑制腫瘤細(xì)胞的凋亡,促進(jìn)腫瘤細(xì)胞的生長[31]。
NF-κB信號介導(dǎo)慢性炎癥導(dǎo)致持續(xù)的EBV感染、免疫系統(tǒng)感染細(xì)胞的免疫逃逸和代謝重組、癌癥干細(xì)胞(CSCs)的形成[1,32]。EBV BART miRNAs可通過抑制LMP1的表達(dá)改變NF-κB信號通路。在LMP1表達(dá)缺失的情況下,過表達(dá)miR-BART3或miR-BART1抑制NF-κB激活并保持IκBa的穩(wěn)定[18]。同時(shí),NF-κB信號通路的相關(guān)蛋白如PELI1、cIAP1/XIAP、cIAP2/BIRC3、CYLD、A20/TNFAIP3、IKKa/CHUK和NFKBIZ等被證實(shí)是多個(gè)EBV miRNAs的靶點(diǎn)[18,33],這些靶點(diǎn)在NF-κB信號通路中起著激活劑或抑制劑的作用。EBV miRNAs通過改變NF-κB信號通路,影響機(jī)體的免疫反應(yīng)和腫瘤的形成。大量的研究表明Wnt信號通路調(diào)控細(xì)胞的分化過程[34]、腫瘤的干細(xì)胞形成[35]、腫瘤微環(huán)境[36]、上皮間質(zhì)轉(zhuǎn)化[37]、自噬[38]等。miR-BART14和miR-BART18-5p的靶點(diǎn)NLK均是Wnt信號通路的拮抗劑,當(dāng)瞬時(shí)表達(dá)BART miRNAs時(shí),其對應(yīng)靶點(diǎn)的轉(zhuǎn)錄水平和蛋白水平均明顯下調(diào)[39]。
研究發(fā)現(xiàn)EBV miRNAs在相關(guān)腫瘤的侵襲轉(zhuǎn)移過程也發(fā)揮重要作用。Cai等[40]研究發(fā)現(xiàn)EBV-miR-BART7-3p的作用靶點(diǎn)是抑癌基因PTEN,EBV-miR-BART1通過抑制PTEN的表達(dá)可激活依賴PTEN的信號通路,進(jìn)而促進(jìn)鼻咽癌細(xì)胞的轉(zhuǎn)移及侵襲能力。上皮間質(zhì)轉(zhuǎn)化(epithelialmesenchymal transition,EMT)與腫瘤的侵襲轉(zhuǎn)移密切相關(guān)。研究發(fā)現(xiàn)EBV-miR-BART10-3p和MiR-BART9可通過調(diào)控EMT過程進(jìn)而影響腫瘤的侵襲轉(zhuǎn)移[41-42]。此外,也有研究表明miR-BART22可靶向作用于MAP3K5促進(jìn)鼻咽癌細(xì)胞的侵襲能力[30];He等[43]發(fā)現(xiàn)miR-BART6-3p可靶向作用于LucRNA LOC553103影響腫瘤的轉(zhuǎn)移能力。
EBV miRNAs自被認(rèn)識以來,其在病毒的感染、腫瘤的發(fā)生等過程中扮演的角色已成為大家深入研究的熱門課題。隨著研究的深入,EBV miRNAs的作用新靶點(diǎn)被不斷發(fā)現(xiàn),其功能被不斷地完善與補(bǔ)充。近期研究認(rèn)為EBV-miR-BHRF1-2和EBV-miR-BART7-3p在細(xì)胞生長及周期阻滯等方面起著重要的作用[44-45]。同時(shí),Gao等[46]研究發(fā)現(xiàn)miR-BART-7可以調(diào)控鼻咽癌細(xì)胞的放療敏感性。此外,根據(jù)KEGG和Panther數(shù)據(jù)庫分析,EBV BART miRNAs還可通過調(diào)控靶點(diǎn)基因的表達(dá),在DNA損傷修復(fù)、整合素信號、硫酸乙酰肝素合成、泛素介導(dǎo)的蛋白水解和細(xì)胞縫隙連接等過程中發(fā)揮重要的調(diào)控作用。目前認(rèn)為EBV miRNAs主要通過影響細(xì)胞內(nèi)一些重要的信號通路在腫瘤的發(fā)生與發(fā)展中發(fā)揮著不可或缺的作用。隨著高通量測序技術(shù)和生物信息學(xué)方法的快速發(fā)展及廣泛應(yīng)用,不斷有新的miRNAs靶基因被發(fā)現(xiàn),miRNAs對應(yīng)的靶點(diǎn)和靶基因?qū)?yīng)的miRNAs都可能不是唯一的,因此繪制EBV miRNAs與靶基因之間的調(diào)控網(wǎng)絡(luò)就顯得尤為重要。未來的研究方向應(yīng)該從EBV miRNAs的協(xié)同作用及整體效應(yīng)出發(fā),注重于miRNA靶點(diǎn)相關(guān)信號通路的研究和EBV相關(guān)疾病決定性miRNA靶點(diǎn)的確定,這將有助于為EBV相關(guān)疾病的治療提供新的思路。
