金清,肖明
上海師范大學(xué)生命與環(huán)境科學(xué)學(xué)院,上海 200234
抗菌肽(antimicrobial peptide)具有抗菌譜廣、作用迅速強(qiáng)大、不易產(chǎn)生耐藥性等優(yōu)點(diǎn),在醫(yī)藥、化妝品、食品工業(yè)中具有廣闊的應(yīng)用前景[1-3]。表面活性素(surfactin)、伊枯草菌素(iturin)和豐原素(fengycin)是芽胞桿菌產(chǎn)生的主要活性物質(zhì),可抑制農(nóng)作物病害[4-6]。近年來發(fā)現(xiàn)這3類物質(zhì)在醫(yī)藥領(lǐng)域有重要應(yīng)用前景,具有抗病毒[5,7]、抗腫瘤[8-12]、抗細(xì)菌[13-15]、抗真菌[16-18]、抗支原體[19]、抗炎[20]作用,展示出極大的臨床應(yīng)用潛力[21],是一種新型抗菌肽[22-26],但人們對它們在醫(yī)藥領(lǐng)域中的研究進(jìn)展所知甚少。因此,本文就表面活性素、伊枯草菌素和豐原素的發(fā)現(xiàn)歷史、結(jié)構(gòu)特點(diǎn)、作用機(jī)制、生物合成及應(yīng)用價(jià)值進(jìn)行綜述。
表面活性素于1968年首次在枯草芽胞桿菌(Bacillussubtilis)的培養(yǎng)液中發(fā)現(xiàn),由4種異構(gòu)體(枯草菌素A~D)組成,表現(xiàn)出各種生理活性,包括作為纖維蛋白凝固抑制劑和細(xì)胞裂解物[27]。伊枯草菌素于1957年首次在從土壤中分離到的枯草芽胞桿菌中發(fā)現(xiàn)[28],豐原素則首次在枯草芽胞桿菌F29-3中發(fā)現(xiàn)[29]。
表面活性素、伊枯草菌素和豐原素具有廣泛的工業(yè)應(yīng)用價(jià)值,如制造洗滌劑[30-31]、抑制植物病害[32-34]、提高油采收率[31]等。近年來,這3種新型抗菌肽的醫(yī)療應(yīng)用研究也取得重大突破,在醫(yī)藥領(lǐng)域中扮演著越來越重要的角色。
與其他菌肽的生產(chǎn)類似,這3種抗菌肽也是通過發(fā)酵生產(chǎn)。目前研究者從各方面努力,包括優(yōu)良菌種選育[5]、發(fā)酵過程優(yōu)化[35-36]、高效分離純化方式的探索等來提高產(chǎn)率[37-38],取得了一系列成果。
表面活性素、伊枯草菌素和豐原素是一類主要由革蘭陽性芽胞桿菌產(chǎn)生的抗菌肽,一般由1個(gè)疏水的脂肪烴鏈以羧基、羰基或氨基與親水的由7~10個(gè)氨基酸構(gòu)成的肽鏈以酰胺鍵或內(nèi)酯的形式連接構(gòu)成環(huán)肽,其結(jié)構(gòu)上的差異主要在于脂肪鏈中碳原子的個(gè)數(shù)、氨基酸的種類及脂肪酸鏈與肽鏈連接鍵的不同(圖1)。
A: Surfactin is formed by β-hydroxy fatty acids (12-17 carbon atoms) with peptide chain through lactone bonds.The molecular peptide chain is composed of seven α-amino acids.B: Iturin is a ring formed by β-amino fatty acids (14-17 carbon atoms) with peptide chain through amide bond.The molecular peptide chain is composed of seven α-amino acids.C: Fengycin is composed of β-hydroxy fatty acids (14-17 carbon atoms) and peptide chain through lactone bond.Fengycin is different from surfactin and iturin.The macrocyclic ring is composed of peptide chain of ten α-amino acids.The Arabic numerals represent the position of the amino acid.
圖1表面活性素、伊枯草菌素和豐原素的分子結(jié)構(gòu)
Fig.1Molecularstructuresofsurfactin,iturinandfengycin
表面活性素由β-羥基脂肪酸與肽鏈以內(nèi)酯鍵結(jié)合而成[39-41]。多數(shù)細(xì)菌代謝產(chǎn)生的表面活性素的肽鏈為七元肽,即分子中的肽鏈由7個(gè)α-氨基酸組成,再與帶有12~17個(gè)碳原子的β-羥基脂肪酸構(gòu)成一個(gè)大內(nèi)酯環(huán),相對分子質(zhì)量(Mr)為 1 000 左右。多肽中典型的氨基酸順序?yàn)閇27,42-43]:L-Glu-L-Leu-D-Leu-L-Val-L-Asp-D-Leu-L-Leu(圖1A)。表面活性素家族常見的有surfactin A[44]、surfactin C[44]、lichenysin[44-46]、pumilacidin等[46]。
伊枯草菌素由β-氨基脂肪酸與肽鏈以酰胺鍵成環(huán)[47]。多數(shù)細(xì)菌代謝產(chǎn)生的伊枯草菌素的肽鏈也為七元肽,與帶有14~17個(gè)碳原子的β-氨基脂肪酸構(gòu)成一個(gè)大環(huán),Mr 為 1 000 左右。多肽中典型的氨基酸順序?yàn)閇47-48]:L-Asn-D-Tyr-D-Asn-L-Gln-L-Pro-D-Asn-L-Ser(圖1B)。伊枯草菌素家族種類較多,如iturin A[49-54]、iturin C[49,51]、iturin D[51]、iturin E[51-53]、iturin F[53]、桿菌霉素(bacillomycin)D[49-52]、bacillomycin F[49-51]、bacillomycin L[49-51]、mixirins[9,51-52]、mojavensin[52]、抗霉枯草菌素(mycosubtilin)[49-51,53-54]和subtulene[51]等。
