国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

干擾素抗病毒效力影響因素的研究進(jìn)展

2018-03-05 11:46:13甘霖趙俊陳敬賢王明麗
微生物與感染 2018年1期
關(guān)鍵詞:宿主抗病毒變異

甘霖,趙俊,陳敬賢,3,王明麗

1.安徽醫(yī)科大學(xué)微生物學(xué)教研室,合肥230032;2.安徽九川生物科技有限公司,蕪湖 241009;3.美國哥倫比亞大學(xué)病理和細(xì)胞生物學(xué)系, 紐約 10032

干擾素(interferon,IFN)是機(jī)體細(xì)胞受病毒感染或受核酸、細(xì)菌內(nèi)毒素和促細(xì)胞分裂素等作用后分泌的一類廣譜抗病毒糖蛋白。其最早作為一種抗病毒因子,由Isaacs和Lindenmann于1957年報道,當(dāng)時他們發(fā)現(xiàn)流感病毒感染的雞胚能分泌一種抗流感病毒的因子[1-2]。根據(jù)IFN的來源和理化性質(zhì),可將其分為Ⅰ、Ⅱ和Ⅲ型。Ⅰ型IFN包括IFN-α、IFN-β、IFN-ω和IFN-τ等;Ⅱ型IFN即IFN-γ;Ⅲ型IFN包括白細(xì)胞介素28A(interleukin 28A,IL-28A)、IL-28B和IL-29等。IFN-α來源于病毒感染的白細(xì)胞,IFN-β由病毒感染的成纖維細(xì)胞產(chǎn)生,IFN-ω來自胚胎滋養(yǎng)層,IFN-τ來自反芻動物滋養(yǎng)層,IFN-γ由抗原刺激T 細(xì)胞產(chǎn)生。Ⅲ型IFN是2003年報道的新的IFN樣細(xì)胞因子[3]。雖然所有細(xì)胞均能產(chǎn)生Ⅲ型IFN,但以粒細(xì)胞和漿細(xì)胞樣樹突細(xì)胞為主。本文就IFN基因變異、病毒抗IFN策略及不同類型IFN之間的協(xié)同/拮抗作用進(jìn)行綜述,以期能更好地理解其抗病毒作用。

1 IFN及其受體

Ⅰ型IFN通過誘導(dǎo)自噬參與病毒清除[4],在急性病毒感染過程中起保護(hù)作用[5],但在細(xì)菌感染和自身免疫性疾病中是否具有保護(hù)作用還不確定。Ⅱ型IFN主要在宿主早期抗感染過程中發(fā)揮功能,對IFN-α和IFN-β介導(dǎo)的抗病毒活性起放大作用[6]。因此,Ⅰ型和Ⅱ型IFN通常共同作用,激活多種天然和適應(yīng)性免疫反應(yīng),從而參與抗腫瘤免疫和清除病原體感染過程。Ⅲ型IFN的信號轉(zhuǎn)導(dǎo)級聯(lián)反應(yīng)與Ⅰ型IFN(IFN-α和IFN-β)非常相似,它們的生物學(xué)功能也相似。Ⅰ型和Ⅲ型IFN都有體外抗病毒活性,且在病毒感染細(xì)胞中Ⅲ型IFN通常與Ⅰ型IFN同時表達(dá)[7]。

經(jīng)典的Ⅰ型IFN信號通路已于25年前闡明:IFN與受體結(jié)合后,激活受體相關(guān)Janus激酶1(Janus kinase 1,JAK1)和酪氨酸激酶2(tyrosine kinase 2,TYK2),使信號轉(zhuǎn)導(dǎo)與轉(zhuǎn)錄激活因子1(signal transducer and activator of transcription 1,STAT1)和STAT2的酪氨酸磷酸化,磷酸化的STAT1和STAT2形成二聚體并轉(zhuǎn)移入核,與IFN調(diào)節(jié)因子9(interferon regulatory factor 9,IRF9)結(jié)合形成三聚體的IFN刺激基因因子3(interferon-stimulated gene factor 3,ISGF3)。ISGF3與IFN刺激應(yīng)答元件結(jié)合,直接激活I(lǐng)FN刺激基因(interferon-stimulated gene,ISG)的轉(zhuǎn)錄。ISG抑制病毒的途徑主要有抑制病毒的轉(zhuǎn)錄、翻譯和核酸復(fù)制,降解病毒核酸,改變宿主細(xì)胞脂代謝。細(xì)胞對IFN與受體結(jié)合的反應(yīng)與細(xì)胞類型、所處環(huán)境有關(guān),且在免疫反應(yīng)過程中不斷變化。雖然Ⅲ型IFN不使用Ⅰ型IFN受體復(fù)合物轉(zhuǎn)導(dǎo)信號,但其最終均激活JAK/STAT信號級聯(lián)系統(tǒng)[8]。

