劉春穎, 田 野, 姜源慶,李培峰, 簡慧敏, 張升輝
(1.中國海洋大學海洋化學理論與工程技術教育部重點實驗室, 化學化工學院, 山東 青島 266100;2.國家海洋局 煙臺海洋環(huán)境監(jiān)測中心站,山東 煙臺 264006)
由于NO的不穩(wěn)定性、易逸性、低含量,目前關于海水中NO測定方法的報道不多(見表1),主要有電化學方法[11-13],熒光法[14-16]和化學發(fā)光法[17-19],這些方法可用于NO的光解產生和生長調控作用機制的研究。而能用于現(xiàn)場NO觀測的只有吹掃-捕集熒光法[19]和吹掃-捕集化學發(fā)光法[17-18],可分別用于近海和大洋的NO分布和產生速率的觀測。吹掃-捕集化學發(fā)光法也逐漸從大體積開放式變成小體積密閉式。除了測定方法,NO的采樣過程對測定結果有一定的影響,用傳統(tǒng)的Niskin采水器采樣可能有一定的誤差,用水泵直接采水測定更為準確[18]。
表1 海水中NO的測定方法
海水中NO的產生途徑有光化學過程[22]、大氣交換[23]、熱過程[24]、生物學過程[25]含硝化與反硝化過程[2]、化學過程等。目前關于海洋NO的確切來源和轉化還不清楚[26],研究較多的是光降解過程,微生物硝化與反硝化過程和浮游植物生長過程(見圖1)。
圖1 NO的海洋生物地球化學過程[1-3,11-14]Fig.1 Marine biogeochemistry process of nitric oxide
海洋中生物體釋放NO的研究主要集中在植物上。Morrall等[32-33]研究表明,熱帶海洋中銀蓮花的一氧化氮合成酶(NOS)活性明顯受到環(huán)境溫度、銅離子濃度的影響。在深?;虮砻嫠拇罅扛∮沃参?藻類)生長處,因缺氧條件而產生NO[17]。Kim等[34-35]觀測到Chattonellamarina,C.ovata和Heterosigmaakashiwo三種海洋赤潮藻釋放NO的現(xiàn)象。劉春穎等[1]對海洋微藻Platymonassubcordiformis、Skeletonemacostatum、Gymnodiniumsp.和Chaetoceroscurvisetu藻液中NO的濃度和來源進行了初步研究,結果表明,不管是赤潮藻還是非赤潮藻體系都發(fā)現(xiàn)NO的客觀存在,濃度大約在10-8~10-9mol/L;NO是微藻生長狀況的信息因子,也是微藻應激反應的信號分子;藻密度達最大值之前,伴隨著NO濃度曲線也出現(xiàn)一個峰值,此現(xiàn)象為赤潮化學預報研究提供了實驗基礎。除了實驗室的觀測,在野外藻類培養(yǎng)池中也檢測到NO的存在[20,34-35]。此外,海洋動物產生NO的研究也開始有報道。Jeong等[37]發(fā)現(xiàn)潮間帶橈足類虎斑猛水蚤受到免疫挑戰(zhàn)時可誘發(fā)體內的NOS;Xian等[38]檢測到對蝦不同部位血細胞中NO濃度有所不同。
研究表明,生物體不僅自身會產生NO,同時會對外界的NO做出不同的響應,當然這依賴于濃度的大小[20, 43-45],并有種間差異。Yoshihara等[46]和Nagase等[11]報道綠藻在吸收利用爐氣時,能吸收其中的NO,在NO與爐氣的體積比為(100~300)×10-6的氣體中,綠藻能正常生長。從20世紀80年代后期開始,由于生物化學和分子生物學的研究發(fā)展,逐漸發(fā)現(xiàn)和證實NO是生物體內一種重要的信使分子和效應分子,在生命過程中起著舉足輕重的作用。外源NO對海洋浮游植物的生長有顯著的影響,它可能是浮游植物(藻類)生長的一種信息因子[8, 11, 46-47];NO能參與調節(jié)微藻的其他生理活動[48-50];并能在一定程度上抵御非生物的生長脅迫[51],包括金屬,非金屬,紫外照射,農藥等的脅迫。NO在水產養(yǎng)殖生物病害方面具有抵抗病原體的作用[7];Chen等[52]報道了熱帶海參體內NO參與調節(jié)鈣調素的證據(jù);越來越多的證據(jù)表明,NO在海洋生態(tài)系扮演著重要的角色。
