李麗平,葉俊,吳舜,馬松林,周艷玲
(1.武漢科技大學(xué)醫(yī)學(xué)院 生理與病理生理學(xué)系,湖北 武漢 430014;2.華中科技大學(xué)同濟(jì)醫(yī)學(xué)院附屬武漢中心醫(yī)院后湖院區(qū) 消化內(nèi)科,湖北 武漢 430014)
胃癌是致死率很高的惡性腫瘤之一,據(jù)統(tǒng)計,2012年全球范圍內(nèi)胃癌發(fā)病人數(shù)約951,000例,死亡人數(shù)高達(dá)723,000例[1]。同時胃癌也是一種高度異質(zhì)性疾病,侵襲和轉(zhuǎn)移能力極強(qiáng),具有復(fù)雜的分子和組織學(xué)特征[2]。微小RNA(microRNA,miRNA)是在多細(xì)胞生物中發(fā)現(xiàn)的一類調(diào)節(jié)性RNAs,在人體內(nèi)廣泛分布,通過靶向mRNA 3’UTR觸發(fā)翻譯抑制或RNA降解[3]。越來越多的研究表明,miRNA的改變?nèi)缛笔АU(kuò)增、突變或表觀遺傳沉默等與大多數(shù)惡性腫瘤的發(fā)生、發(fā)展、轉(zhuǎn)移有關(guān)[4]。由于miRNA在惡性腫瘤細(xì)胞中普遍表達(dá)異常,表明miRNAs控制抑癌基因或促癌基因,亦或是被其控制,因此miRNA的發(fā)現(xiàn)為尋找腫瘤早期診斷特異性分子標(biāo)志物及基因靶向治療提供新的方向[4]。研究發(fā)現(xiàn),miRNA與胃癌的發(fā)生密切相關(guān),如Let-7[5]、miRNA-101[6]、miRNA-130b 等[7]。miRNA-381是miRNA家族一員,被證實參與膠質(zhì)瘤[8]、腎癌[9]及乳腺癌等[10]腫瘤生長。但是miRNA-381在胃癌中的研究還未有涉及,本研究觀察miRNA-381在胃癌細(xì)胞系及正常胃上皮細(xì)胞系中的表達(dá)及過表達(dá)miRNA-381對胃癌細(xì)胞增殖、遷移、侵襲的影響,探索其可能的作用機(jī)制。
胃癌細(xì)胞系A(chǔ)GS、MGC-803、Hs746T及BSG823和正常胃黏膜上皮細(xì)胞系RGM-1(購自北京協(xié)和醫(yī)學(xué)院),RPMI 1640培養(yǎng)基、胎牛血清、胰蛋白酶及Trizol(購自美國BD公司),肝受體類似物1(liver receptor homolog-1,LRH-1)和扭曲相關(guān)蛋白1(twistrelated protein-1,Twist1)一抗(購自cell signaling公司),羊抗兔二抗(購自武漢博士德生物科技有限公司),miRNA-381 mimics及scramble(由上海吉瑪生物科技有限公司合成)。
將胃癌細(xì)胞系 AGS、MGC-803、Hs746T及BSG823和正常胃黏膜上皮細(xì)胞系RGM-1加入到RPMI 1640培養(yǎng)基,于37℃、5% 二氧化碳CO2培養(yǎng)箱中培養(yǎng),經(jīng)48 h后消化傳代。將AGS細(xì)胞系分成兩組,陰性對照組和miRNA-381模擬物組,采用LipofectamineTM2000 reagent(Invitrogen,USA)分別轉(zhuǎn)染 miRNA-381 scramble及 mimics,miRNA-381 mimics轉(zhuǎn)染序列:miRNA-381 mimics 正向引物:5'-UAUACAAGGGCAAGCUCUCUGU-3',反向引物 :5'-AGAGAGCUUGCCCUUGUAUAUU-3';miRNA-381 scrramble正向引物:5'-UUCUCCGAACGUGUC ACGUTT-3',反向引物:5'-ACGUGACACGUUCGGAG AATT-3'。
①miRNA-381表達(dá)量測定:用All-in-One micro RNA抽提試劑盒提取AGS、MGC-803、Hs746T、BSG823和RGM-1細(xì)胞系的miRNAs,ABI Prism 7700 system 的 SYBR Green Reagents(TaKaRa,日本 Tokyo)實時熒光定量聚合酶鏈反應(yīng)(quantitative real-time polymerase chain reaction,qRT-PCR),在 ABI 7500 qRTPCR儀中,以U6小核RNA作為內(nèi)參,使用2-ΔΔCt方法定量,量化miRNA-381相對表達(dá)水平;②LRH-1和Twist1 mRNA表達(dá)量測定。