豐原素由β-羥基脂肪酸與肽鏈以內(nèi)酯鍵結(jié)合而成。與表面活性素不同的是,豐原素的大環(huán)由肽鏈自行構(gòu)成,β-羥基脂肪酸并不參與[54-55]。多數(shù)細(xì)菌代謝產(chǎn)生的豐原素的肽環(huán)為十元肽,第三位的D-Tyr和最后一位的L-Ile以內(nèi)酯鍵結(jié)合成環(huán),再與帶有14~17個(gè)碳原子的β-羥基脂肪酸以酯鍵結(jié)合,Mr 為 1 500 左右[54-56]。多肽中典型的氨基酸順序?yàn)閇54-58]:L-Glu-D-Orn-D-Tyr-D-allo-Thr-L-Glu-D-Ala-L-Pro-L-Gln-L-Tyr-L-Ile(圖1C)。豐原素家族常見的有fengycin A[54-58]、fengycin B[54-55,57-58]、fengycin C[54-55,58]、fengycin S[55]和制磷脂菌素(plipastatin)[54-55,57-59]。
表面活性素可通過溶解和破壞細(xì)胞膜發(fā)揮抗菌作用,其與膜中的極性頭部和疏水?;溇上嗷プ饔?,高濃度時(shí)引起磷脂雙分子層高度不穩(wěn)定,中等濃度時(shí)在細(xì)胞膜中形成離子傳導(dǎo)孔與Ca2+結(jié)合,有助于膜滲透;其還可通過有機(jī)屏障驅(qū)動(dòng)其他單價(jià)和二價(jià)陽離子,導(dǎo)致cAMP磷酸二酯酶活性被抑制[60-62]。伊枯草菌素能迅速引起細(xì)胞膜損傷,細(xì)胞通透性改變,細(xì)胞內(nèi)物質(zhì)外泄,從而達(dá)到抑制真菌孢子萌發(fā)、菌絲體生長的效果;其還可與細(xì)胞內(nèi)靶點(diǎn)(如細(xì)胞DNA)相互作用,破壞細(xì)胞內(nèi)鈣穩(wěn)態(tài),導(dǎo)致細(xì)胞死亡[63-65]。豐原素對細(xì)胞膜有顯著擾亂作用,通過基于豐原素濃度的兩態(tài)躍遷過程使磷脂雙分子層損傷,從而導(dǎo)致細(xì)胞死亡。高濃度時(shí),豐原素作為洗滌劑促進(jìn)細(xì)胞膜溶解,該過程主要由其對脂質(zhì)雙分子層的吸引力等物理化學(xué)性質(zhì)所驅(qū)動(dòng);低濃度時(shí),豐原素聚合形成孔洞,導(dǎo)致膜的滲透率發(fā)生變化[61,66-68]。
芽胞桿菌能分泌多種肽類及由肽類衍生的抗菌活性物質(zhì),按合成途徑分為核糖體肽和非核糖體肽[4]。非核糖體肽Mr較小,一般為 3 000 以下,通過非核糖體肽鏈合成酶(non-ribosomal peptide synthetase,NRPS)來合成,多發(fā)生于菌體生長停止之后;而核糖體肽Mr較大,大多于菌體快速生長時(shí)期合成[4,69]。
非核糖體途徑合成的脂肽類抗菌活性物質(zhì)合成于菌體生長停止之后,屬于微生物次級代謝產(chǎn)物,能繞開核糖體,不以mRNA 為模板,也不需tRNA 作為運(yùn)載工具,而是通過NRPS識別特定的氨基酸并連接成多肽鏈[4,70]。表面活性素、伊枯草菌素和豐原素就是NRPS合成的次級代謝產(chǎn)物,由胞內(nèi)游離氨基酸經(jīng)活化后結(jié)合到合成酶系特定的結(jié)構(gòu)域,從而實(shí)現(xiàn)肽鏈的延長和環(huán)化[71-72](圖2)。
NRPS是由多個(gè)功能模塊組成的復(fù)合酶體系,按功能分為必不可少模塊和可供選擇模塊,各模塊負(fù)責(zé)活化不同的氨基酸使肽鏈延長。必不可少模塊有氨基酸激活結(jié)構(gòu)域(amino acid activating domain)、氨酰載體結(jié)構(gòu)域(acyl carrier)、縮合結(jié)構(gòu)域(condensation domain)和硫酯酶結(jié)構(gòu)域(thioesterase domain)。氨基酸激活結(jié)構(gòu)域由550個(gè)氨基酸殘基構(gòu)成,負(fù)責(zé)識別和腺苷?;囟ǖ陌被幔址Q為腺苷?;Y(jié)構(gòu)域(adenylation domain);氨酰載體結(jié)構(gòu)域負(fù)責(zé)運(yùn)載氨基酸,又稱為巰基化結(jié)構(gòu)域T或肽酰載體蛋白( peptidyl carrier protein,PCP);縮合結(jié)構(gòu)域負(fù)責(zé)肽鍵形成;硫酯酶結(jié)構(gòu)域負(fù)責(zé)釋放多肽和肽的環(huán)化??晒┻x擇模塊包括環(huán)化結(jié)構(gòu)域(cyclization domain)、甲基轉(zhuǎn)移酶結(jié)構(gòu)域(methyltransferase domain)、差向異構(gòu)酶結(jié)構(gòu)域(epimerization domain)等。差向異構(gòu)酶結(jié)構(gòu)域負(fù)責(zé)將被激活的L-氨基酸轉(zhuǎn)化為D-氨基酸。全酶由多個(gè)模塊按特定的空間順序排列而成,模塊的數(shù)量、種類及排列次序決定了氨基酸種類、順序和最終產(chǎn)物肽鏈的長短[73-74](圖2)。
A: amino acid activating domain;PCP: peptidyl carrier protein;C: condensation domain;E: epimerization domain;TE: thioesterase domain;MCT: monocarboxylate transporter.
