国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

誘導(dǎo)型啟動(dòng)子在植物基因工程中的研究進(jìn)展

2018-03-03 07:30:21楊瑞娟白建榮常利芳
山西農(nóng)業(yè)科學(xué) 2018年2期
關(guān)鍵詞:誘導(dǎo)型擬南芥元件

楊瑞娟 ,白建榮 ,李 銳 ,常利芳

(1.山西大學(xué)生物工程學(xué)院,山西 太原 030006;2.山西省農(nóng)業(yè)科學(xué)院作物科學(xué)研究所,山西 太原 030031)

啟動(dòng)子是位于基因的上游,能夠被RNA聚合酶特異性識(shí)別的一段DNA序列。它像“開(kāi)關(guān)”,控制基因表達(dá)的起始時(shí)間和程度。啟動(dòng)子組成包括核心啟動(dòng)子與上游啟動(dòng)子元件。核心啟動(dòng)子由轉(zhuǎn)錄起始位點(diǎn)、TATA框和5'UTR序列組成[1-2]。上游啟動(dòng)子元件包括CAAT框、GC框和一些組成型及特異型元件,這些元件結(jié)合相應(yīng)的蛋白因子能夠提高轉(zhuǎn)錄效率[3]。啟動(dòng)子按功能及作用方式可分為誘導(dǎo)型啟動(dòng)子、組織特異型啟動(dòng)子和組成型啟動(dòng)子[4]。但是某些條件下,一個(gè)啟動(dòng)子可能有2類啟動(dòng)子的特性[5]。

植物基因工程是將外源基因?qū)胧荏w細(xì)胞,使其與受體染色體整合,改變受體植物遺傳特性的一種方法。它不但可以克服物種間的生殖隔離,還可以大大加快植物育種進(jìn)程。外源基因的表達(dá)必須有啟動(dòng)子的驅(qū)動(dòng)。傳統(tǒng)的基因工程中使用的大多是組成型啟動(dòng)子,它在植物的整個(gè)生命周期中都高強(qiáng)度表達(dá),導(dǎo)致基因產(chǎn)物過(guò)度累積以及隨之而來(lái)的代謝紊亂甚至植物死亡。誘導(dǎo)型啟動(dòng)子是在植物適應(yīng)環(huán)境和長(zhǎng)期進(jìn)化過(guò)程中形成的,能夠響應(yīng)特殊的生物、物理、化學(xué)信號(hào),進(jìn)而提高特定基因轉(zhuǎn)錄水平,來(lái)適應(yīng)一定范圍內(nèi)環(huán)境變化的一類啟動(dòng)子。在沒(méi)有誘導(dǎo)因子存在的條件下,它控制的編碼基因不表達(dá)或本底表達(dá),一旦環(huán)境中出現(xiàn)誘導(dǎo)因素,編碼基因表達(dá)迅速增加。按照響應(yīng)環(huán)境的不同可以分為生物脅迫誘導(dǎo)的啟動(dòng)子、物理脅迫誘導(dǎo)的啟動(dòng)子、化學(xué)脅迫誘導(dǎo)的啟動(dòng)子[6]。誘導(dǎo)型啟動(dòng)子不但可以避免目的基因的持續(xù)表達(dá)對(duì)植物能量的過(guò)度消耗,而且可以消除基因產(chǎn)物積累對(duì)植物本身造成的傷害,成為近年來(lái)植物基因工程的研究熱點(diǎn)。

筆者從生物、物理、化學(xué)3個(gè)誘導(dǎo)方面對(duì)抗逆相關(guān)誘導(dǎo)型啟動(dòng)子的研究進(jìn)行了綜述,以期為相關(guān)學(xué)者的研究提供依據(jù)。

1 生物脅迫誘導(dǎo)型啟動(dòng)子

植物在生長(zhǎng)發(fā)育過(guò)程中會(huì)受到病原微生物如病毒、細(xì)菌、真菌等的侵染以及害蟲(chóng)的吞食侵害,從而導(dǎo)致存活率下降。生物脅迫誘導(dǎo)型啟動(dòng)子是指在植物受到生物脅迫時(shí)可以激活保護(hù)蛋白基因并調(diào)控其相關(guān)表達(dá),從而消除有害代謝產(chǎn)物對(duì)植物自身起到保護(hù)作用。目前相關(guān)研究已取得一定進(jìn)展(表1)。

表1 生物脅迫誘導(dǎo)型啟動(dòng)子

1.1 病原菌誘導(dǎo)型啟動(dòng)子

WRKYs轉(zhuǎn)錄因子在植物抗病反應(yīng)中起重要作用,PETITOT等[7]克隆了咖啡WRKY轉(zhuǎn)錄因子的同源基因啟動(dòng)子CaWRKY1a和CaW-RKY1b,發(fā)現(xiàn)真菌脅迫可以誘導(dǎo)該啟動(dòng)子。何康[8]通過(guò)研究水稻抗紋枯病基因OS2H16啟動(dòng)子POs2H16,確定AATCA片段能夠獨(dú)立響應(yīng)紋枯病菌誘導(dǎo)。牟少亮等[9]研究發(fā)現(xiàn),OsERF96基因可應(yīng)答白葉枯病或稻瘟病病原菌的侵染,其啟動(dòng)子可以應(yīng)答病原菌侵染誘導(dǎo)。