1 Yi M, Cai J, Li J, et al. Rediscovery of NF-kappaB signaling in nasopharyngeal caicrnoma: How genetic defects of NF-kappaB pathway interplay with EBV in driving oncogenesis?[J/OL]. http ://dx.doi.org/10.1002/jcp.26410.
2 He Q, Zhou Y, Fu C, et al. Lymphoepithelioma is a nonkeratinizing squamous cell carcinoma with Epstein-Barr virus infection in China[J]. J Cancer Res Ther, 2017, 13(5): 807-812.
3 Ikeda JI, Wada N, Nojima S, et al. ID1 upregulation and FoxO3a downregulation by Epstein-Barr virus-encoded LMP1 in Hodgkin's lymphoma[J]. Mol Clin Oncol, 2016, 5(5): 562-566.
4 Ng SB, Chung TH, Kato S, et al. EBV-associated primary nodal T/NK-cell lymphoma shows distinct molecular signature and copy number changes[J/OL]. http://www.haematologica.org/cgi/pmidlo okup?view=long&pmid=29097495.
5 Shannon-Lowe C, Rickinson AB, Bell AI. Epstein-Barr virusassociated lymphomas[J/OL]. http://rstb.royalsocietypublishing.org/content/372/1732/20160271.long.
6 Zhang J, Huang T, Zhou Y, et al. The oncogenic role of Epstein-Barr virus-encoded microRNAs in Epstein-Barr virus-associated gastric carcinoma[J]. J Cell Mol Med, 2018, 22(1): 38-45.
7 Lee Y, Kim M, Han J, et al. MicroRNA genes are transcribed by RNA polymerase II[J]. EMBO J, 2004, 23(20): 4051-4060.
8 Davis BN, Hilyard AC, Nguyen PH, et al. Smad proteins bind a conserved RNA sequence to promote microRNA maturation by Drosha[J]. Mol Cell, 2010, 39(3): 373-384.
9 Wang X, Xu X, Ma Z, et al. Dynamic mechanisms for pre-miRNA binding and export by Exportin-5[J]. RNA, 2011, 17(8):1511-1528.
10 Huntzinger E, Izaurralde E. Gene silencing by microRNAs:contributions of translational repression and mRNA decay[J]. Nat Rev Genet, 2011, 12(2): 99-110.
11 Quévillon Huberdeau M, Zeitler DM, Hauptmann J, et al.Phosphorylation of Argonaute proteins affects mRNA binding and is essential for microRNA-guided gene silencing in vivo[J]. EMBO J,2017, 36(14): 2088-2106.
12 Eulalio A, Behm-Ansmant I, Schweizer D, et al. P-body formation is a consequence, not the cause, of RNA-mediated gene silencing[J].Mol Cell Biol, 2007, 27(11): 3970-3981.
13 Pfeffer S, Zavolan M, Gr?sser FA, et al. Identification of virusencoded microRNAs[J]. Science, 2004, 304(5671): 734-736.