圖2表面活性素、伊枯草菌素和豐原素的代謝通路
Fig.2Metabolicpathwaysofsurfactin,iturinandfengycin
NRPS合成多肽的一般過程為:首先,氨基酸激活結(jié)構(gòu)域選擇并結(jié)合特定的氨基酸,在ATP 作用下激活氨基酸(腺苷化),形成氨酰腺苷酸。氨酰腺苷酸與氨酰載體結(jié)構(gòu)域上的4-磷酸泛酰巰基輔基以共價(jià)鍵形式結(jié)合,形成氨酰載體復(fù)合體。然后,攜帶有活化氨基酸的氨酰載體與縮合結(jié)構(gòu)域特定部位結(jié)合,在其合成酶的作用下,按相鄰合成酶各組成模塊的順序依次向前形成肽鍵。肽鍵形成后,進(jìn)入下一循環(huán),即肽鏈延伸過程。最后,硫酯酶結(jié)構(gòu)域終止肽鏈合成,將肽鏈從磷酸泛酰巰基輔基釋放下來,并進(jìn)行環(huán)化[75-77]。
表面活性素合成酶包括3 個(gè)亞單位:SrfA、ComA(SrfB)和SrfC[4,26,78-86]。編碼表面活性素合成酶的基因srfA-A、srfA-B、srfA-C共同構(gòu)成srfA操縱子(長約25 kb),分別負(fù)責(zé)編碼Mr為 401 000、402 000 和 144 000 的3個(gè)合成單體酶E1A、E1B和E2。srfA-C編碼的第一個(gè)硫酯酶結(jié)構(gòu)域負(fù)責(zé)終止肽鏈延伸并釋放多肽產(chǎn)物(圖2A)。
sfp基因(約4.5 kb)是參與表面活性素合成的第二調(diào)控元件,位于srfA操縱子下游30.5 kb處,與srfA-D末端相距約4 kb。sfp基因編碼的SFP 酶具有編碼磷酸泛酰巰基乙胺基轉(zhuǎn)移酶(phosphopantetheinyl transferase,PPTase)的功能,可催化非核糖體肽和載鐵蛋白前體的形成,并借此將表面活性素合成酶激活,屬PPTase超家族。有研究認(rèn)為sfp和srfA-C-TE基因共同發(fā)揮主導(dǎo)作用,還有研究認(rèn)為sfp基因在表面活性素合成中有更直接的調(diào)節(jié)作用[85]。在基因圖譜中,srfA與sfp相鄰,而與srfB相隔,srfB功能等同于comA基因,即激活srfA啟動(dòng)子的轉(zhuǎn)錄。
SrfA-A負(fù)責(zé)組裝前3位氨基酸;SrfA-B負(fù)責(zé)組裝第4~6位氨基酸;SrfA-C負(fù)責(zé)組裝第7位氨基酸,并將羥基脂肪酸轉(zhuǎn)移到蛋白SrfA-A上。
伊枯草菌素通過聚酮合酶(polyketide synthase,PKS)-NRPS雜合體系合成[78,87-88]。
編碼伊枯草菌素合成酶的基因ituD、ituA、ituB和ituC共同構(gòu)成itu操縱子(長約38 kb)。ituD負(fù)責(zé)編碼丙二酰輔酶A轉(zhuǎn)酰酶,對伊枯草菌素的形成起重要作用,被破壞可導(dǎo)致iturin A產(chǎn)生特異性缺陷;其還可調(diào)控伊枯草菌素產(chǎn)量,可能與脂肪酸合成有關(guān)。ituA編碼Mr為 449 000 的蛋白,與脂肪酸合成酶、氨基酸轉(zhuǎn)移酶和肽合成酶具有同源性,可能與β-氨基脂肪酸形成有關(guān);部分基因與聚酮合酶相關(guān),其編碼的聚酮合酶參與脂肽類分子碳鏈合成的最終步驟,并為肽段部分氨基酸分子的組裝做好準(zhǔn)備。ituB編碼Mr為 609 000 的具有4個(gè)氨基酸腺苷酸化結(jié)構(gòu)域的肽合成酶。ituC編碼Mr為 297 000 的另一種肽合成酶,具有2個(gè)腺苷酸化結(jié)構(gòu)域、1個(gè)差向異構(gòu)酶結(jié)構(gòu)域和硫酯酶結(jié)構(gòu)域,這可能有助于肽環(huán)化。ItuA負(fù)責(zé)組裝第1位氨基酸,ItuB負(fù)責(zé)組裝第2~5位氨基酸,ItuC負(fù)責(zé)組裝第6和7位氨基酸(圖2B)。
編碼豐原素合成酶的基因fenC、fenD、fenE、fenA、fenB共同構(gòu)成fen操縱子(長約37 kb),分別編碼5個(gè)亞基,即5個(gè)單體酶——FenC、FenD、FenE、FenA和FenB。每個(gè)單體酶一般含1~3個(gè)氨基酸激活模塊,且每個(gè)模塊具有接受特定氨基酸及形成相應(yīng)肽鍵的功能。豐原素合成從肽單體酶FenC開始,途經(jīng)FenD、FenE和FenA,終止于肽單體酶FenB[60,89-91]。
FenC的Mr為 287 000,負(fù)責(zé)活化并組裝第1和2位氨基酸;FenD的Mr為 290 000,負(fù)責(zé)活化第3和4位氨基酸;FenE的Mr為 286 000,活化第5和6位氨基酸;FenA的Mr為 406 000,負(fù)責(zé)活化第7~9位氨基酸;FenB的Mr為 146 000,負(fù)責(zé)組裝最后一位氨基酸。FenB含有能中斷肽鏈合成的硫酯酶結(jié)構(gòu)域,具有釋放肽鏈的功能,在其下游也發(fā)現(xiàn)了與脂肪酸代謝有關(guān)的基因(圖2C)。