2 IFN基因變異

遺傳學(xué)或表觀遺傳學(xué)上的變化會影響疾病的易感范圍和臨床表現(xiàn),其中包括一些病毒感染引起的疾病。鑒于IFN在機(jī)體抗病毒和免疫反應(yīng)中的作用,不難理解IFN基因或病原體的基因變異可能導(dǎo)致多種疾病發(fā)生。近年來有研究顯示,IFN相關(guān)基因變異可引起病毒感染的臨床表現(xiàn)改變。例如,單純皰疹病毒1型(herpes simplex virus type 1,HSV-1)感染在世界范圍內(nèi)相當(dāng)普遍,大多數(shù)患者無明顯癥狀,但I(xiàn)FN-α/β和IFN-λ信號通路發(fā)生基因變異時,HSV1感染會引起單純皰疹病毒性腦炎(herpes simplex virus encephalitis,HSE)[9]。在HSE患者中,UNC-93B和Toll樣受體3(Toll-like receptor 3,TLR3)基因缺失,揭示了依賴UNC-93B的TLR-IFNα、IFN-β和IFN-λ信號通路在抵抗HSV1感染中的作用。另一方面,在TLR介導(dǎo)的IFN誘生途徑中,某些分子變異也會通過阻礙IFN合成而降低機(jī)體對病毒感染的抵抗力。例如,IL-1受體相關(guān)激酶4(interleukin 1 receptor-associated kinase 4,IRAK-4)缺失患者中,TLR7、TLR8和TLR9被激活后,IFN-α、IFN-β和IFN-λ的合成能力受損。

STAT1和TYK2基因變異也會通過影響IFN家族成員的抗病毒作用,導(dǎo)致一些病毒引起更嚴(yán)重的感染疾病[10]。IFN-γ基因缺陷患者會罹患遺傳性分枝桿菌易感綜合征(mendelian susceptibility to mycobacterial disease,MSMD),其特征是弱致病性的分枝桿菌如結(jié)核分枝桿菌疫苗和非結(jié)核環(huán)境分枝桿菌能引發(fā)嚴(yán)重感染。IFN-γ由髓系細(xì)胞分泌的細(xì)胞因子如IL-12和IL-23誘導(dǎo)分泌,IL-12/23-IFN-γ信號通路在機(jī)體對分枝桿菌的免疫防御中起關(guān)鍵作用。IL-12p40或IL-12Rβ1基因缺失及核因子κB必須調(diào)節(jié)蛋白(nuclear factor κB essential modulator,NEMO)變異是IFN-γ相關(guān)免疫力損傷和發(fā)生MSMD的原因[11-12]。現(xiàn)已發(fā)現(xiàn),不同種族人群中存在至少347種IFN-γ突變體和多種啟動子區(qū)域或NF-κB結(jié)合區(qū)域的單核苷酸多態(tài)性(single nucleotide polymorphism,SNP)[13],它們不僅影響傳染性疾病,尤其是肺結(jié)核和病毒性肝炎,還與再生障礙性貧血和銀屑病有關(guān)。