在平流層臭氧光化學過程中,NO通過反應NO+O3→NO2+O2直接破壞臭氧;另一個反應NO2+O→NO+O2不僅使大氣中氧原子減少,不利于O3形成,同時還產生NO,進一步破壞O3。另一方面,平流層NO2還可以光化分解為NO和氧原子。NOx在對流層中的化學行為較為復雜,NO和NO2可轉化為HNO2、HNO3、HO2NO2、NO3、N2O5和有機硝酸鹽,它們當中大部分分子又被光解和熱分解為NOx。觀測表明,NO和NO2主要轉化為HNO3、過氧乙酰硝酸酯(Peroxyacetyl Nitrate,PAN)和顆粒物硝酸鹽。HNO3在白天很快被光解,在晚上能和NO2生成N2O5,而N2O5的濕清除可能是NOy(NOy=NOx+HNO2+HNO3+HO2NO2+NO3+2N2O5+PAN+顆粒物硝酸鹽)的一個重要的匯。HNO3再以其高度水溶性溶入雨滴降落地面,也可能粘結在氣溶膠或懸浮顆粒上,最后干降于地表,所以NOx最終的匯是地面或地面水系。NOx既能生成二次無機氣溶膠,也能生成二次有機氣溶膠(SOA)[53]。人類活動排放的CH4、CO、NMHC等氣體和大氣中的OH和O2反應生成過氧基,這些過氧基使大氣中的NO轉化為NO2。NO2光解生成O原子,基態(tài)氧原子和O2反應生成O3,誘發(fā)城市光化學煙霧。工業(yè)革命后對流層中O3濃度每年以2%~4%的速度增長,研究發(fā)現(xiàn),這主要是由于人類活動排放的NOx所致的。由于NOx在對流層大氣化學過程中的重要地位,所以近些年來對NOx在對流層中的分布及變化規(guī)律進行了許多測量和研究。觀測表明,白天NOy的15%~30%是以(HNO3+PAN+NO3(p))形態(tài)存在的,夜晚90%以上的NOy是以(NO+NO2)的形態(tài)存在的。白天硝酸占有較高的比例,是因為NOx的光化學反應所致;在夜間有霧的情況下,40%的NOy是以硝酸鹽的形態(tài)存在的。大氣中NOx的濃度取決于NOx的排放與輸送,在城市和工業(yè)區(qū)主要是人為的排放,濃度范圍為1×10-9~10×10-9(v/v);沿海地區(qū)為0.1×10-9~1.0×10-9(v/v);在沒有受到人為影響的遠海和極地地區(qū)NOx的濃度為0.001×10-9~0.01×10-9(v/v)。洋面上NOx的濃度從海平面到平流層頂隨著高度的增加而增大,這與陸地上NOx垂直梯度的變化正相反。夏季NOx的壽命主要由NO2和OH的反應所決定,且隨著NOx濃度的變化而變化,同時也取決于NOx和NMHC的比值。當NOx的濃度在1×10-9(v/v)時,NOx的壽命約為0.5天,冬季NOx的壽命很不確定,約為1~2天[54]。衛(wèi)星返回的數(shù)據(jù)可以檢測到大氣中NO2濃度變化,目前陸地上空的觀測較多,而海洋上空的觀測還未深入開展。
綜上所述,NO對全球氣候與環(huán)境有著重要影響,海洋生態(tài)系釋放NO越來越受到人們的重視;此外,NO在海洋生態(tài)系中扮演著重要的角色,對海洋生物生長具有重要的調控作用。然而NO的海洋生物地球化學研究剛剛起步,許多重要的科學問題和研究手段尚待解決。
(1)建立起適合于現(xiàn)場觀測的易操作、高靈敏、低檢出限的NO分析方法,才能廣泛開展NO的海洋生物地球化學研究。目前還沒有一套大家認可的NO分析方法。
(2)隨著人們對NOx危害的重視以及化石燃料的減排,生態(tài)系統(tǒng)釋放NO的問題越來越受到人們的關注。開展海洋尤其是近岸海域釋放NO的過程及機制研究,才能完善海洋氮循環(huán)的研究,進一步對全球氮的收支平衡做出定量評估,為應對全球氣候和環(huán)境變化提供參考數(shù)據(jù)。
(3)開展海洋生態(tài)系中NO的產生途徑、釋放速率及濃度范圍,才能進一步認識NO的生態(tài)效應。
(4)深入研究NO對海洋生物生長,抗逆抗病等作用規(guī)律和機制,才能認識NO在海洋生態(tài)系中的地位與作用。
[1] 劉春穎. 海水中一氧化氮對浮游植物生長影響的規(guī)律研究[D]. 青島: 中國海洋大學, 2006.
Liu C Y. Studies on the Effect Laws of Nitric Oxide on the Phytoplankton Growth in Seawater [D]. Qingdao: Ocean University of China, 2006.