1.2 害蟲(chóng)誘導(dǎo)型啟動(dòng)子

當(dāng)受到害蟲(chóng)吞食后植物體內(nèi)水楊酸(SA)劇增,促使相關(guān)基因表達(dá)。KUMAR等[22]將煙草病害蛋白啟動(dòng)子PR-1a嵌合CaMV35S導(dǎo)入棉花,發(fā)現(xiàn)昆蟲(chóng)吞食能夠驅(qū)動(dòng)cry1EC基因表達(dá),同時(shí)噴施SA可以提高棉花的抗蟲(chóng)性。有研究發(fā)現(xiàn),當(dāng)擬南芥根部有線蟲(chóng)寄生時(shí),3種細(xì)菌防衛(wèi)素基因(Pdf2.1,Pdf2.2,Pdf2.3)被誘導(dǎo)表達(dá)。SIDDIQUE等[23]將Pdf2.1啟動(dòng)子與GUS基因融合轉(zhuǎn)入擬南芥之后用線蟲(chóng)感染,發(fā)現(xiàn)GUS基因在其根中特異性表達(dá)。關(guān)麗梅等[24]將從秈稻基因組中獲得的Os01g73940啟動(dòng)子片段BPHIP連接到帶有GUS報(bào)告基因的植物表達(dá)載體上,并轉(zhuǎn)入中花11。通過(guò)GUS組織化學(xué)染色和定量RT-PCR檢測(cè)證明,BPHIP是一個(gè)受褐飛虱和茉莉酸處理誘導(dǎo)上調(diào)的啟動(dòng)子。

2 物理脅迫誘導(dǎo)型啟動(dòng)子

物理脅迫誘導(dǎo)型啟動(dòng)子是指響應(yīng)光、極端溫度、干旱等逆境脅迫使植物適應(yīng)非正常光照、溫度和干旱等惡劣環(huán)境,維持生長(zhǎng)發(fā)育。這類啟動(dòng)子的研究開(kāi)始的較早,研究成果最多(表2)。

2.1 光誘導(dǎo)型啟動(dòng)子

光在植物生長(zhǎng)發(fā)育中起重要作用,如光合作用、光形態(tài)建成。常見(jiàn)的光誘導(dǎo)型啟動(dòng)子有cab啟動(dòng)子和rbcS基因啟動(dòng)子。一般光誘導(dǎo)啟動(dòng)子同時(shí)具有綠色組織特異性[5,25]。王旭靜等[25]研究發(fā)現(xiàn),中棉Gacab啟動(dòng)子含有GT1元件I-box和G-box等光誘導(dǎo)元件并且具有光誘導(dǎo)性。習(xí)雨琳等[5]將A-tRBCS-1A啟動(dòng)子片段轉(zhuǎn)化擬南芥,分析不同光照條件下的表達(dá)模式,結(jié)果顯示,該啟動(dòng)子是光誘導(dǎo)型和組織特異型啟動(dòng)子。

2.2 溫度誘導(dǎo)型啟動(dòng)子

2.2.1 高溫誘導(dǎo)型啟動(dòng)子 高溫脅迫條件下植物體內(nèi)會(huì)大量合成如HSP70,HSP90和HSP100等熱激蛋白來(lái)減輕脅迫引起的傷害[26],當(dāng)熱激元件HSE與熱激因子HSF相互作用才能激活熱激蛋白基因的轉(zhuǎn)錄活性。RR?NDL等[27]研究發(fā)現(xiàn),大豆Gmhsp17.32B啟動(dòng)子具有一段熱誘導(dǎo)因子(HSE)的同功序列。FREEMAN等[28]研究表明,大麥Hvhsp17基因啟動(dòng)子在高溫下能驅(qū)動(dòng)Hvhsp17基因在水稻中表達(dá)。

2.2.2 冷凍誘導(dǎo)型啟動(dòng)子 低溫條件下,植物體內(nèi)會(huì)發(fā)生如改變蛋白質(zhì)、碳水化合物組分或合成一些新的物質(zhì)等一系列生化反應(yīng)。冷響應(yīng)基因COR(cold-regulated)含有順式作用元件CRT和DRE[29]。BELINTANI等[30]研究發(fā)現(xiàn),甘蔗ipt基因啟動(dòng)子ATCOR15a可使ipt基因在冷凍脅迫下表達(dá)量增加,減少冷凍引起植物的損傷。WANG等[31]分離了玉米中受低溫、干旱誘導(dǎo)顯著表達(dá)的蛋白激酶基因ZmCKS2的啟動(dòng)子,并對(duì)其進(jìn)行功能驗(yàn)證。結(jié)果表明,ZmCKS2啟動(dòng)子受干旱、低溫脅迫和不同激素(ABA,MeJA,SA)的多因素誘導(dǎo),缺失啟動(dòng)子片段P2(367 bp)是受低溫、MeJA和SA誘導(dǎo)的最小的啟動(dòng)子片段。呂兆勇等[32]研究證明,葡萄PCAN啟動(dòng)子具有低溫和干旱脅迫下誘導(dǎo)表達(dá)的特性(表2)。