研究表明,表面活性素對新城疫病毒(Newcastle disease virus,NDV)不僅具有直接滅活作用,還可阻斷其對細(xì)胞的吸附;隨著濃度升高還可抑制NDV的生物合成,具有明顯的量-效關(guān)系。表面活性素的治療指數(shù)為 12.16,高于病毒唑的 9.70,有望開發(fā)成為一種有效的抗病毒藥物,這對養(yǎng)殖業(yè)生產(chǎn)及防治NDV感染所致人類疾病具有重要意義[7]。另有研究表明,表面活性素對人乳腺癌細(xì)胞Michigan Cancer Foundation-7(MCF-7)表現(xiàn)出較強(qiáng)的抑制作用。噻唑藍(lán)(methylthiazolyldiphenyl-tetrazolium bromide,MTT)法顯示,表面活性素能抑制MCF-7增殖,呈現(xiàn)濃度與時(shí)間依賴關(guān)系,細(xì)胞處理24 h后的半抑制濃度(half maximal inhibitory concentration,IC50)為10 μg/mL。隨著發(fā)酵期間表面活性素含量升高(0.3~48.2 mg/kg),SEC(surfactin extractions of cheonggukjang)(100 μg/mL)的抗癌活性逐漸升高(20.3%~54.7%)[8]。表面活性素除具有抗病毒、抗腫瘤作用,還可抗細(xì)菌[13-15]、抗真菌[16-17]、抗支原體[19]、抗炎[20],抗菌譜較廣,同時(shí)具有不易產(chǎn)生耐藥性、可被動(dòng)物消化酶降解、無殘留等優(yōu)點(diǎn),均顯示其應(yīng)用于醫(yī)藥業(yè)的潛力。
伊枯草菌素具有強(qiáng)烈的抗真菌、抗腫瘤作用,還具有低毒、低殘留、低過敏性和抗菌譜廣的特點(diǎn),是一種潛在的具有極大開發(fā)應(yīng)用價(jià)值的醫(yī)藥產(chǎn)品。研究表明,伊枯草菌素對紅色毛癬菌具有較強(qiáng)抑制作用[18]。Mixirins A、B和C具有抗腫瘤作用,可抑制人結(jié)腸癌細(xì)胞HCT-116的生長,其IC50分別為 0.68、1.6 和 1.3 μg/mL[9]。
豐原素具有顯著的抗腫瘤效果,對腫瘤細(xì)胞及腫瘤組織具有較好的選擇性,對腫瘤凋亡相關(guān)蛋白有明顯影響,而對正常造血系統(tǒng)和白細(xì)胞無影響,為尋找新型抗腫瘤藥物提供了方向。研究表明,與對照組相比,豐原素濃度達(dá)20 μg/mL時(shí)即可抑制人結(jié)腸癌細(xì)胞HT-29的生長,并呈濃度與時(shí)間依賴關(guān)系。蛋白免疫印跡分析發(fā)現(xiàn),加入豐原素后,HT-29細(xì)胞中的Bax、Caspase-3和Caspase-6表達(dá)明顯增加,而Bcl-2和CDK4/cyclin D1表達(dá)降低,表明豐原素可通過影響人HT-29細(xì)胞周期的G1期停滯和誘導(dǎo)細(xì)胞凋亡而對其產(chǎn)生抑制作用[10]。此外,大量研究也表明豐原素可抑制人結(jié)腸癌HCT-15細(xì)胞增殖[11],調(diào)節(jié)人肺癌95D細(xì)胞G0/G1期引起細(xì)胞周期停滯和促進(jìn)細(xì)胞凋亡來抑制癌細(xì)胞生長[12],顯示其具有極大的抗腫瘤潛力。
綜上所述,抗菌肽是極具價(jià)值的新一代抗菌藥物,能作為抗病原體藥物,并可能發(fā)展成為抗腫瘤藥物,在免疫調(diào)節(jié)、促進(jìn)傷口愈合等方面有應(yīng)用價(jià)值。多數(shù)文獻(xiàn)表明,表面活性素、伊枯草菌素和豐原素在醫(yī)療領(lǐng)域有著巨大價(jià)值與廣闊前景,具備低毒、抗菌譜廣、不易產(chǎn)生耐藥性等優(yōu)勢及工業(yè)化生產(chǎn)潛力,但臨床應(yīng)用還不廣泛。隨著對抗菌肽研究的不斷深入及技術(shù)的不斷改進(jìn),如何將其應(yīng)用于臨床、應(yīng)用于人類醫(yī)療事業(yè)將成為研究的主要方向。
[1] Zhang LJ,Gallo RL.Antimicrobial peptides [J].Curr Biol,2016,26(1): R14-R19.
[2] Sadredinamin M,Mehrnejad F,Hosseini P,Doustdar F.Antimicrobial peptides (AMPs) [J/OL].Novelty Biomed,2016,4(2): 70-76.http://journals.sbmu.ac.ir/nbm/article/view/9158.
[3] Ramesh S,Govender T,Kruger HG,de la Torre BG,Albericio F.Short antimicrobial peptides (SAMPs) as a class of extraordinary promising therapeutic agents [J].J Pept Sci,2016,22(7): 438-451.