[2] Law C S. Air-Sea Transfer: N2O, NO, CH4, CO. Encyclopedia of Ocean Sciences [M]. San Diego, USA: Academic Press, 2001.
[3] Huang Y, Li D. Soil nitric oxide emissions from terrestrial ecosystems in China: A synthesis of modeling and measurements [J]. Scientific Reports, 2014, 4: 7406.
[4] Leshem Y Y. Nitric oxide in biological systems [J]. Plant Growth Regulation, 1996, 18(3): 155-159.
[5] Yu M, Lamattina L, Spoel S H, et al. Nitric oxide function in plant biology: a redox cue in deconvolution [J]. New Phytologist, 2014, 202(4): 1142-1156.
[6] Corpas F J, Leterrier M, Valderrama R, et al. Nitric oxide imbalance provokes a nitrosative response in plants under abiotic stress [J]. Plant Science, 2011, 181(5): 604-611.
[7] 姜國建, 于仁誠, 周名江. 活性氮中間體和一氧化氮合成酶系統(tǒng)在水產養(yǎng)殖生物病害防御中的作用[J]. 海洋科學, 2006, 30(3): 90-93.
Jiang G J, Yu R C, Zhou M J. Role of reactive nitrogen intermediates (RNIs) and nitric oxide synthase in disease resistance of maricultured organisms[J]. Marine Sciences, 2006, 30(3): 90-93.
[8] Zhang Z, Lin C, Liu C, et al. Study on patterns and chemical features of NO effect on marine phytoplankton growth[J]. Science China (Chemistry), 2005, 48(4): 376-384.
[9] Chen J, Wu F H, Xiao Q, et al. Diurnal variation of nitric oxide emission flux from a mangrove wetland in Zhangjiang River Estuary, China [J]. Estuarine Coastal & Shelf Science, 2010, 90(4): 212-220.
[10] Martens-Habbena W, Qin W, Horak R E A, et al. The production of nitric oxide by marine ammonia-oxidizing archaea and inhibition of archaeal ammonia oxidation by a nitric oxide scavenger [J]. Environmental Microbiology, 2015, 17(7): 2261, 2274.
[11] Nagase H, Yoshihara K, Eguchi K. Uptake pathway and continuous removal of nitric oxide from flue gas using microalgae [J]. Biochemical Engineering Journal, 2001, 7(3): 241-246.
[12] 羅超, 周秀驥. 氮氧化物(NOx)在對流層中的收支與循環(huán)的研究[J]. 應用氣象學報, 1993(1): 92-99.