表2 物理脅迫誘導(dǎo)型啟動(dòng)子

2.3 干旱誘導(dǎo)型啟動(dòng)子

干旱條件下,植物根毛細(xì)胞感知水分脅迫信號(hào)并進(jìn)行信號(hào)轉(zhuǎn)導(dǎo),誘導(dǎo)水分脅迫相關(guān)基因的表達(dá)。1992年YAMAGUCHI-SHINOZAKI等[53]首次從擬南芥中分離并且克隆出逆境誘導(dǎo)型啟動(dòng)子rd29。BIHMIDINE等[54]研究發(fā)現(xiàn),rd29A,rd29B基因啟動(dòng)子在干旱條件下均被明顯激活,是抗旱型啟動(dòng)子。楊梅等[55]分離了干旱脅迫強(qiáng)烈誘導(dǎo)的水稻內(nèi)源基因Oshox24的啟動(dòng)子Oshox24P,并通過(guò)GUS活性檢測(cè)證明,該啟動(dòng)子是干旱誘導(dǎo)型啟動(dòng)子,可以調(diào)控目標(biāo)基因在水稻中的表達(dá)。

3 化學(xué)脅迫誘導(dǎo)型啟動(dòng)子

化學(xué)脅迫誘導(dǎo)型啟動(dòng)子是指在激素、高鹽、營(yíng)養(yǎng)元素缺乏和含量過(guò)高等逆境條件下使植物可以生長(zhǎng)的一類啟動(dòng)子。這類啟動(dòng)子的誘導(dǎo)因素受人類活動(dòng)影響較大,比如為了作物增產(chǎn)而過(guò)量施肥,導(dǎo)致土地鹽堿化和土壤板結(jié),使農(nóng)作物受到新的脅迫,導(dǎo)致減產(chǎn)。與物理脅迫誘導(dǎo)型啟動(dòng)子相比,該類啟動(dòng)子研究較少(表3)。

表3 化學(xué)脅迫誘導(dǎo)型啟動(dòng)子

3.1 激素誘導(dǎo)型啟動(dòng)子

植物的生長(zhǎng)發(fā)育過(guò)程受激素的調(diào)節(jié)作用,但是激素不能直接作用于啟動(dòng)子序列,而是先與植物體內(nèi)受體結(jié)合,激活受體蛋白,然后再由作用于啟動(dòng)子中相應(yīng)激素應(yīng)答元件,驅(qū)動(dòng)下游基因的表達(dá),從而引起一系列生理反應(yīng)[87]。XU等[70]分離了白松PsPR10啟動(dòng)子,并構(gòu)建融合報(bào)告基因載體轉(zhuǎn)入煙草,分別用 SA,ABA,JA,NaCl,甘露醇和 PEG-6000 處理轉(zhuǎn)基因植株,分別分析各種脅迫條件下GUS基因在根、莖、葉中的表達(dá)。結(jié)果表明,在所有脅迫條件下根的GUS活性均比對(duì)照組高,而莖和葉中GUS活性只在SA,ABA和JA條件下有增高。余建等[74]克隆了桑樹(shù)MnACO基因MnACO1啟動(dòng)子片段,對(duì)序列進(jìn)行分析發(fā)現(xiàn),含有響應(yīng)赤霉素的GARE-motif和響應(yīng)植物激素的AuxRE元件。GUS活性分析表明,MnACO1為誘導(dǎo)型啟動(dòng)子兼具組成型啟動(dòng)子特性。

3.2 鹽誘導(dǎo)型啟動(dòng)子

最早被克隆并進(jìn)行功能分析的鹽誘導(dǎo)型啟動(dòng)子是擬南芥rd29A基因的啟動(dòng)子[53]。張新宇等[82]對(duì)經(jīng)300 mmol/LNaCl處理前后的轉(zhuǎn)AtPUB18基因啟動(dòng)子的擬南芥幼苗進(jìn)行組織化學(xué)染色,結(jié)果表明,處理后GUS基因的表達(dá)量明顯上調(diào),說(shuō)明At-PUB18基因啟動(dòng)子是高鹽誘導(dǎo)型啟動(dòng)子。SUN等[83]研究發(fā)現(xiàn),旱稻液泡膜質(zhì)子轉(zhuǎn)運(yùn)焦磷酸酶啟動(dòng)子TsVP1在高鹽誘導(dǎo)下有較強(qiáng)的活性。

3.3 營(yíng)養(yǎng)元素相關(guān)誘導(dǎo)型啟動(dòng)子

營(yíng)養(yǎng)元素在植物的生命活動(dòng)中起重要作用,是植物正常的生長(zhǎng)發(fā)育不可缺少的因素。在一定的濃度范圍內(nèi),植物可以正常吸收外界環(huán)境中的營(yíng)養(yǎng)元素,然而當(dāng)環(huán)境中元素濃度不足或者過(guò)高,卻會(huì)對(duì)植物造成脅迫,影響植物生長(zhǎng)發(fā)育。