IFN基因多態(tài)性與藥物療效有關(guān)。使用PEG-IFN-α和利巴韋林(ribavirin,RBV)標(biāo)準(zhǔn)方法治療丙型肝炎后,臨床觀察到非洲裔患者的療效顯著低于歐洲裔患者[13]。2009年,通過全基因組關(guān)聯(lián)研究發(fā)現(xiàn),Ⅲ型IFN基因多態(tài)性是這一現(xiàn)象的遺傳學(xué)基礎(chǔ),它影響了PEG-IFN-α和RBV的療效及病毒的清除率[14-15]。 IFN-λ3和IFN-λ4基因附近的3個SNP與丙型肝炎病毒(hepatitis C virus,HCV)感染的治療效果相關(guān),且它們之間的連鎖不平衡值很高。其中rs12979860(C/T)位于IFN-λ3基因上游3 kb處[14-15];rs8099917(T/G)位于IFN-λ2與IFN-λ3之間;rs368234815(TT/ΔG)(以前稱為ss469415590)在IFN-λ3基因上游引起移碼突變,使IFN-λ4編碼新的氨基酸序列[16]。此外,IFN-λ基因SNP與巨細(xì)胞病毒、人類T細(xì)胞白血病病毒、乙型肝炎病毒(hepatitis B virus,HBV)、人類免疫缺陷病毒(human immunodeficiency virus,HIV)和HSV的感染有關(guān)[17]。

除基因變異,某些表觀遺傳學(xué)修飾也影響IFN表達(dá)。IFN-γ啟動子區(qū)域的甲基化水平增加可提高Th1細(xì)胞的IFN-γ表達(dá),降低Th2細(xì)胞的IFN-γ表達(dá),并導(dǎo)致哮喘。相反,減少IFN-γ啟動子區(qū)域的甲基化與舒張壓升高、膽汁閉鎖、牙髓炎癥和慢性牙周炎有關(guān)[12]。目前研究已證實,IFN基因變異會影響機(jī)體抗病毒和抗細(xì)菌感染的能力,還與一些非感染性疾病的發(fā)生發(fā)展有關(guān)。

3 病毒抗IFN策略

病毒在宿主中的增殖和傳播依賴其逃避宿主防御體系識別和控制的能力,它們進(jìn)化出多種免疫逃避機(jī)制,特別是針對IFN及IFN誘生分子這類天然免疫效應(yīng)系統(tǒng)中的成員。

3.1 病毒抑制IFN誘生

細(xì)胞可通過位于細(xì)胞質(zhì)或內(nèi)體膜上的傳感器來感知病毒的入侵,這些傳感器包括視黃酸誘導(dǎo)基因Ⅰ(retinoic acid inducible gene Ⅰ,RIG-Ⅰ)和黑色素瘤分化相關(guān)基因5(melanoma differentiation associated gene 5,MDA5)RNA解旋酶、 IFN-β啟動子刺激因子1(interferon β promoter stimulator 1,IPS-1)和某些TLR(如TLR3、TLR7、TLR8和TLR9)[18-21]。雙鏈RNA病毒由MDA5和TLR3識別;單正鏈RNA病毒主要由MDA5識別,部分由RIG-Ⅰ識別;單負(fù)鏈RNA病毒由RIG-Ⅰ識別;雙鏈DNA病毒由TLR9識別。一旦宿主細(xì)胞識別病毒入侵后,一系列的轉(zhuǎn)錄因子如IRF-3、NK-κB、活化蛋白1(activating protein 1,AP-1)和p300/CBP等被激活并轉(zhuǎn)移入核,與IFN啟動子結(jié)合上調(diào)IFN表達(dá)。HPV的E6基因和甲型流感病毒的NS1基因可使IRF-3失活,從而抑制IFN產(chǎn)生[22-24]。白蛉病毒屬的托斯卡納病毒表達(dá)一種非結(jié)構(gòu)蛋白,可直接作用于RIG-Ⅰ,導(dǎo)致其降解[25]??谔阋卟《?foot and mouth disease virus,F(xiàn)MDV)的L、3C和2B蛋白促進(jìn)RIG-Ⅰ mRNA表達(dá),也能夠促進(jìn)RIG-Ⅰ蛋白降解[26]。HBV可促進(jìn)miR146a表達(dá)上調(diào),后者直接作用于RIG-Ⅰ mRNA,降低其表達(dá),從而抑制IFN生成[27]。登革病毒NS4A蛋白可直接作用于IPS-1,阻止其與RIG-Ⅰ結(jié)合[28]。豬繁殖與呼吸綜合征病毒(porcine reproductive and respiratory syndrome virus,PRRSV)的3CLSP 能直接作用于IPS-1 Glu268(E268/G269),通過不依賴蛋白酶和半胱氨酸天冬氨酸特異性蛋白酶(cysteinyl aspartate specific proteinase,caspase)的方式降解IPS-1[29]。HCV的NS3/4A也能降解IPS-1,抑制IFN誘生信號通路[30]。