提取miRNA-381模擬物組和陰性對照組兩組細(xì)胞總RNA后,在ABI 7500實時定量PCR儀中,以GAPDH為內(nèi)參,引物序列:LRH-1,正向引物:5'-CT GATACTGGAACTTTTGAA-3',反向引物:5'-CTTCATT TGGTCATCAACCTT-3';Twist1,正向引物:5'-AGAAGT CTGCGGGCTGTGGCG-3',反向引物:5'-GAGGGCAGC GTGGGGAGATC-3';GAPDH正向引物:5'-GAAGGT GAAGGTCGGAGTC-3',反向引物:5'-GAAGATGGTG ATGGGATTT-3'。使用 2-ΔΔCt方法定量,量化 LRH-1和Twist1 mRNA相對表達(dá)水平。
采用CCK-8法,將陰性對照組和miRNA-381模擬物組細(xì)胞,按2×103個/孔接種于96孔板上,按200 μl每孔標(biāo)準(zhǔn)培養(yǎng),在培養(yǎng)后0、24、48、72及96 h后,按每孔20 μl的標(biāo)準(zhǔn)加入CCK-8溶液,用酶標(biāo)儀在490 nm處的波長下測定各孔的光密度(optical density,OD)值,繪制細(xì)胞增殖曲線。
采用Transwell法,將陰性對照組和miRNA-381模擬物組兩組細(xì)胞各取2×104個細(xì)胞,接種于碳酸磷脂表面,于37℃下培養(yǎng)24 h,用1%多聚甲醛與膜下面的細(xì)胞結(jié)合并用0.2%結(jié)晶紫溶液染色,隨機(jī)取10個視野(×200),計算穿過膜的細(xì)胞數(shù)量,重復(fù)3次該實驗,并取均值。
將陰性對照組和miRNA-381模擬物組兩組細(xì)胞經(jīng)RIPA細(xì)胞裂解液冰上裂解30 min后,變性、上樣,以每孔30 μg總蛋白上樣,濃縮膠80 V電泳40 min,分離膠100 V電泳2 h。常規(guī)濕法轉(zhuǎn)膜,加入LRH-1、Twist 1及GAPDH一抗,濃度為1∶200,一抗孵育過夜,二抗(1∶500)于37℃孵育4 h,PBST漂洗3次,ECL液顯影,Quantity One 1-D分析軟件對蛋白印跡條帶進(jìn)行定量。目的蛋白相對表達(dá)量=目的蛋白測定值/GAPDH,實驗重復(fù)3次,取平均值。
數(shù)據(jù)分析用SPSS 17.0統(tǒng)計軟件和Graph軟件,計量資料以均數(shù)±標(biāo)準(zhǔn)差(±s)表示,采用t檢驗或方差分析,兩兩比較用LSD-t檢驗,P<0.05為差異有統(tǒng)計學(xué)意義。
qRT-PCR檢測miRNA-381的表達(dá)量,正常胃黏膜上皮細(xì)胞系RGM-1的miRNA-381相對表達(dá)量為1.0,在胃癌細(xì)胞系A(chǔ)GS中相對表達(dá)量為(0.19±0.03),MGC-803 為(0.29±0.03),Hs746T 為(0.47±0.06),BSG823為(0.56±0.06),經(jīng)方差分析,差異有統(tǒng)計 學(xué) 意 義(F=93.260,P=0.000);經(jīng) LSD-t檢 驗,miRNA-381在胃癌細(xì)胞系A(chǔ)GS、MGC-803、Hs746T及BSG823中相對表達(dá)量均低于RGM-1(P<0.05)。見圖1。
在AGS細(xì)胞中過表達(dá)miRNA-381模擬物,用qRT-PCR檢測其相對含量變化,miRNA-381模擬物組miRNA-381相對表達(dá)量為(10.5±0.9),陰性對照組為(1.0±0.03),miRNA-381模擬物組的miRNA-381表達(dá)量高于陰性對照組(t=18.272,P=0.000)。轉(zhuǎn)染 后 0、24、48、72及 96 h,miRNA-381模 擬 物組vs對照組的OD 450 nm值分別為(0.32±0.03 vs 0.31±0.04)(t=0.346,P=0.373),(0.53±0.06 vs 0.55±0.07)(t=-0.375,P=0.363),(1.05±0.09 vs 1.10±0.12)(t=-0.577,P=0.297),(1.49±0.15 vs 2.36±0.25)(t=-5.168,P=0.003)及(2.22±0.21 vs 3.55±0.29)(t=-6.433,P=0.000)。見圖 2。