氮是植物蛋白質(zhì)、核酸和葉綠素的重要組成部分,氮素的含量直接影響葉片中葉綠素的含量,土壤中氮素缺乏會(huì)導(dǎo)致植物葉片黃化、根系量減少。劉生等[84]克隆了2個(gè)在大豆葉片或根系高豐度表達(dá)且響應(yīng)低氮脅迫的基因(RNDI和LNDI)的啟動(dòng)子,并分別融合GUS基因轉(zhuǎn)化擬南芥。GUS染色表明,2個(gè)基因的啟動(dòng)子都對(duì)低氮脅迫有響應(yīng),在氮素脅迫環(huán)境條件下能夠調(diào)控組合的功能基因表達(dá)。銅是植物體多種酶類(細(xì)胞色素氧化酶、抗壞血酸氧化酶、多酚氧化酶等)的組成成分,還與光合作用有關(guān)。但植物正常生長(zhǎng)對(duì)銅需要少,土壤中銅含量由于污水灌溉和施用農(nóng)藥遠(yuǎn)遠(yuǎn)超過(guò)了植物所需,導(dǎo)致植物生長(zhǎng)受抑制甚至死亡。鐘活權(quán)[86]研究發(fā)現(xiàn),擬南芥AtRD22啟動(dòng)子含有多個(gè)銅響應(yīng)元件CURECORECR,把該啟動(dòng)子與連接GUS報(bào)告基因轉(zhuǎn)化擬南芥后,發(fā)現(xiàn)高Cu2+脅迫條件下,AtRD22啟動(dòng)子能明顯誘導(dǎo)GUS基因在轉(zhuǎn)基因擬南芥莖和葉中表達(dá)。

4 小結(jié)與展望

誘導(dǎo)型啟動(dòng)子是僅在轉(zhuǎn)基因植物受到外界脅迫時(shí)驅(qū)動(dòng)外源基因表達(dá)的一種啟動(dòng)子,相比組成型啟動(dòng)子的表達(dá)模式,誘導(dǎo)型啟動(dòng)子可以節(jié)約植物體能量,減輕代謝負(fù)擔(dān),在避免目的基因過(guò)量表達(dá)對(duì)植物的負(fù)面影響的同時(shí)提高植物抗逆性,具有重要的科研價(jià)值和商業(yè)價(jià)值。啟動(dòng)子主要通過(guò)順式作用元件來(lái)調(diào)控基因表達(dá)。一種啟動(dòng)子常常存在多種順式作用元件,這些元件以特殊組合方式調(diào)控相關(guān)抗逆基因的表達(dá)。目前脅迫誘導(dǎo)啟動(dòng)子研究主要集中在極端溫度、干旱和高鹽等方面,而關(guān)于營(yíng)養(yǎng)元素相關(guān)的誘導(dǎo)型啟動(dòng)子報(bào)道較少。

綜上所述,研究誘導(dǎo)型啟動(dòng)子作用方式和信號(hào)傳遞途徑之間聯(lián)系,可以為外源基因在轉(zhuǎn)基因植株精細(xì)調(diào)節(jié)提供理論依據(jù)。同時(shí)開(kāi)展誘導(dǎo)型啟動(dòng)子尤其是營(yíng)養(yǎng)元素相關(guān)的啟動(dòng)子研究,培育營(yíng)養(yǎng)元素高吸收利用和重金屬耐受性新品種。最終將相關(guān)研究結(jié)果大規(guī)模應(yīng)用于生產(chǎn)實(shí)踐,加速植物基因工程改良植物的進(jìn)程。

[1]BASEHOAR AD,ZANTONS J,PUGH B F.Identification and distinct regulation of yeast TATA box-containing genes[J].Cell,2004,116(5):699-709.

[2] BRADY J,RADONOVICH M,THOREN M,et al.Simian virus 40 major late promoter:an upstream DNA sequence required for efficient in vitro transcription[J].Molecular&Cellular Biology,1984,4(1):133-141.

[3]張曉楓.抗草甘膦基因植物雙價(jià)表達(dá)載體的構(gòu)建 [D].烏魯木齊:新疆農(nóng)業(yè)大學(xué),2008.

[4]王關(guān)林,方宏筠.植物基因工程 [M].2版.北京:科學(xué)出版社,2002.

[5]習(xí)雨琳,周朋,宋梅芳,等.擬南芥RBCS-1A基因受光調(diào)節(jié)表達(dá)模式及其啟動(dòng)子遺傳轉(zhuǎn)化應(yīng)用評(píng)價(jià)[J].作物學(xué)報(bào),2012,38(9):1561-1569.

[6]肖興國(guó),韓蕾.一種植物氣孔特異性啟動(dòng)子及其應(yīng)用:中國(guó),CN 102433338 B[P].2012-05-02.

[7] PETITOT A S,BARSALOBRES-CAVALLARI C,RAMIRO D,et al.Promoter analysis ofthe WRKYtranscription factors CaWRKY1a and CaWRKY1b homoeologous genes in coffee(Coffea arabica)[J].Plant Cell Reports,2013,32(8):1263.

[8]何康.水稻病原誘導(dǎo)啟動(dòng)子POs2H16順式作用元件的分離與鑒定[D].泰安:山東農(nóng)業(yè)大學(xué),2016.