3.2 病毒抑制IFN信號通路的激活

JAK/STAT信號通路在IFN抗病毒過程中起重要作用,質(zhì)膜上的IFN-α/β受體激活JAK1和TYK2分子,IFN-γ受體激活JAK1和JAK2分子,激活后發(fā)生磷酸化,使信號傳遞入核。副黏病毒和風(fēng)疹病毒的非結(jié)構(gòu)蛋白V和C可通過降解STAT分子、阻止或降低磷酸化水平、限制核轉(zhuǎn)移等方式阻斷宿主細(xì)胞合成Ⅰ和Ⅱ型IFN。副黏病毒V蛋白還可直接作用于IFN-β啟動子,阻斷宿主細(xì)胞表達(dá)IFN-β。正是由于病毒在宿主細(xì)胞中表達(dá)此類影響IFN合成信號通路的蛋白,導(dǎo)致病毒能在IFN敏感細(xì)胞中增殖。埃博拉病毒VP24蛋白可與核轉(zhuǎn)運(yùn)蛋白(karyopherin)α結(jié)合,抑制STAT1核轉(zhuǎn)運(yùn),從而使宿主細(xì)胞對IFN耐受[31]。病毒還可引起細(xì)胞因子信號轉(zhuǎn)導(dǎo)抑制因子(suppressor of cytokine signaling,SOCS)表達(dá),負(fù)調(diào)控JAK/STAT信號轉(zhuǎn)導(dǎo)[32-33]。例如,副黏病毒和風(fēng)疹病毒的V和C蛋白可干擾IFN誘導(dǎo)的蛋白激酶R和RNA腺苷脫氨酶1表達(dá),從而防止病毒基因翻譯過程被抑制和宿主細(xì)胞凋亡,使病毒能在宿主細(xì)胞中存活和復(fù)制[34-35]。痘病毒可分泌一種與IFN-γ特異性結(jié)合的因子,阻止IFN-γ與受體結(jié)合[36]。最近發(fā)現(xiàn)的多食棘阿米巴巨病毒(Acanthamoebapolyphagamimivirus,APMV)可能是人類肺炎的病原體,它能誘導(dǎo)人外周血單核細(xì)胞(peripheral blood mononuclear cell,PBMC)產(chǎn)生Ⅰ型IFN,通過STAT1和STAT2去磷酸化及病毒受體抑制ISG表達(dá)來對抗IFN-α,但對IFN-β敏感[37]。