14 Klinke O, Feederle R, Delecluse HJ. Genetics of Epstein-Barr virus microRNAs[J]. Semin Cancer Biol, 2014, 26 : 52-59.
15 Qiu J, Cosmopoulos K, Pegtel M, et al. A novel persistence associated EBV miRNA expression profile is disrupted in neoplasia[J].PLoS Pathog, 2011, 7(8): e1002193.
16 Barth S, Pfuhl T, Mamiani A, et al. Epstein-Barr virus-encoded microRNA miR-BART2 down-regulates the viral DNA polymerase BALF5[J]. Nucleic Acids Res, 2008, 36(2): 666-675.
17 Lo AK, To KF, Lo KW, et al. Modulation of LMP1 protein expression by EBV-encoded microRNAs[J]. Proc Natl Acad Sci USA, 2007,104(41): 16164-16169.
18 Skalsky RL, Kang D, Linnstaedt SD, et al. Evolutionary conservation of primate lymphocryptovirus microRNA targets[J]. J Virol, 2014,88(3): 1617-1635.
19 Riley KJ, Rabinowitz GS, Yario TA, et al. EBV and human microRNAs co-target oncogenic and apoptotic viral and human genes during latency[J]. EMBO J, 2012, 31(9): 2207-2221.
20 Jung YJ, Choi H, Kim H, et al. MicroRNA miR-BART20-5p stabilizes Epstein-Barr virus latency by directly targeting BZLF1 and BRLF1[J]. J Virol, 2014, 88(16): 9027-9037.
21 Xia T, O'Hara A, Araujo I, et al. EBV microRNAs in primary lymphomas and targeting of CXCL-11 by ebv-mir-BHRF1-3[J].Cancer Res, 2008, 68(5): 1436-1442.
22 Haneklaus M, Gerlic M, Kurowska-Stolarska M, et al. Cutting edge: miR-223 and EBV miR-BART15 regulate the NLRP3 inflammasome and IL-1β production[J]. J Immunol, 2012, 189(8): 3795-3799.
23 Nachmani D, Stern-Ginossar N, Sarid R, et al. Diverse herpesvirus microRNAs target the stress-induced immune ligand MICB to escape recognition by natural killer cells[J]. Cell Host Microbe, 2009, 5(4): 376-385.
24 Albanese M, Tagawa T, Bouvet M, et al. Epstein-Barr virus microRNAs reduce immune surveillance by virus-specific CD8+ T cells[J]. Proc Natl Acad Sci USA, 2016, 113(42): E6467-E6475.
25 Skinner CM, Ivanov NS, Barr SA, et al. An Epstein-Barr Virus MicroRNA Blocks Interleukin-1 (IL-1) Signaling by Targeting IL-1 Receptor 1[J]. J Virol, 2017, 91(21): e00530-17.
26 Kang D, Skalsky RL, Cullen BR. EBV BART MicroRNAs Target Multiple Pro-apoptotic Cellular Genes to Promote Epithelial Cell Survival[J]. PLoS Pathog, 2015, 11(6): e1004979.
27 Marquitz AR, Mathur A, Nam CS, et al. The Epstein-Barr Virus BART microRNAs target the pro-apoptotic protein Bim[J].Virology, 2011, 412(2): 392-400.
28 Kim H, Choi H, Lee SK. Epstein-Barr virus miR-BART20-5p regulates cell proliferation and apoptosis by targeting BAD[J].Cancer Lett, 2015, 356(2 Pt B): 733-742.
29 Harold C, Cox D, Riley KJ. Epstein-Barr viral microRNAs target caspase 3[J]. Virol J, 2016, 13 : 145.
30 Chen R, Zhang M, Li Q, et al. The Epstein-Barr Virus-encoded miR-BART22 targets MAP3K5 to promote host cell proliferative and invasive abilities in nasopharyngeal carcinoma[J]. J Cancer,2017, 8(2): 305-313.
31 Ambrosio MR, Navari M, Di Lisio L, et al. The Epstein Barrencoded BART-6-3p microRNA affects regulation of cell growth and immuno response in Burkitt lymphoma[J]. Infect Agents Cancer,2014, 9 : 12.