[9]牟少亮,申磊,石星辰.水稻OsERF96應(yīng)答病原菌的表達(dá)及啟動(dòng)子的功能分析[J].植物遺傳資源學(xué)報(bào),2017,18(1):133-138.

[10] SONG F M,GOODMAN R M.Cloning and identification of the promoter of the tobacco Sar8.2b gene,a gene involved in systemic acquired resistance[J].Gene,2002,290:115-124.

[11] LI A,CHEN L,REN H,et al.Analysis of the essential DNA region for OsEBP-89 promoter in response tomethyljasmonic acid[J].Science in China Series C:Life Sciences,2008,51(3):280-285.

[12]COUTOS-THéVENOT P,POINSSOT B,BONOMELLI A,et al.In vitro tolerance to Botrytis cinerea of grapevine 41B rootstock in transgenic plants expressing the stiibene synthase Vst1 gene under the control of a pathogen-inducible PR 10 promoter[J].J Exp Bot,2001,52:901-910.

[13] SA Q,WANG Y,LI W,et al.The promoter of an antifungal protein gene from Gastrodia elata confers tissue-specific and fungus-inducible expression patterns and responds to both salicylic acid and jasmonic acid[J].Plant Cell Reports,2003,22(1):79-84.

[14]李云鋒,朱蕊,謝龍旭,等.大麥 β-1,3- 葡聚糖酶基因(GIII)啟動(dòng)子在轉(zhuǎn)基因水稻中的誘導(dǎo)表達(dá) [J].植物生理與分子生物學(xué)學(xué)報(bào),2005,31(2):143-148.

[15]GAO Y,ZAN X L,WU X F,et al.Identification of fungus-responsive cis-acting element in the promoter of Brassica juncea chitinase gene,BjCHI1[J].Plant Science An International Journal of Experimental Plant Biology,2014,215/216:190-198.

[16]CHAI C,LINY,SHEND.Identification and functional characterization of the soybean GmaPPO12 promoter conferringPhytophthora sojae induced expression[J].Plos One,2013,8(6):e67670.

[17] ZHENG H Q,LIN S Z,QIAN Z,et al.Isolation and analysis of a TIR-specific promoter from poplar[J].Forest Ecosystems,2007,9(2):95-106.

[18]CHOI J J,KLOSTERMAN S J.A promoter from pea gene DRR206 is suitable to regulate an elicitor-coding gene and develop disease resistance[J].Phytopathology,2004,94(6):651-660.

[19]劉志欽,楊晟,蔡金森,等.辣椒CaWRKY5啟動(dòng)子的分離及其調(diào)控元件分析 [J].應(yīng)用與環(huán)境生物學(xué)報(bào),2013,19(3):389-394.

[20] ADAMS-PHILLIPS L,BRIGGS A G.Disruption of poly(ADP-ribosyl)ation mechanisms alters responses of Arabidopsis to biotic stress[J].Plant Physiology,2010,152(1):267-280.

[21] ZHANG X C,LI M Y,RUAN M B,et al.Isolation of AtNUDT5,gene promoter and characterization of its activity in transgenic Arabidopsis thaliana [J].Applied Biochemistry&Biotechnology,2013,169(5):1557-1565.

[22]KUMAR M,SHUKLA A K,SINGH H,et al.Development of insect resistant transgenic cotton lines expressing cry1EC gene from an insect bite and wound inducible promoter[J].Journal of Biotechnology,2009,140(3/4):143-148.

[23]SIDDIQUE S,WIECZOREK K,SZAKASITS D,et al.The promoter of a plant defensin gene directs specific expression in nematode-induced syncytia in Arabidopsis roots[J].Plant Physiology&BiochemistryPpb,2011,49(10):1100-1107.

[24]關(guān)麗梅,馬偉華,林擁軍,等.一個(gè)水稻褐飛虱為害誘導(dǎo)型啟動(dòng)子的克隆[J].植物保護(hù),2016,42(1):19-25.

[25]王旭靜,李為民,唐巧玲,等.中棉(Gossypium arboreum)光誘導(dǎo)基因Gacab啟動(dòng)子在轉(zhuǎn)基因煙草中的功能缺失分析 [J].作物學(xué)報(bào),2009,35(6):1006-1012.

[26]張晶紅,那杰.植物逆境脅迫耐受性啟動(dòng)子的研究進(jìn)展[J].植物生理學(xué)報(bào),2014(6):707-710.

[27] PR?NDL R,SCH?FFL F.Heat shock elements are involved in heat shock promoter activation during tobacco seed maturation[J].Plant Molecular Biology,1996,31(1):157-162.

[28]FREEMAN J,WEST J,SHEWRY P R,et al.Temporal and spatial control of transgene expression using a heat-inducible promoter in transgenic wheat[J].Plant Biotechnology Journal,2011,9(7):788-796.

[29]YONG H C,CHANG H S,GUPTA R,et al.Transcriptional profiling reveals novel interactions between wounding,pathogen,abiotic stress,and hormonal responses in Arabidopsis[J].Plant Physiology,2002,129(2):661-677.