4 IFN抗病毒的拮抗和協(xié)同作用

每一種IFN均可誘導(dǎo)多種基因表達(dá),介導(dǎo)各種生物學(xué)效應(yīng)。雖然IFN可有效抑制水皰性口炎病毒(vesicular stomatitis virus,VSV)和腦心肌炎病毒(encephalomyocarditis virus,EMCV)在細(xì)胞內(nèi)的復(fù)制,但幾乎所有病毒都進(jìn)化出對抗IFN的機(jī)制,并完全或部分抑制IFN的抗病毒作用。然而研究發(fā)現(xiàn),病毒抵抗Ⅰ與Ⅱ型IFN的機(jī)制是不同的,聯(lián)合使用IFN可能克服病毒的IFN抗性。早在1979年,F(xiàn)leischmann等就觀察到Ⅰ和Ⅱ型IFN具有相互促進(jìn)作用,隨后還觀察到它們在抗腫瘤方面也相互促進(jìn)。在HIV感染和自身免疫性疾病患者中同樣觀察到IFN的協(xié)同作用[38]。IFN-α/β和IFN-γ在體內(nèi)外均有協(xié)同抑制人巨細(xì)胞病毒(human cytomegalovirus,HCMV)復(fù)制的作用[39]。此外,多項研究顯示,IFN家族對HCV、拉沙病毒(Lassa virus,LASV)、水痘-帶狀皰疹病毒(varicella-zoster virus,VZV)、HCMV和嚴(yán)重急性呼吸綜合征冠狀病毒(severe acute respiratory syndrome coronavirus,SARS-CoV)均表現(xiàn)出協(xié)同抗病毒作用[40-44]。Peng等[45]研究Ⅰ和Ⅱ型IFN協(xié)同抑制HSV-1復(fù)制機(jī)制時發(fā)現(xiàn),IFN-β1和IFN-γ分別通過獨(dú)立的信號途徑對同一個效應(yīng)基因起作用,因此聯(lián)合使用IFN比單獨(dú)使用IFN具有更好的抗病毒效果。目前,Ⅰ與Ⅱ型IFN具有協(xié)同抗病毒的作用已得到公認(rèn),對Ⅰ與Ⅲ型IFN的協(xié)同作用還存在爭議。有研究顯示Ⅰ與Ⅲ型IFN對HCV有協(xié)同抗病毒作用,但對HSV-2無協(xié)同抗病毒作用。最近有學(xué)者研究了IFN-α與IFN-λ對多種病毒的拮抗/協(xié)同抗病毒作用,結(jié)果顯示IFN-λ抑制病毒復(fù)制的效果沒有IFN-α明顯,且IFN-λ對IFN-α抑制病毒復(fù)制有拮抗作用。

5 結(jié)語

病毒已經(jīng)進(jìn)化出多種策略,通過阻斷IFN生成和ISG表達(dá)來規(guī)避宿主的天然免疫反應(yīng)。其他因素也影響IFN的抗病毒效應(yīng)。例如,臨床分離病毒株與實驗室傳代病毒株可能具有截然不同的IFN反應(yīng),尤其是RNA病毒。RNA病毒由于依賴RNA的RNA聚合酶保真性不高,在傳代培養(yǎng)過程中基因變異迅速積累引起表型改變。此外,細(xì)胞系的選擇也會影響實驗結(jié)果,因為許多永生化或轉(zhuǎn)化的傳代細(xì)胞系在關(guān)鍵的天然免疫信號中存在突變。同樣,基因敲除或下調(diào)的細(xì)胞系或?qū)嶒瀯游镆矔绊憣嶒灲Y(jié)果,特別是在使用過表達(dá)或下調(diào)方法破壞了內(nèi)源性蛋白相互作用時。研究病毒阻斷天然免疫反應(yīng)的機(jī)制對開發(fā)抗病毒感染的新策略非常重要,關(guān)鍵的免疫逃逸分子可能成為抗病毒治療的靶點(diǎn),關(guān)鍵的抗病毒分子也可能成為抗病毒治療的潛在藥物。因此,深入了解免疫逃避關(guān)鍵因素的信息能推進(jìn)設(shè)計安全、有效的病毒疫苗和確定新現(xiàn)病毒的治療策略。

[1] Isaacs A,Lindenmann J.Virus interference.I.The interferon [J].Proc R Soc Lond B Biol Sci,1957,147: 258-267.

[2] Nagano Y,Kojima Y.Inhibition of vaccinia infection by a liquid factor in tissues infected by homologous virus [J].C R Seances Soc Biol Fil,1958,152(11): 1627-1629.

[3] Donnelly RP,Kotenko SV.Interferon-lambda: a new addition to an old family [J].J Interferon Cytokine Res,2010,30(8): 555-564.

[4] Ivashkiv LB,Donlin LT.Regulation of type I interferon responses [J].Nat Rev Immunol,2014,14(1): 36-49.

[5] Teijaro JR.Type I interferons in viral control and immune regulation [J].Curr Opin Virol,2016,16: 31-40.

[6] Lopu?ná K,Re?uchová I,Betáková T,Skovranová L,Toma?ková J,Lukáiková L,Kabát P.Interferons lambda,new cytokines with antiviral activity [J].Acta Virol,2013,57(2): 171-179.