Transwell實驗示,200倍視野下,陰性對照組侵襲細(xì)胞數(shù)為(79.6±7.2)個,miRNA-381模擬物組侵襲細(xì)胞數(shù)為(31.70±4.2)個,miRNA-381模擬物組侵襲細(xì)胞數(shù)少于陰性對照組(t=9.953,P=0.002)。見圖3。
圖1 miRNA-381在胃癌細(xì)胞系及正常胃黏膜上皮細(xì)胞系中的表達(dá)
圖2 miRNA-381過表達(dá)抑制胃癌細(xì)胞AGS增殖
qRT-PCR示,miRNA-381模擬物組LRH-1 mRNA相對表達(dá)量為(0.33±0.04),陰性對照組為(1.0±0.02),miRNA-381模擬物組LRH-1 mRNA相對表達(dá)量低于陰性對照組(t=25.948,P=0.000);見圖4A;miRNA-381模擬物組Twist1 mRNA相對表達(dá)量為(0.45±0.04),陰性對照組為(1.0±0.02),miRNA-381模擬物組Twist 1 mRNA相對表達(dá)量低于陰性對照組(t=-21.301,P=0.000),見圖 4B。
Western blot示,miRNA-381模擬物組LRH-1蛋白相對表達(dá)量為(0.39±0.04),陰性對照組為(1.0±0.02),miRNA-381模擬物組LRH-1蛋白相對表達(dá)量低于陰性對照組(t=-23.625,P=0.000);見圖4C、4D;miRNA-381模擬物組Twist 1蛋白相對表達(dá)量為(0.51±0.05),陰性對照組為(1.0±0.01),miRNA-381模擬物組Twist 1蛋白相對表達(dá)量低于陰性對照組(t=-16.644,P=0.000),見圖4C和4E。
圖3 miRNA-381過表達(dá)抑制胃癌細(xì)胞AGS侵襲
圖4 miRNA-381下調(diào)LRH-1和TWIST 1的表達(dá)
盡管過去幾十年中,胃癌的發(fā)病率和死亡率持續(xù)下降,但是胃癌仍然是世界上第4大常見的惡性腫瘤和癌癥死亡的第2大原因[11]。胃癌患者預(yù)后較差,5年生存率低于30%,大多數(shù)胃癌患者的死亡是由于轉(zhuǎn)移或復(fù)發(fā)導(dǎo)致[11]。研究發(fā)現(xiàn),miRNAs通過調(diào)控一系列侵襲和轉(zhuǎn)移相關(guān)基因,在腫瘤的侵襲和轉(zhuǎn)移過程中起到關(guān)鍵作用[12]。在本研究顯示,在正常胃上皮細(xì)胞系中miRNA-381表達(dá)高于胃癌細(xì)胞系。更重要的是,過量表達(dá)miRNA-381能抑制胃癌細(xì)胞增殖、侵襲、遷移能力,表明miRNA-381在胃癌浸潤、侵襲及轉(zhuǎn)移中發(fā)揮抑癌基因作用。
本研究發(fā)現(xiàn),miRNA-381過表達(dá)引起LRH-1蛋白表達(dá)水平下降。研究證實,LRH-1是miRNA-381的靶蛋白,miRNA-381通過直接靶向LRH-1 3'-UTR抑制肝癌細(xì)胞生長和侵襲[13]。在結(jié)腸癌中,miRNA-381表達(dá)下降上調(diào)LRH-1蛋白水平促進(jìn)結(jié)腸癌細(xì)胞生長、增殖、遷移[14]。意味著LRH-1活性的增加與胃癌細(xì)胞迅速增長和增殖有一定關(guān)聯(lián)。細(xì)胞周期蛋白D1和E1(Cyclin D1和Cyclin E1)是細(xì)胞周期G1期關(guān)鍵蛋白,能夠與細(xì)胞周期蛋白依賴性激酶(CDK)組成Cyclin D1-CDK4/6和Cyclin E1-CDK2復(fù)合物參與調(diào)控G1/S期轉(zhuǎn)變[15]。Cyclin D1已被證實是一種原癌基因,其過度表達(dá)導(dǎo)致細(xì)胞增殖失控和惡化[16]。Cyclin E1在多種腫瘤組織中表達(dá)較高,與腫瘤發(fā)生、發(fā)展密切相關(guān)[17]。C-Myc基因也是一個公認(rèn)的原癌基因,在多種腫瘤中被激活,其靶基因參與腫瘤細(xì)胞生長、凋亡和代謝等過程中[18]。研究發(fā)現(xiàn),LRH-1與β-catenin能夠協(xié)同共激活下游基因Cylin D1、Cyclin E1及c-Myc的表達(dá),促進(jìn)腸腫瘤細(xì)胞增殖[19]。