32 唐紅衛(wèi), 王成彬. NF-κB及p38MAPK信號通路對支氣管上皮細(xì)胞與中性粒細(xì)胞共培養(yǎng)IL-6分泌的調(diào)控作用[J]. 解放軍醫(yī)學(xué)院學(xué)報(bào), 2014, 35(7): 730-732.
33 Skalsky RL, Corcoran DL, Gottwein E, et al. The viral and cellular microRNA targetome in lymphoblastoid cell lines[J]. PLoS Pathog,2012, 8(1): e1002484.
34 張德龍, 王偉, 張力, 等 . Wnt/β-catenin 信號途徑促進(jìn)肌源性干細(xì)胞向神經(jīng)細(xì)胞分化[J]. 解放軍醫(yī)學(xué)院學(xué)報(bào), 2014, 35(4):383-387.
35 Zhang Q, Zhao R, Fan C, et al. The gain-of-function mutation E76K in SHP2 promotes CAC tumorigenesis and induces EMT via the Wnt/beta-catenin signaling pathway[J/OL]. http://dx.doi.org/10.1002/mc.22785.
36 Pai SG, Carneiro BA, Mota JM, et al. Wnt/beta-catenin pathway:modulating anticancer immune response[J]. J Hematol Oncol,2017, 10(1): 101.
37 Ju H, Li Y, Xing X, et al. Manganese-12 acetate suppresses the migration, invasion, and epithelial-mesenchymal transition by inhibiting Wnt/beta-catenin and PI3K/AKT signaling pathways in breast cancer cells[J/OL]. https://assays.cancer.gov/CPTAC-1474.
38 Li X, Lu Q, Xie W, et al. Anti-tumor effects of triptolide on angiogenesis and cell apoptosis in osteosarcoma cells by inducing autophagy via repressing Wnt/beta-Catenin signaling[J/OL].http://linkinghub.elsevier.com/retrieve/pii/S0006-291X(18)30058-5.
39 Wong AM, Kong KL, Tsang JW, et al. Profiling of Epstein-Barr virus-encoded microRNAs in nasopharyngeal carcinoma reveals potential biomarkers and oncomirs[J]. Cancer, 2012, 118(3):698-710.
40 Cai LM, Lyu XM, Luo WR, et al. EBV-miR-BART7-3p promotes the EMT and metastasis of nasopharyngeal carcinoma cells by suppressing the tumor suppressor PTEN[J]. Oncogene, 2015, 34(17): 2156-2166.
41 Yan Q, Zeng Z, Gong Z, et al. EBV-miR-BART10-3p facilitates epithelial-mesenchymal transition and promotes metastasis of nasopharyngeal carcinoma by targeting BTRC[J]. Oncotarget,2015, 6(39): 41766-41782.
42 Hsu CY, Yi YH, Chang KP, et al. The Epstein-Barr virus-encoded microRNA MiR-BART9 promotes tumor metastasis by targeting E-cadherin in nasopharyngeal carcinoma[J]. PLoS Pathog, 2014,10(2): e1003974.
43 He B, Li W, Wu Y, et al. Epstein-Barr virus-encoded miRBART6-3p inhibits cancer cell metastasis and invasion by targeting long non-coding RNA LOC553103[J]. Cell Death Dis, 2016, 7(9):e2353.
44 Ma J, Nie K, Redmond D, et al. EBV-miR-BHRF1-2 targets PRDM1/Blimp1 : potential role in EBV lymphomagenesis[J].Leukemia, 2016, 30(3): 594-604.
45 Cai L, Li J, Zhang X, et al. Gold nano-particles (AuNPs) carrying anti-EBV-miR-BART7-3p inhibit growth of EBV-positive nasopharyngeal carcinoma[J]. Oncotarget, 2015, 6(10): 7838-7850.
46 Gao W, Li ZH, Chen S, et al. Epstein-Barr virus encoded microRNA BART7 regulates radiation sensitivity of nasopharyngeal carcinoma[J]. Oncotarget, 2017, 8(12): 20297-20308.
解放軍醫(yī)學(xué)院學(xué)報(bào)2018年3期