[7] Bordi L,Lalle E,Lapa D,Caglioti C,Quartu S,Capobianchi MR,Castilletti C.Type III interferon (IFN-lambda) antagonizes the antiviral activity of interferon-alpha in vitro [J].J Biol Regul Homeost Agents,2013,27(4): 1001-1009.

[8] Schwartz DM,Bonelli M,Gadina M,O’Shea JJ.Type I/II cytokines,JAKs,and new strategies for treating autoimmune diseases [J].Nat Rev Rheumatol,2016,12(1): 25-36.

[9] Capobianchi MR,Uleri E,Caglioti C,Dolei A.Type I IFN family members: similarity,differences and interaction [J].Cytokine Growth Factor Rev,2015,26(2): 103-111.

[10] Casanova JL,Holland SM,Notarangelo LD.Inborn errors of human JAKs and STATs [J].Immunity,2012,36(4): 515-528.

[11] Smith NL,Denning DW.Clinical implications of interferon-γ genetic and epigenetic variants [J].Immunology,2014,143(4): 499-511.

[12] Bustamante J,Boisson-Dupuis S,Abel L,Casanova JL.Mendelian susceptibility to mycobacterial disease: genetic,immunological,and clinical features of inborn errors of IFN-γ immunity [J].Semin Immunol,2014,26(6): 454-470.

[13] Heim MH.25 years of interferon-based treatment of chronic hepatitis C: an epoch coming to an end [J].Nat Rev Immunol,2013,13(7): 535-542.

[14] Thomas DL,Thio CL,Martin MP,Qi Y,Ge D,O’Huigin C,Kidd J,Kidd K,Khakoo SI,Alexander G,Goedert JJ,Kirk GD,Donfield SM,Rosen HR,Tobler LH,Busch MP,McHutchison JG,Goldstein DB,Carrington M.Genetic variation in IL28B and spontaneous clearance of hepatitis C virus [J].Nature,2009,461(7265): 798-801.

[15] Ge D,Fellay J,Thompson AJ,Simon JS,Shianna KV,Urban TJ,Heinzen EL,Qiu P,Bertelsen AH,Muir AJ,Sulkowski M,Mchutchison JG,Goldstein DB.Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance [J].Nature,2009,461(7262): 399-401.

[16] Tanaka Y,Nishida N,Sugiyama M,Kurosaki M,Matsuura K,Sakamoto N,Nakagawa M,Korenaga M,Hino K,Hige S,Ito Y,Mita E,Tanaka E,Mochida S,Murawaki Y,Honda M,Sakai A,Hiasa Y,Nishiguchi S,Koike A,Sakaida I,Imamura M,Ito K,Yano K,Masaki N,Sugauchi F,Izumi N,Tokunaga K,Mizokami M.Genome-wide association of IL28B with response to pegylated interferon-alpha and ribavirin therapy for chronic hepatitis C [J].Nat Genet,2009,41(10): 1105-1109.

[17] Bibert S,Roger T,Calandra T,Bochud M,Cerny A,Semmo N,Duong FH,Gerlach T,Malinverni R,Moradpour D,Negro F,Müllhaupt B,Bochud PY; Swiss Hepatitis C Cohort Study.IL28B expression depends on a novel TT/-G polymorphism which improves HCV clearance prediction [J].J Exp Med,2013,210(6): 1109-1116.

[18] Chinnaswamy S.Gene-disease association with human IFNL locus polymorphisms extends beyond hepatitis C virus infections [J].Genes Immun,2016,17(5): 265-275.

[19] Devasthanam AS.Mechanisms underlying the inhibition of interferon signaling by viruses [J].Virulence,2014,5(2): 270-277.

[20] van Montfoort N,Olagnier D,Hiscott J.Unmasking immune sensing of retroviruses: interplay between innate sensors and host effectors [J].Cytokine Growth Factor Rev,2014,25(6): 657-668.

[21] Orzalli MH,Knipe DM.Cellular sensing of viral DNA and viral evasion mechanisms [J].Annu Rev Microbiol,2014,68: 477-492.