已有研究證實,LRH-1基因沉默降低Cylin D1、Cyclin E1及c-Myc的表達(dá)水平,抑制胰腺癌細(xì)胞增殖[19]。本研究中,miRNA-381表達(dá)上升導(dǎo)致LRH-1蛋白表達(dá)下調(diào),其作用機(jī)制可能是miRNA-381直接綁定結(jié)合LRH-1 3'-UTR,在轉(zhuǎn)錄后水平負(fù)調(diào)控LRH-1基因的表達(dá)。筆者推測,LRH-1與β-catenin協(xié)同共激活Cyclin D1、Cyclin E1及c-Myc的作用減弱,使G1/S期轉(zhuǎn)換受抑制,導(dǎo)致細(xì)胞阻滯于G0/G1期,進(jìn)入S期和G2期的細(xì)胞數(shù)目減少,同時使c-Myc靶基因表達(dá)失控,降低胃癌細(xì)胞增殖和侵襲能力。
在腫瘤轉(zhuǎn)移過程中,細(xì)胞間黏附和連接能力降低,導(dǎo)致腫瘤細(xì)胞脫落并遷移到其他組織、器官是腫瘤轉(zhuǎn)移的重要環(huán)節(jié)[20]。上皮間質(zhì)轉(zhuǎn)化是上皮細(xì)胞表型向間質(zhì)細(xì)胞表型轉(zhuǎn)變的過程,主要特征為細(xì)胞黏附分子的表達(dá)減少、細(xì)胞骨架及形態(tài)改變,在腫瘤浸潤和遷移過程中起關(guān)鍵作用[21]。轉(zhuǎn)錄因子Twist-1是上皮間質(zhì)轉(zhuǎn)化的重要調(diào)節(jié)因子,Twist-1表達(dá)上升誘導(dǎo)發(fā)生該過程,參與腫瘤侵襲和轉(zhuǎn)移發(fā)生機(jī)制[22]。研究發(fā)現(xiàn),Twist-1 3'-UTR含有大量miRNAs的調(diào)控元件,包括miRNA靶點,多個miRNAs被證實能夠抑制Twist-1的翻譯,如miRNA-145a-5p、miRNA-151-5p等[23]。據(jù)報道,miRNA-106b通過靶向Twist-1調(diào)控子宮內(nèi)膜癌細(xì)胞系上皮間質(zhì)轉(zhuǎn)化[24],在結(jié)直腸癌中miRNA-381通過直接靶向Twist-1發(fā)揮抑癌作用[25]。在本研究中,miRNA-381可能通過特異性結(jié)合Twist-1 3'-UTR靶位點,降低Twist1基因翻譯水平,抑制胃癌細(xì)胞上皮間質(zhì)轉(zhuǎn)化,從而阻礙細(xì)胞轉(zhuǎn)移和侵襲。
綜上所述,miRNA-381通過抑制LRH-1和Twist-1蛋白的表達(dá),調(diào)控細(xì)胞周期和上皮間質(zhì)轉(zhuǎn)化,進(jìn)而抑制胃癌細(xì)胞增殖和侵襲。miRNA-381在胃癌中功能及其作用機(jī)制的鑒定,有望成為腫瘤早期診斷標(biāo)志物及基因靶向治療的新靶點。
[1]FERLAY J, SOERJOMATARAM I, DIKSHIT R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012[J]. International journal of cancer,2015, 136(5): 359-386.
[2]Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma[J]. Nature,2014, 513(7517): 202-209.
[3]Iorio M V, Ferracin M, Liu C G, et al. MicroRNA gene expression deregulation in human breast cancer[J]. Cancer research, 2005,65(16): 7065-7070.
[4]CROCE C M. Causes and consequences of microRNA dysregulation in cancer[J]. Nature reviews genetics, 2009, 10(10):704-714.
[5]OHSHIMA K, INOUE K, FUJIWARA A, et al. Let-7 microRNA family is selectively secreted into the extracellular environment via exosomes in a metastatic gastric cancer cell line[J]. PloS one,2010, 5(10): e13247.