[4] Leclère V,Béchet M,Adam A,Guez JS,Wathelet B,Ongena M,Thonart P,Gancel F,Chollet-Imbert M,Jacques P.Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism’s antagonistic and biocontrol activities [J].Appl Environ Microbiol,2005,71(8): 4577-4584.
[5] Wei YH,Wang LC,Chen WC,Chen SY.Production and characterization of fengycin by indigenous Bacillus subtilis F29-3 originating from a potato farm [J].Int J Mol Sci,2010,11(11): 4526-4538.
[6] Furuya S,Mochizuki M,Aoki Y,Kobayashi H,Takayanagi T,Shimizu M,Suzuki S.Isolation and characterization of Bacillus subtilis KS1 for the biocontrol of grapevine fungal diseases [J].Biocontrol Sci Technol,2011,21(6): 705-720.
[7] 黃現(xiàn)青,魏戰(zhàn)勇,高曉平,韓慶功,崔艷紅.表面活性素體外抗新城疫病毒活性研究 [J].浙江農(nóng)業(yè)科學(xué),2008,1(5): 630-632.
[8] Lee JH,Nam SH,Seo WT,Yun HD,Hong SY,Kim MK,Cho KM.The production of surfactin during the fermentation of cheonggukjang by potential probiotic Bacillus subtilis CSY191 and the resultant growth suppression of MCF-7 human breast cancer cells [J].Food Chem,2012,131(4): 1347-1354.
[9] Zhang HL,Hua HM,Pei YH,Yao XS.Three new cytotoxic cyclic acylpeptides from marine Bacillus sp [J].Chem Pharm Bull (Tokyo),2004,52(8): 1029-1030.
[10] Cheng W,Feng YQ,Ren J,Jing D,Wang C.Anti-tumor role of Bacillus subtilis fmbJ-derived fengycin on human colon cancer HT29 cell line [J].Neoplasma,2016,63(2): 215-222.
[11] Sivapathasekaran C,Das P,Mukherjee S,Saravanakumar J,Mandal M,Sen R.Marine bacterium derived lipopeptides: characterization and cytotoxic activity against cancer cell lines [J].Int J Pept Res Ther,2010,16(4): 215-222.
[12] Yin H,Guo C,Wang Y,Liu D,Lv Y,Lv F,Lu Z.Fengycin inhibits the growth of the human lung cancer cell line 95D through reactive oxygen species production and mitochondria-dependent apoptosis [J].Anticancer Drugs,2013,24(6): 587-598.
[13] Korenblum E,de Araujo LV,Guimar?es CR,de Souza LM,Sassaki G,Abreu F,Nitschke M,Lins U,Freire DM,Barreto-Bergter E,Seldin L.Purification and characterization of a surfactin-like molecule produced by Bacillus sp.H2O-1 and its antagonistic effect against sulfate reducing bacteria [J].BMC Microbiol,2012,12: 252.doi: 10.1186/1471-2180-12-252.
[14] Das P,Mukherjee S,Sen R.Antimicrobial potential of a lipopeptide biosurfactant derived from a marine Bacillus circulans [J].J Appl Microbiol,2008,104(6): 1675-1684.
[15] Loiseau C,Schlusselhuber M,Bigot R,Bertaux J,Berjeaud JM,Verdon J.Surfactin from Bacillus subtilis displays an unexpected anti-legionella activity [J].Appl Microbiol Biotechnol,2015,99(12): 5083-5093.
[16] Liu X,Ren B,Gao H,Liu M,Dai H,Song F,Yu Z,Wang S,Hu J,Kokare CR,Zhang L.Optimization for the production of surfactin with a new synergistic antifungal activity [J].PLoS One,2012,7(5): e34430.
[17] Qi G,Zhu F,Du P,Yang X,Qiu D,Yu Z,Chen J,Zhao X.Lipopeptide induces apoptosis in fungal cells by a mitochondria-dependent pathway [J].Peptides,2010,31(11): 1978-1986.
[18] Cotta SR,da Mota FF,Tupinambá G,Ishida K,Rozental S,E Silva DO,da Silva AJ,Bizzo HR,Alviano DS,Alviano CS,Seldin L.Antimicrobial activity of Paenibacillus kribbensis POC 115 against the dermatophyte Trichophyton rubrum [J].World J Microbiol Biotechnol,2012,28(3): 953-962.
[19] Vollenbroich D,Pauli G,Ozel M,Vater J.Antimycoplasma properties and application in cell culture of surfactin,a lipopeptide antibiotic from Bacillus subtilis [J].Appl Environ Microbiol,1997,63(1): 44-49.
[20] Hwang MH,Lim JH,Yun HI,Rhee MH,Cho JY,Hsu WH,Park SC.Surfactin C inhibits the lipopolysaccharide-induced transcription of interleukin-1beta and inducible nitric oxide synthase and nitric oxide production in murine RAW 264.7 cells [J].Biotechnol Lett,2005,27(20): 1605-1608.
[21] Selvam R,Maheswari P,Kavitha P,Ravichandran M,Sas B,Ramchand CN.Effect of Bacillus subtilis PB6,a natural probiotic on colon mucosal inflammation and plasma cytokines levels in inflammatory bowel disease [J].Indian J Biochem Biophys,2009,46(1): 79-85.
[22] Shaligram NS,Singhal RS.Surfactin—a review on biosynthesis,fermentation,purification and applications [J].Food Technol Biotechnol,2010,48(2): 119-134.
[23] Patel S,Ahmed S,Eswari JS.Therapeutic cyclic lipopeptides mining from microbes: latest strides and hurdles [J].World J Microbiol Biotechnol,2015,31(8): 1177-1193.
[24] Inès M,Dhouha G.Lipopeptide surfactants: Production,recovery and pore forming capacity [J].Peptides,2015,71: 100-112.