[30]BELINTANI NG,GUERZONI J TS,MOREIRAR MP,et al.Improving low-temperature tolerance in sugarcane by expressing the ipt gene under a cold inducible promoter[J].Biologia Plantarum,2012,56(1):71-77.

[31] WANG F,LIU J,LI J,et al.Functional analyses of the maize CKS2,gene promoter in response to abiotic stresses and hormones[J].Acta Physiologiae Plantarum,2014,36(7):1867-1878.

[32]呂兆勇,趙春梅,薛仁鎬.葡萄逆境脅迫誘導(dǎo)啟動(dòng)子的克隆及表達(dá)分析[J].華北農(nóng)學(xué)報(bào),2016,31(1):77-82.

[33]GAYLE LAMPPA,F(xiàn)ERENCNAGY,NAM-HAI CHUA.Light-reg ulated and organ-specific expression of a wheat Cab gene in transgenic tobacco[J].Nature,1985,316:750-752.

[34] TADA Y,SAKAMOTO M,MATSUOKA M,et al.Expression of a monocot LHCP promoter in transgenic rice[J].The EMBO Journal,1991,10(7):1803-1808.

[35]王念捷,程奇.水稻4CL基因啟動(dòng)子引導(dǎo)的GUS在紫外誘導(dǎo)下的組織特異性表達(dá)[J].中國(guó)農(nóng)業(yè)科學(xué),1996,29(1):73-77.

[36] INABA T,NAGANO Y,REID J B,et al.DE1,a 12-base pair cis-regulatory element sufficient to confer dark-inducible and light down-regulated expression to a minimal promoter in pea[J].Journal of Biological Chemistry,2000,275(26):19723-19727.

[37]WELSCH R,MEDINAJ,GIULIANOG,et al.Structural and functional characterization of the phytoene synthase promoter from Arabidopsis thaliana[J].Planta,2003,216(3):523-534.

[38]黃海群,林擁軍.水稻rbcS基因啟動(dòng)子的克隆及結(jié)構(gòu)功能分析[J].農(nóng)業(yè)生物技術(shù)學(xué)報(bào),2007,15(3):451-458.

[39]LI J,LIANG D,LI M,et al.Light and abiotic stresses regulate the expression of GDP-L-galactosephosphorylase and levels of ascorbicacid in two kiwifruit genotypes via light-responsive and stress-inducible cis-elements in their promoters [J].Planta,2013,238(3):535-547.

[40]瞿韻,張寧,常璟,等.馬鈴薯光誘導(dǎo)型莖葉特異表達(dá)啟動(dòng)子ST-LS1的克隆與功能分析 [J].農(nóng)業(yè)生物技術(shù)學(xué)報(bào),2013,21(7):828-837.

[41] COCA M A,ALMOGUERA C,THOMAS T L,et al.Differential regulation of small heat-shock genes in plants:analysis of a water-stress-inducible and developmentally activated sunflower promoter[J].Plant Molecular Biology,1996,31(4):863-876.

[42] DUNN M A,WHITE A J,VURAL S,et al.Identification of promoter elements in a low-temperature-responsive gene(blt4.9)from barley (Hordeum vulgare L.)[J].Plant Molecular Biology,1998,38(4):551-564.

[43]ROJAS A,ALMOGUERA C,JORDANO J.Transcriptional activation of a heat shock gene promoter in sunflower embryos:synergism between ABI3 and heat shock factors[J].The Plant Journal,1999,20(5):601-610.

[44]伊淑瑩,孫愛(ài)清,趙春梅,等.番茄多脅迫誘導(dǎo)型LeMTshsp啟動(dòng)子的分子克隆及其功能分析 [J].植物分類與資源學(xué)報(bào),2007,29(2):223-230.

[45] NAVARRE C,SALLETS A,GAUTHY E,et al.Isolation of heat shock-induced Nicotiana tabacum,transcription promoters and their potential as a tool for plant research and biotechnology[J].Transgenic Research,2011,20(4):799-810.

[46]BROWN A P C,DUNN MA,GODDARD N J,et al.Identification of a novel low-temperature-response element in the promoter of the barley(Hordeum vulgare L)gene blt101.1[J].Planta,2001,213(5):770-780.

[47]DOLFERUS R,JACOBS M,PEACOCK W J,et al.Differential interactions of promoter stress responses of the Arabidopsis elements in Adh gene[J].Plant Physiol,1994,105(4):1075-1087.

[48] KASUGA M,MIURA S,SHINOZAKI K,et al.A combination of the Arabidopsis DREB1A gene and stress-inducible rD29A promoter improved drought and low-temperature stress tolerance in tobacco by gene transfer[J].Plant Cell Physiol,2004,45(3):346-350.

[49]杜娟,朱禎,李晚忱.植物逆境誘導(dǎo)啟動(dòng)子mwcs120的克隆及表達(dá)特性研究[J].作物學(xué)報(bào),2005,31(10):1328-1332.

[50] TAKUMI S,KOIKE A,NAKATA M,et al.Cold-specific and light-stimulated expression of a wheat(Triticum aestivum L.)Cor gene Wcor15 encodinga chloroplast-targeted protein[J].Journal of Experimental Botany,2003,54:2265-2274.