[6]WANG H J, RUAN H J, HE X J, et al. MicroRNA-101 is downregulated in gastric cancer and involved in cell migration and invasion[J]. European journal of cancer, 2010, 46(12): 2295-2303.[7]LAI K W, KOH K X, LOH M, et al. MicroRNA-130b regulates the tumour suppressor RUNX3 in gastric cancer[J]. European Journal of Cancer, 2010, 46(8): 1456-1463.
[8]TANG H, LIU X, WANG Z, et al. Interaction of hsa-miR-381 and glioma suppressor LRRC4 is involved in glioma growth[J]. Brain research, 2011, 1390: 21-32.
[9]CHEN B, DUAN L, YIN G, et al. miR-381, a novel intrinsic WEE1 inhibitor, sensitizes renal cancer cells to 5-FU by up-regulation of Cdc2 activities in 786-O[J]. Journal of Chemotherapy, 2013, 25(4):229-238.
[10]MING J, ZHOU Y, DU J, et al. miR-381 suppresses C/EBPαdependent Cx43 expression in breast cancer cells[J]. Bioscience reports, 2015, 35(6): e00266.
[11]ZHANG G, ZHAO X, LI J, et al. Racial disparities in stagespeci fi c gastric cancer: analysis of results from the Surveillance Epidemiology and End Results (SEER) program database[J].Journal of Investigative Medicine, 2017: jim-2017-000413.
[12]ZHANG Y, WANG Z, CHEN M, et al. MicroRNA-143 targets MACC1 to inhibit cell invasion and migration in colorectal cancer[J]. Molecular cancer, 2012, 11(1): 23.
[13]ZHANG Q, ZHAO S, PANG X, et al. MicroRNA-381 suppresses cell growth and invasion by targeting the liver receptor homolog-1 in hepatocellular carcinoma[J]. Oncology reports, 2016, 35(3):1831-1840.
[14]LIANG Y, ZHAO Q, FAN L, et al. Down-regulation of MicroRNA-381 promotes cell proliferation and invasion in colon cancer through up-regulation of LRH-1[J]. Biomedicine &Pharmacotherapy, 2015, 75: 137-141.
[15]FINN R S, CROWN J P, LANG I, et al. The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as fi rst-line treatment of oestrogen receptorpositive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study[J]. The lancet oncology,2015, 16(1): 25-35.
[16]PARONETTO M P, CAPPELLARI M, BUSà R, et al. Alternative splicing of the cyclin D1 proto-oncogene is regulated by the RNA-binding protein Sam68[J]. Cancer research, 2010, 70(1): 229-239.
[17]KEYOMARSI K, TUCKER S L, BUCHHOLZ T A, et al. Cyclin E and survival in patients with breast cancer[J]. New England Journal of Medicine, 2002, 347(20): 1566-1575.
[18]WANG J, WANG Z, WANG H, et al. Curcumin induces apoptosis in ej bladder cancer cells via modulating c-myc and pi3k/akt signaling pathway[J]. World Journal of Oncology, 2011, 2(3):113-122.
[19]BENOD C, VINOGRADOVA M V, JOURAVEL N, et al. Nuclear receptor liver receptor homologue 1 (LRH-1) regulates pancreatic cancer cell growth and proliferation[J]. Proceedings of the National Academy of Sciences, 2011, 108(41): 16927-16931.
[20]SCHOONJANS K, DUBUQUOY L, MEBIS J, et al. Liver receptor homolog 1 contributes to intestinal tumor formation through effects on cell cycle and inflammation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(6): 2058-2062.
[21]RADISKY D C. Epithelial-mesenchymal transition[J]. Journal of cell science, 2005, 118(19): 4325-4326.
[22]SUN T, ZHAO N, ZHAO X, et al. Expression and functional significance of Twist1 in hepatocellular carcinoma: its role in vasculogenic mimicry[J]. Hepatology, 2010, 51(2): 545-556.
[23]NAIRISM?GI M L, FüCHTBAUER A, LABOURIAU R, et al.The proto-oncogene TWIST1 is regulated by microRNAs[J]. PloS one, 2013, 8(5): e66070.
[24]DONG P, KANEUCHI M, WATARI H, et al. MicroRNA-106b modulates epithelial–mesenchymal transition by targeting TWIST1 in invasive endometrial cancer cell lines[J]. Molecular carcinogenesis, 2014, 53(5): 349-359.
[25]CHENG G Z, CHAN J, WANG Q, et al. Twist transcriptionally up-regulates AKT2 in breast cancer cells leading to increased migration, invasion, and resistance to paclitaxel[J]. Cancer research, 2007, 67(5): 1979-1987.