[25] Mnif I,Ghribi D.Review lipopeptides biosurfactants: Mean classes and new insights for industrial,biomedical,and environmental applications [J].Biopolymers,2015,104(3): 129-147.
[26] Pratap SS,Seema G,Neetu P,Nimisha S.Surfactin:a review on novel microbial surfactant [J/OL].Int J Bioassays,2013,2(5): 740-745.http://ijbio.com/index.php/ijb/article/view/390.
[27] Chen WC,Juang RS,Wei YH.Applications of a lipopeptide biosurfactant,surfactin,produced by microorganisms [J].Biochem Eng J,2015,103: 158-169.
[28] Goodman SA,Orr C,Warner PJ.Development of yeast inhibitory compounds for incorporation into silage inoculants [J].Cell Biol,1992,65: 479-485.
[29] Wei YH.Enhanced fengycin production with an indigenous isolate Bacillus subtilis F29-3 [J].J Biotechnol,2010,150: S345.doi:10.1016/j.jbiotec.2010.09.376.
[30] Taira T,Yanagisawa S,Nagano T,Tsuji T,Endo A,Imura T.pH-induced conformational change of natural cyclic lipopeptide surfactin and the effect on protease activity [J].Colloids Surf B Biointerfaces,2017,156: 382-387.
[31] Onaizi SA,Nasser MS,Al-Lagtah NM.Self-assembly of a surfactin nanolayer at solid-liquid and air-liquid interfaces [J].Eur Biophys J,2016,45(4): 331-339.
[32] Alvarez F,Castro M,Príncipe A,Borioli G,Fischer S,Mori G,Jofré E.The plant-associated Bacillus amyloliquefaciens strains MEP2 18 and ARP2 3 capable of producing the cyclic lipopeptides iturin or surfactin and fengycin are effective in biocontrol of sclerotinia stem rot disease [J].J Appl Microbiol,2012,112(1): 159-174.
[33] Arrebola E,Jacobs R,Korsten L.Iturin A is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens [J].J Appl Microbiol,2010,108(2): 386-395.
[34] Fan H,Ru J,Zhang Y,Wang Q,Li Y.Fengycin produced by Bacillus subtilis 9407 plays a major role in the biocontrol of apple ring rot disease [J].Microbiol Res,2017,199: 89-97.
[35] Mizumoto S,Shoda M.Medium optimization of antifungal lipopeptide,iturin A,production by Bacillus subtilis in solid-state fermentation by response surface methodology [J].Appl Microbiol Biotechnol,2007,76(1): 101-108.
[36] Rangarajan V,Dhanarajan G,Sen R.Bioprocess design for selective enhancement of fengycin production by a marine isolate Bacillus megaterium [J].Biochem Eng J,2015,99: 147-155.
[37] Yi G,Liu Q,Lin J,Wang W,Huang H,Li S.Repeated batch fermentation for surfactin production with immobilized Bacillus subtilis BS-37:two-stage pH control and foam fractionation [J].J Chem Technol Biotechnol,2017,92(3): 530-535.doi: 10.1002/jctb.5028.
[38] Willenbacher J,Zwick M,Mohr T,Schmid F,Syldatk C,Hausmann R.Evaluation of different Bacillus strains in respect of their ability to produce surfactin in a model fermentation process with integrated foam fractionation [J].Appl Microbiol Biotechnol,2014,98(23): 9623-9632.
[39] Romano A,Vitullo D,Di Pietro A,Lima G,Lanzotti V.Antifungal lipopeptides from Bacillus amyloliquefaciens strain BO7 [J].J Nat Prod,2011,74(2): 145-151.
[40] Huszcza E,Burczyk B.Surfactin isoforms from Bacillus coagulans [J].Z Naturforsch C,2006,61(9-10): 727-733.
[41] Kwon JW,Kim SD.Characterization of an antibiotic produced by Bacillus subtilis JW-1 that suppresses Ralstonia solanacearum [J].J Microbiol Biotechnol,2014,24(1): 13-18.
[42] Liu JF,Mbadinga SM,Yang SZ,Gu JD,Mu BZ.Chemical structure,property and potential applications of biosurfactants produced by Bacillus subtilis in petroleum recovery and spill mitigation [J].Int J Mol Sci,2015,16(3): 4814-4837.
[43] Huang X,Lu Z,Bie X,Lü F,Zhao H,Yang S.Optimization of inactivation of endospores of Bacillus cereus by antimicrobial lipopeptides from Bacillus subtilis fmbj strains using a response surface method [J].Appl Microbiol Biotechnol,2007,74(2): 454-461.
[44] Aleti G,Lehner S,Bacher M,Compant S,Nikolic B,Plesko M,Schuhmacher R,Sessitsch A,Brader G.Surfactin variants mediate species-specific biofilm formation and root colonization in Bacillus [J].Environ Microbiol,2016,18(8): 2634-2645.
[45] Shaligram S,Kumbhare SV,Dhotre DP,Muddeshwar MG,Kapley A,Joseph N,Purohit HP,Shouche YS,Pawar SP.Genomic and functional features of the biosurfactant producing Bacillus sp.AM13 [J].Funct Integr Genomics,2016,16(5): 557-566.
[46] Naruse N,Tenmyo O,Kobaru S,Kamei H,Miyaki T,Konishi M,Oki T.Pumilacidin,a complex of new antiviral antibiotics.Production,isolation,chemical properties,structure and biological activity [J].J Antibiot (Tokyo),1990,43(3): 267-280.
[47] Yang H,Li X,Li X,Yu H,Shen Z.Identification of lipopeptide isoforms by MALDI-TOF-MS/MS based on the simultaneous purification of iturin,fengycin,and surfactin by RP-HPLC [J].Anal Bioanal Chem,2015,407(9): 2529-2542.