Luo C, Zhou X J. The study of the cycle of nitrogen oxides in the troposphere [J]. Journal of Applied Meteorological Science, 1993 (1): 92-99.
[13] Schreiber F, Polerecky L, De B D. Nitric oxide microsensor for high spatial resolution measurements in biofilms and sediments [J]. Analytical Chemistry, 2008, 80(4): 1152-1158.
[14] Olasehinde E F, Takeda K, Sakugawa H. Development of an analytical method for nitric oxide radical determination in natural waters [J]. Analytical Chemistry, 2009, 81(16): 6843-6850.
[15] 豐衛(wèi)華, 劉春穎, 楊桂朋, 等. 海水中一氧化氮的化學發(fā)光法測定[J]. 海洋學報, 2011, 33(6): 93-99.
Feng W H, Liu C Y, Yang G P, et al. Chemiluminescence detection of nitric oxide in seawater [J]. Acta Oceanologica Sinica, 2011, 33(6): 93-99.
[16] Liu X, Shang L, Sun Z, et al. Direct electrochemistry of hemoglobin in dimethyldioctadecyl ammonium bromide film and its electrocatalysis to nitric oxide [J]. Journal of Biochemical & Biophysical Methods, 2005, 62(2): 143-151.
[17] Ward B B, Zafiriou O C. Nitrification and nitric oxide in the oxygen minimum of the eastern tropical North Pacific [J]. Deep Sea Research Part I: Oceanographic Research Papers, 1988, 35(7): 1127-1142.
[18] Lutterbeck H E, Bange H W. An improved method for the determination of dissolved Nitric Oxide (NO) in seawater samples [J]. Ocean Science Discussions, 2015, 12(3): 959-981.
[19] Liu C Y, Zhao M, Ren C Y, et al. Direct measurement of nitric oxide in seawater medium by fluorometric method [J]. Chinese Journal of Analytical Chemistry, 2009, 37(10): 1463-1467.
[20] Zhang Z B, Xing L, Wu Z Z, et al. Discovery of nitric oxide in marine ecological system and the chemical characteristics of nitric oxide[J]. Science in China Series B: Chemistry, 2006, 49(5): 475-480.
[21] Zafiriou O C, Mcfarland M. Nitric oxide from nitrite photolysis in the central equatorial Pacific [J]. Journal of Geophysical Research Oceans, 1981, 86(C4): 3173-3182.
[22] Zafiriou O C, True M B. Nitrate photolysis in seawater by sunlight [J]. Marine Chemistry, 1979, 8(1): 9-32.
[23] Zafiriou O C. Marine organic photochemistry previewed [J]. Marine Chemistry, 1977, 5(4-6): 497-522.
[24] 楊桂朋. 海水中自由基的產生過程及其化學反應[J]. 海洋湖沼通報, 1990 (1): 70-76.
Yang G P. Production of free radicals in seawater and their chemical reactions [J]. Transactions of Oceanology and Limnology, 1990 (1): 70-76.
[25] Lipschultz F, Zafiriou O C, Wofsy S C, et al. Production of NO and N2O by soil nitrifying bacteria [J]. Nature, 1981, 294: (641-643.
[26] 劉春穎, 張正斌, 邢磊, 等. 一氧化氮的海洋生物地球化學[J]. 中國海洋大學學報(自然科學版), 2004, 34(sup.): 16-22.
Liu C Y, Zhang Z B, Xing L, et al. Marine biogeochemistry of nitric oxide [J]. Periodcial of Ocean University of China, 2004, 34(sup. ): 16-22.
[27] 李培峰, 李文帥, 劉春穎, 等. 水體中亞硝酸鹽的光降解[J]. 環(huán)境化學, 2011, 30(11): 1883-1888.
Li P F, Li W S, Liu C Y, et al. The photodegradation of nitrite in water [J]. Environmental Chemistry, 2011, 30(11): 1883-1888.
[28] Riley J P, Skirrow. Chemical Oceanography [M]. London: Academic Press, 1983.