[51]KOVALCHUK N,JIA W,EINI O,et al.Optimization of TaDREB3 gene expression in transgenic barley using cold-inducible promoters[J].Plant Biotechnol J,2013,11(6):659-670.

[52] LI M,WANG X,CAO Y,et al.Strength comparison between cold-inducible promoters of Arabidopsis cor15a and cor15b genes in potato and tobacco [J].Plant Physiology&Biochemistry,2013,71(2):77-86.

[53] YAMAGUCHI-SHINOZAKI K,SHINOZAKI K.Characterization of the expression of a desiccation-responsive rd29 gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants[J].Molecular and General Genetics,1993,236(2/3):331-340.

[54]BIHMIDINE S,LIN J,STONE J M,et al.Activity of the Arabidopsis,RD29A and RD29B promoter elements in soybean under water stress[J].Planta,2013,237(1):55-64.

[55]楊梅,熊立仲.水稻干旱誘導(dǎo)型啟動(dòng)子Oshox24P的分離與鑒定[J].華中農(nóng)業(yè)大學(xué)學(xué)報(bào):自然科學(xué)版,2011,30(5):525-531.

[56]ZAHUR M,MAQBOOL A,IRFAN M,et al.Functional analysis of cotton small heat shock protein promoter region in response to abiotic stresses in tobacco using Agrobacterium-mediated transient assay[J].Molecular BiologyReports,2009,36(7):1915-1921.

[57] BEHNAM B,IUCHI S,F(xiàn)UJITA M,et al.Characterization of the promoter region of an Arabidopsis gene for 9-cis-epoxycarotenoid dioxygenaseinvolved in dehydration-inducible transcription[J].DNAResearch,2013,20(4):315-324.

[58]李麗麗,李甜甜,高利芬,等.二穗短柄草逆境誘導(dǎo)型啟動(dòng)子pBdDREB-47的克隆及功能驗(yàn)證 [J].分子植物育種,2017,15(1):58-64.

[59] AYADI M,MIEULET D,F(xiàn)ABRE D,et al.Functional analysis of the durum wheat gene TdPIP2;1 and its promoter region in response toabiotic stress in rice[J].Plant Physiology&Biochemistry,2014,79(3):98-108.

[60]INJUNG KIM,JEONGYEO LEE,JEONGA HAN,et al.Citrus Lea promoter confers fruit-preferential and stressinducible gene expression in Arabidopsis[J].Canadian Journal of Plant Science,2013,91(3):459-466.

[61]劉習(xí)文,暢文軍,朱家紅,等.海馬齒SpSCL1基因啟動(dòng)子克隆及序列分析[J].廣東農(nóng)業(yè)科學(xué),2013,40(4):124-127.

[62]LEE SC,KIMSH,KIMS R.Drought inducible OsDhn1,promoter is activated by OsDREB1A and OsDREB1D[J].Journal of Plant Biology,2013,56(2):115-121.

[63]陰霞,陳雯,王磊,等.激素和非生物脅迫對(duì)月季RhPIP1;1啟動(dòng)子活性的調(diào)節(jié)作用[J].園藝學(xué)報(bào),2014,41(1):107-117.

[64]FANG H,LIU X,THORN G,et al.Expression analysis of histone acetyltransferases in rice under drought stress[J].Biochemical&Biophysical Research Communications,2014,443(2):400-405.

[65]XU D,MC ELROY D,THORNBURG R W,et al.Systemic induction of a potato pin2 promoter by wounding,methyl jasmonate,and abscisicacid in transgenic rice plants[J].Plant Molecular Biology,1993,22(4):573-588.

[66]RAI M,HE C K,WU R.Comparative functional analysis of three abiotic stress-inducible promoters in transgenic rice[J].Transgenic Research,2009,18(5):787-799.

[67]NARUSAKA Y,NAKASHIMA K,SHINWARI Z K,et al.Interaction betweentwocis-acting elements,ABRE and DRE,in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses [J].Plant Journal,2003,34:137-148.

[68]XU D Q,LI J G,GANGAPPA SREERAMAIAH N,et al.Convergence of light and ABA signaling on the ABI5 promoter[J].PLoS Genetics,2014,10(2):e1004197.

[69] YANG Y Z,TAN B C.A distal ABA responsive element in At NCED3 promoter is required for positive feedback regulation of ABA bios-ynthesis in Arabidopsis[J].PLoS Genetics,2014,9(1):e87283.

[70]XU X B,GUO S,CHEN K,et al.A 796 bp PsPR10 gene promoter fragment increased root-specific expression of the GUS reporter gene under the abiotic stresses and signal molecules in tobacco[J].BiotechnologyLetters,2010,32(10):1533-1539.

[71]YOON I S,PARK D H,MORI H,et al.Characterization of an auxin-inducible 1-aminocyclopropane-1-carboxylate synthase gene,VR-ACS6,of mungbean(Vignaradiata L.Wilczek)and hormonal interactions on the promoter activityin transgenic tobacco[J].Plant Cell Physiol,1999,40(4):431-438.

[72]孫濤,柴團(tuán)耀,張玉秀.擬南芥GH3基因家族啟動(dòng)子序列分析[J].中國(guó)科學(xué)院大學(xué)學(xué)報(bào),2010,27(6):847-852.