[48] Kawagoe Y,Shiraishi S,Kondo H,Yamamoto S,Aoki Y,Suzuki S.Cyclic lipopeptide iturin A structure-dependently induces defense response in Arabidopsis plants by activating SA and JA signaling pathways [J].Biochem Biophys Res Commun,2015,460(4): 1015-1020.
[49] Maget-Dana R,Peypoux F.Iturins,a special class of pore-forming lipopeptides: biological and physicochemical properties [J].Toxicology,1994,87(1-3): 151-174.
[50] Nasir MN,Besson F.Conformational analyses of bacillomycin D,a natural antimicrobial lipopeptide,alone or in interaction with lipid monolayers at the air-water interface [J].J Colloid Interface Sci,2012,387(1): 187-193.
[51] Thasana N,Prapagdee B,Rangkadilok N,Sallabhan R,Aye SL,Ruchirawat S,Loprasert S.Bacillus subtilis SSE4 produces subtulene A,a new lipopeptide antibiotic possessing an unusual C15 unsaturated beta-amino acid [J].FEBS Lett,2010,584(14): 3209-3214.
[52] Ma Z,Wang N,Hu J,Wang S.Isolation and characterization of a new iturinic lipopeptide,mojavensin A produced by a marine-derived bacterium Bacillus mojavensis B0621A [J].J Antibiot (Tokyo),2012,65(6): 317-322.
[53] Son S,Ko SK,Jang M,Kim JW,Kim GS,Lee JK,Jeon ES,Futamura Y,Ryoo IJ,Lee JS,Oh H,Hong YS,Kim BY,Takahashi S,Osada H,Jang JH,Ahn JS.New cyclic lipopeptides of the iturin class produced by saltern-derived Bacillus sp.KCB14S006 [J].Mar Drugs,2016,14(4).doi: 10.3390/md14040072.
[54] Pathak KV,Keharia H,Gupta K,Thakur SS,Balaram P.Lipopeptides from the banyan endophyte,Bacillus subtilis K1: mass spectrometric characterization of a library of fengycins [J].J Am Soc Mass Spectrom,2012,23(10): 1716-1728.
[55] Sang-Cheol L,Kim SH,Park IH,Chung SY,Chandra MS,Yong-Lark C.Isolation,purification,and characterization of novel fengycin S from Bacillus amyloliquefaciens LSC04 degrading-crude oil [J/OL].Biotechnol Bioproc Eng,2010,15(2): 246-253.https://link.springer.com/article/10.1007/s12257-009-0037-8.
[56] Benitez LB,Velho RV,Lisboa MP,Medina LF,Brandelli A.Isolation and characterization of antifungal peptides produced by Bacillus amyloliquefaciens LBM5006 [J].J Microbiol,2010,48(6): 791-797.
[57] Bie X,Lu Z,Lu F.Identification of fengycin homologues from Bacillus subtilis with ESI-MS/Cid [J].J Microbiol Methods,2009,79(3): 272-278.
[58] Villegas-Escobar V,Ceballos I,Mira JJ,Argel LE,Orduz Peralta S,Romero-Tabarez M.Fengycin C produced by Bacillus subtilis EA-CB0015 [J].J Nat Prod,2013,76(4): 503-509.
[59] Honma M,Tanaka K,Konno K,Tsuge K,Okuno T,Hashimoto M.Termination of the structural confusion between plipastatin A1 and fengycin IX [J].Bioorg Med Chem,2012,20(12): 3793-3798.
[60] Deleu M,Lorent J,Lins L,Brasseur R,Braun N,El Kirat K,Nylander T,Dufrêne YF,Mingeot-Leclercq MP.Effects of surfactin on membrane models displaying lipid phase separation [J].Biochim Biophys Acta,2013,1828(2): 801-815.
[61] Patel H,Huynh Q,B?rlehner D,Heerklotz H.Additive and synergistic membrane permeabilization by antimicrobial (lipo)peptides and detergents [J].Biophys J,2014,106(10): 2115-2125.
[62] Heerklotz H,Seelig J.Leakage and lysis of lipid membranes induced by the lipopeptide surfactin [J].Eur Biophys J,2007,36(4/5): 305-314.
[63] Zhang B,Dong C,Shang Q,Han Y,Li P.New insights into membrane-active action in plasma membrane of fungal hyphae by the lipopeptide antibiotic bacillomycin L [J].Biochim Biophys Acta,2013,1828(9): 2230-2237.
[64] Zhang B,Qin Y,Han Y,Dong C,Li P,Shang Q.Comparative proteomic analysis reveals intracellular targets for bacillomycin L to induce Rhizoctonia solani Kühn hyphal cell death [J].Biochim Biophys Acta,2016,1864(9): 1152-1159.
[65] Rajendran L,Ramjegathesh R,Shanthiyaa V,Raguchander T,Samiyappan GK.Biocontrol potential and mode of action of the strains EPC 5 and EPC 8 of endophytic bacterium,Bacillus subtilis [J/OL].Indian Phytopathol,2012,65(2): 122-127.http://epubs.icar.org.in/ejournal/index.php/IPPJ/article/view/18572/9363.
[66] Deleu M,Paquot M,Nylander T.Effect of fengycin,a lipopeptide produced by Bacillus subtilis,on model biomembranes [J].Biophys J,2008,94(7): 2667-2679.
[67] Deleu M,Paquot M,Nylander T.Fengycin interaction with lipid monolayers at the air-aqueous interface—implications for the effect of fengycin on biological membranes [J].J Colloid Interface Sci,2005,283(2): 358-365.
[68] Patel H,Tscheka C,Edwards K,Karlsson G,Heerklotz H.All-or-none membrane permeabilization by fengycin-type lipopeptides from Bacillus subtilis QST713 [J].Biochim Biophys Acta,2011,1808(8): 2000-2008.