[22] Chiang JJ,Davis ME,Gack MU.Regulation of RIG-I-like receptor signaling by host and viral proteins [J].Cytokine Growth Factor Rev,2014,25(5): 491-505.

[23] Meyer SI,Fuglsang K,Blaakaer J.Cell-mediated immune response: a clinical review of the therapeutic potential of human papillomavirus vaccination [J].Acta Obstet Gynecol Scand,2014,93(12): 1209-1218.

[24] Maringer K,Fernandez-Sesma A.Message in a bottle: lessons learned from antagonism of STING signalling during RNA virus infection [J].Cytokine Growth Factor Rev,2014,25(6): 669-679.

[25] Gori Savellini G,Gandolfo C,Cusi MG.Truncation of the C-terminal region of Toscana virus NSs protein is critical for interferon-β antagonism and protein stability [J].Virology,2015,486: 255-262.

[26] Zhu Z,Wang G,Yang F,Cao W,Mao R,Du X,Zhang X,Li C,Li D,Zhang K,Shu H,Liu X,Zheng H.Foot-and-mouth disease virus viroporin 2B antagonizes RIG-I-mediated antiviral effects by inhibition of its protein expression [J].J Virol,2016,90(24): 11106-11121.

[27] Hou Z,Zhang J,Han Q,Su C,Qu J,Xu D,Zhang C,Tian Z.Hepatitis B virus inhibits intrinsic RIG-I and RIG-G immune signaling via inducing miR146a [J].Sci Rep,2016,6.doi: 10.1038/srep26150.

[28] Chan YK,Gack MU.A phosphomimetic-based mechanism of dengue virus to antagonize innate immunity [J].Nat Immunol,2016,17(5): 523-530.

[29] Dong J,Xu S,Wang J,Luo R,Wang D,Xiao S,Fang L,Chen H,Jiang Y.Porcine reproductive and respiratory syndrome virus 3C protease cleaves the mitochondrial antiviral signalling complex to antagonize IFN-β expression [J].J Gen Virol,2015,96(10): 3049-3058.

[30] Li XD,Sun L,Seth RB,Pineda G,Chen ZJ.Hepatitis C virus protease NS3/4A cleaves mitochondrial antiviral signaling protein off the mitochondria to evade innate immunity [J].Proc Natl Acad Sci USA,2005,102(49): 17717-17722.

[31] Wong G,Kobinger GP,Qiu X.Characterization of host immune responses in Ebola virus infections [J].Expert Rev Clin Immunol,2014,10(6): 781-790.

[32] Xu W,Edwards MR,Borek DM,Feagins AR,Mittal A,Alinger JB,Berry KN,Yen B,Hamilton J,Brett TJ,Pappu RV,Leung DW,Basler CF,Amarasinghe GK.Ebola virus VP24 targets a unique NLS binding site on karyopherin alpha 5 to selectively compete with nuclear import of phosphorylated STAT1 [J].Cell Host Microbe,2014,16(2): 187-200.

[33] Fleming SB.Viral inhibition of the IFN-induced JAK/STAT signalling pathway: development of live attenuated vaccines by mutation of viral-encoded IFN-antagonists [J].Vaccines (Basel),2016,4(3).doi: 10.3390/vaccines4030023.

[34] Ning YJ,Feng K,Min YQ,Cao WC,Wang M,Deng F,Hu Z,Wang H.Disruption of type I interferon signaling by the nonstructural protein of severe fever with thrombocytopenia syndrome virus via the hijacking of STAT2 and STAT1 into inclusion bodies [J].J Virol,2015,89(8): 4227-4236.

[35] Li Z,Okonski KM,Samuel CE.Adenosine deaminase acting on RNA 1 (ADAR1) suppresses the induction of interferon by measles virus [J].J Virol,2012,86(7): 3787-3794.

[36] Puehler F,Schwarz H,Waidner B,Kalinowski J,Kaspers B,Bereswill S,Staeheli P.An interferon-gamma-binding protein of novel structure encoded by the fowlpox virus [J].J Biol Chem,2003,278(9): 6905-6911.