[73] WANG X,REPLOGLE A,DAVIS E L,et al.The tobacco Cel7 gene promoter is auxin-responsive and locally induced in nematode feedingsite of heterologous plan[J].Molecular Plant Pathology,2007,8(4):423-436.

[74]余建,劉長(zhǎng)英,趙愛(ài)春,等.桑樹(shù)1-氨基環(huán)丙烷-1-羧酸氧化酶基因(MnACO)啟動(dòng)子功能分析[J].作物學(xué)報(bào),2017,43(6):839-848.

[75]余麗,楊世湖,晉玉寬,等.Pib啟動(dòng)子中茉莉酸和乙烯響應(yīng)元件的轉(zhuǎn)基因分析[J].遺傳,2010,32(1):73-80.

[76]葉凌鳳,劉琳,張志高,等.玉米ZmPGP1基因啟動(dòng)子的克隆及結(jié)構(gòu)功能分析[J].中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào),2017,22(3):1-5.

[77]李嬋娟,楊世湖,武亮,等.pib基因啟動(dòng)子及其誘導(dǎo)啟動(dòng)性初探[J].遺傳,2006,28(6):689-694.

[78] LI Q,YIN H,LI D,et al.Isolation and characterization of CMO gene promoter from halophyte Suaeda liaotungensis K.[J].Journal of Genetics&Genomics,2007,34(4):355-361.

[79] BHUIYAN N H,HAMADA A,YAMADA N,et al.Regulation of betaine synthesis by precursor supply and choline monooxygenase expression in Amaranthus tricolor[J].Journal of Experimental Botany,2007,58(15/16):4203-4212.

[80]GUTHALR,REDDYA R.Rice DREB1B promoter shows distinct stress-specific responses,and the overexpression of cDNA in tobaccoconfers improved abiotic and biotic stress tolerance[J].Plant Molecular Biology,2008,68(6):533-555.

[81] WOODROW P,PONTECORVO G,CIARMIELLO L F.Ttd1a,promoter is involved in DNA-protein binding by salt and light stresses[J].Molecular BiologyReports,2011,38(6):3787-3794.

[82]張新宇,趙蘭杰,李艷軍,等.鹽脅迫對(duì)擬南芥AtPUB18基因的誘導(dǎo)表達(dá)及其啟動(dòng)子分析 [J].西北植物學(xué)報(bào),2014,34(1):54-59.

[83] SUN Q,GAO F,ZHAO L,et al.Identification of a new 130 bp cis-acting element in the TsVP1 promoter involved in the salt stress response fromThellungiella halophila[J].Bmc Plant Biology,2010,10(1):90.

[84]劉生,蘇晶,夏銅梅,等.兩個(gè)大豆低氮響應(yīng)啟動(dòng)子的克隆及初步功能驗(yàn)證[C]//全國(guó)大豆科研生產(chǎn)研討會(huì).大慶:中國(guó)作物學(xué)會(huì)大豆專業(yè)委員會(huì),2012.

[85]孔佑賓,李喜煥,張彩英.大豆紫色酸性磷酸酶基因GmPAP4啟動(dòng)子結(jié)構(gòu)與活性分析 [J].中國(guó)農(nóng)業(yè)科學(xué),2017,50(3):582-590.

[86]鐘活權(quán).Cu2+脅迫下擬南芥AtRD22的表達(dá)及作用分析[D].深圳:深圳大學(xué),2017.

[87]孫芳芳,宋洪元.植物誘導(dǎo)型啟動(dòng)子研究進(jìn)展 [J].南方園藝,2014,25(2):51-56.

猜你喜歡
誘導(dǎo)型擬南芥元件
擬南芥:活得粗糙,才讓我有了上太空的資格
施硅提高玉米抗蚜性的組成型和誘導(dǎo)型生理代謝機(jī)制
試論“信息型”“誘導(dǎo)型”說(shuō)明文本的翻譯策略
戲劇之家(2019年4期)2019-03-28 10:50:40
尿黑酸對(duì)擬南芥酪氨酸降解缺陷突變體sscd1的影響
兩種LED光源作為擬南芥生長(zhǎng)光源的應(yīng)用探究
擬南芥干旱敏感突變體篩選及其干旱脅迫響應(yīng)機(jī)制探究
QFN元件的返工指南
多藥耐藥性腫瘤動(dòng)物模型的評(píng)價(jià)
在新興產(chǎn)業(yè)看小元件如何發(fā)揮大作用
寶馬i3高電壓元件介紹(上)
大新县| 湖南省| 绥中县| 元谋县| 东乡族自治县| 青田县| 洪泽县| 囊谦县| 巴中市| 罗源县| 太白县| 穆棱市| 武威市| 温州市| 黑水县| 通渭县| 通州区| 武强县| 多伦县| 东辽县| 海伦市| 诸城市| 鄢陵县| 宝山区| 广平县| 乐亭县| 兰州市| 博罗县| 磴口县| 田阳县| 抚顺县| 昌宁县| 望都县| 莒南县| 渭南市| 柘荣县| 呈贡县| 抚顺市| 海城市| 邵武市| 河南省|