[70] Iannazzo L,Laisné G,Fonvielle M,Braud E,Herbeuval JP,Arthur M,Etheve-Quelquejeu M.Synthesis of 3′-fluoro-tRNA analogues for exploring non-ribosomal peptide synthesis in bacteria [J].ChemBioChem,2015,16(3): 477-486.
[71] Tapi A,Chollet-Imbert M,Scherens B,Jacques P.New approach for the detection of non-ribosomal peptide synthetase genes in Bacillus strains by polymerase chain reaction [J].Appl Microbiol Biotechnol,2010,85(5): 1521-1531.
[72] Dunlap CA,Bowman MJ,Schisler DA.Genomic analysis and secondary metabolite production in Bacillus amyloliquefaciens AS 43.3: A biocontrol antagonist of Fusarium head blight [J].Biol Control,2013,64(2): 166-175.doi: 10.1016/j.biocontrol.2012.11.002.
[73] Stevens BW,Lilien RH,Georgiev I,Donald BR,Anderson AC.Redesigning the PheA domain of gramicidin synthetase leads to a new understanding of the enzyme’s mechanism and selectivity [J].Biochemistry,2006,45(51): 15495-15504.
[74] Hur GH,Vickery CR,Burkart MD.Explorations of catalytic domains in non-ribosomal peptide synthetase enzymology [J].Nat Prod Rep,2012,29(10): 1074-1098.
[75] Singh M,Chaudhary S,Sareen D.Non-ribosomal peptide synthetases: Identifying the cryptic gene clusters and decoding the natural product [J].J Biosci,2017,42(1): 175-187.
[76] Wei M,Wang S,Shang G.Biosynthetic pathways and engineering for bioactive natural products [J].Curr Org Chem,2010,14(14): 1433-1446.doi: 10.2174/ 138527210791616759.
[77] Schaffer ML,Otten LG.Substrate flexibility of the adenylation reaction in the Tyrocidine non-ribosomal peptide synthetase [J].J Mol Catal B Enzym,2009,59(1/3): 140-144.
[78] Das P,Mukherjee S,Sen R.Genetic regulations of the biosynthesis of microbial surfactants: an overview [J].Biotechnol Genet Eng Rev,2008,25: 165-185.
[79] Hwang YH,Kim MS,Song IB,Park BK,Lim JH,Park SC,Yun HI.Subacute (28 day) toxicity of surfactin C,a lipopeptide produced by Bacillus subtilis,in rats [J].J Health Sci,2009,55(3): 351-355.
[80] Weber T,Marahiel MA.Exploring the domain structure of modular nonribosomal peptide synthetases [J].Structure,2001,9(1): R3-R9.
[81] Savadogo A,Tapi A,Chollet M,Wathelet B,Traoré AS,Jacques P.Identification of surfactin producing strains in Soumbala and Bikalga fermented condiments using polymerase chain reaction and matrix assisted laser desorption/ionization-mass spectrometry methods [J].Int J Food Microbiol,2011,151(3): 299-306.
[82] Koglin A,L?hr F,Bernhard F,Rogov VV,Frueh DP,Strieter ER,Mofid MR,Güntert P,Wagner G,Walsh CT,Marahiel MA,D?tsch V.Structural basis for the selectivity of the external thioesterase of the surfactin synthetase [J].Nature,2008,454(7206): 907-911.
[83] Apao MMN,Teves FG,Madamba MRSB.Sequence analysis of putative swrW gene required for surfactant serrawettin W1 production from Serratia marcescens [J/OL].Afr J Biotechnol,2012,11(57): 12040-12044.http://www.academicjournals.org/journal/AJB/article-full-text-pdf/0854F0E34791.
[84] Satpute SK,Bhuyan SS,Pardesi KR,Mujumdar SS,Dhakephalkar PK,Shete AM,Chopade BA.Molecular genetics of biosurfactant synthesis in microorganisms [J].Adv Exp Med Biol,2010,672: 14-41.
[85] Hsieh FC,Li MC,Lin TC,Kao SS.Rapid detection and characterization of surfactin-producing Bacillus subtilis and closely related species based on PCR [J].Curr Microbiol,2004,49(3): 186-191.
[86] Wang D,Liu Y,Lin Z,Yang Z,Hao C.Isolation and identification of surfactin producing Bacillus subtilis strain and its effect of surfactin on crude oil [J].Acta Microbiol Sin,2008,48(3): 304-311.
[87] Zhao P,Quan C,Jin L,Wang L,Guo X,Fan S.Sequence characterization and computational analysis of the non-ribosomal peptide synthetases controlling biosynthesis of lipopeptides,fengycins and bacillomycin D,from Bacillus amyloliquefaciens Q-426 [J].Biotechnol Lett,2013,35(12): 2155-2163.
[88] Moyne AL,Cleveland TE,Tuzun S.Molecular characterization and analysis of the operon encoding the antifungal lipopeptide bacillomycin D [J].FEMS Microbiol Lett,2004,234(1): 43-49.
[89] Wu CY,Chen CL,Lee YH,Cheng YC,Wu YC,Shu HY,G?tz F,Liu ST.Nonribosomal synthesis of fengycin on an enzyme complex formed by fengycin synthetases [J].J Biol Chem,2007,282(8): 5608-5616.
[90] Yaseen Y,Gancel F,Drider D,Béchet M,Jacques P.Influence of promoters on the production of fengycin in Bacillus spp [J].Res Microbiol,2016,167(4): 272-281.
[91] Samel SA,Wagner B,Marahiel MA,Essen LO.The thioesterase domain of the fengycin biosynthesis cluster: a structural base for the macrocyclization of a non-ribosomal lipopeptide [J].J Mol Biol,2006,359(4): 876-889.