[37] Silva LC,Almeida GM,Oliveira DB,Dornas FP,Campos RK,La Scola B,Ferreira PC,Kroon EG,Abrah?o JS.A resourceful giant: APMV is able to interfere with the human type I interferon system [J].Microbes Infect,2014,16(3): 187-195.

[38] Capobianchi MR,Mattana P,Mercuri F,Conciatori G,Ameglio F,Ankel H,Dianzani F.Acid lability is not an intrinsic property of interferon-alpha induced by HIV infected cells [J].J Interferon Res,1992,12(6): 431-438.

[39] Sainz B Jr,LaMarca HL,Garry RF,Morris CA.Synergistic inhibition of human cytomegalovirus replication by interferon-alpha/beta and interferon-gamma [J].Virol J,2005,2: 14.doi: 10.1186/1743-422X-2-14.

[40] Larkin J,Jin L,Farmen M,Venable D,Huang Y,Tan SL,Glass JI.Synergistic antiviral activity of human interferon combinations in the hepatitis C virus replicon system [J].J Interferon Cytokine Res,2003,23(5): 247-257.

[41] Asper M,Sternsdorf T,Hass M,Drosten C,Rhode A,Schmitz H,Günther S.Inhibition of different Lassa virus strains by alpha and gamma interferons and comparison with a less pathogenic arenavirus [J].J Virol,2004,78(6): 3162-3169.

[42] Desloges N,Rahaus M,Wolff MH.Role of the protein kinase PKR in the inhibition of varicella-zoster virus replication by beta interferon and gamma interferon [J].J Gen Virol,2005,86(Pt 1): 1-6.

[43] Castilletti C,Bordi L,Lalle E,Rozera G,Poccia F,Agrati C,Abbate I,Capobianchi MR.Coordinate induction of IFN-alpha and -gamma by SARS-CoV also in the absence of virus replication [J].Virology,2005,341(1): 163-169.

[44] Scagnolari C,Trombetti S,Alberelli A,Cicetti S,Bellarosa D,Longo R,Spanò A,Riva E,Clementi M,Antonelli G.The synergistic interaction of interferon types I and II leads to marked reduction in severe acute respiratory syndrome-associated coronavirus replication and increase in the expression of mRNAs for interferon-induced proteins [J].Intervirology,2007,50(2): 156-160.

[45] Peng T,Zhu J,Hwangbo Y,Corey L,Bumgarner RE.Independent and cooperative antiviral actions of beta interferon and gamma interferon against herpes simplex virus replication in primary human fibroblasts [J].J Virol,2008,82(4): 1934-1945.

猜你喜歡
宿主抗病毒變異
慢性乙型肝炎抗病毒治療是關(guān)鍵
肝博士(2022年3期)2022-06-30 02:48:52
抗病毒治療可有效降低HCC的發(fā)生及改善患者預(yù)后
肝博士(2021年1期)2021-03-29 02:32:14
病原體與自然宿主和人的生態(tài)關(guān)系
科學(xué)(2020年3期)2020-11-26 08:18:22
抗病毒藥今天忘吃了,明天要多吃一片嗎?
肝博士(2020年4期)2020-09-24 09:21:26
變異危機(jī)
變異
龜鱉類不可能是新冠病毒的中間宿主
對抗病毒之歌
表現(xiàn)為扁平苔蘚樣的慢性移植物抗宿主病一例
變異的蚊子
百科知識(2015年18期)2015-09-10 07:22:44
确山县| 平定县| 铁力市| 凌海市| 平顺县| 红安县| 石林| 清新县| 怀来县| 隆昌县| 栾城县| 无锡市| 从化市| 崇信县| 海城市| 磐安县| 建湖县| 永靖县| 洪江市| 利川市| 温州市| 山阴县| 屏东市| 绥江县| 宜丰县| 抚顺市| 秀山| 微山县| 灵丘县| 罗田县| 宝山区| 璧山县| 绥芬河市| 横山县| 西乌珠穆沁旗| 凉山| 葫芦岛市| 余江县| 明水县| 凉城县| 娱乐|