[29] Voss M, Bange H W, Dippner J W, et al. The marine nitrogen cycle: recent discoveries, uncertainties and the potential relevance of climate change [J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368(1621): 91-97.
[30] Watmough N J, Butland G, Cheesman M R, et al. Nitric oxide in bacteria: synthesis and consumption [J]. Biochimica et Biophysica Acta, 1999, 1411(2-3): 456-474.
[31] Ren T, Roy R, Knowles R. Production and consumption of nitric oxide by three methanotrophic bacteria [J]. Applied & Environmental Microbiology, 2000, 66(9): 3891-3897.
[32] Morrall C E, Galloway T S, Trapidorosenthal H G, et al. Characterisation of nitric oxide synthase activity in the tropical sea anemone Aiptasia pallida [J]. Comparative Biochemistry & Physiology Part B Biochemistry & Molecular Biology, 2000, 125(4): 483-491.
[33] Morrall C E, Trapido-Rosenthal H G, Knap A H, et al. Development of nitric oxide and nitric oxide synthase as ecotoxicological biomarkers in the tropical marine environment [J]. Marine Environmental Research, 1998, 46(1): 429-432.
[34] Kim D, Yamaguchi K, Oda T. Nitric oxide synthase-like enzyme mediated nitric oxide generation by harmful red tide phytoplankton,Chattonellamarina[J]. Journal of Plankton Research, 2006, 28(6): 613-620.
[35] Kim D, Kang Y S, Lee Y, et al. Detection of Nitric Oxide (NO) in marine phytoplankters [J]. Journal of Bioscience & Bioengineering, 2008, 105(4): 414-417.
[36] Tang X, Chen J, Wang W H, et al. The changes of nitric oxide production during the growth ofMicrocystisaerugrinosa[J]. Environmental Pollution, 2011, 159(12): 3784-3792.
[37] Jeong C B, Kang H M, Seo J S, et al. Identification and molecular characterization of Nitric Oxide synthase (NOS) gene in the intertidal copepodTigriopusjaponicas[J]. Gene, 2016, 577(1): 338-345.
[38] Xian J A, Guo H, Li B, et al. Measurement of intracellular Nitric Oxide (NO) production in shrimp haemocytes by flow cytometry [J]. Fish & Shellfish Immunology, 2013, 35(6): 2032-2039.
[39] 薛超. 黃渤海和膠州灣一氧化氮的分布、通量及生產速率的研究[D]. 青島: 中國海洋大學, 2012.
Xue C. Distribution, Flux and Release rate of Nitric Oxide in China’s Coastal Waters [D]. Qingdao: Ocean University of China, 2012.
[40] Lewis R S, Deen W M. Kinetics of the reaction of nitric oxide with oxygen in aqueous solutions [J]. Chemical Research in Toxicology, 1994, 7(4): 568-574.
[41] Carpenter L J, Nightingale P D. Chemistry and release of gases from the surface ocean [J]. Chemical Reviews, 2015, 115(10): 4015.
[42] IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to Fifth Assessment Report of the Intergovernmental Panel on Climate Change [R]. Sweden Stockholm:American Geophysical Union, 2013.
[43] Zheng X X, Wang M X, Wang Y S, et al. Mitigation options for methane, nitrous oxide and nitric oxide emissions from agricultural ecosystems [J]. Advances in Atmosphere Sciences, 2000, 17(1): 83-92.
[44] Beligni M V, Lamattina L. Nitric Oxide: A non-traditional regulator of plant growth [J]. Trends in Plant Science, 2001, 6(11): 508-509.
[45] Yamasaki H, Sakihama Y. Simultaneous production of nitric oxide and peroxynitrite by plant nitrate reductase: in vitro evidence for the NR-dependent formation of active nitrogen species [J]. FEBS Letters, 2000, 468(1): 89-92.
[46] Yoshihara K I, Nagase H, Eguchi K, et al. Biological elimination of nitric oxide and carbon dioxide from flue gas by marine microalga NOA-113 cultivated in a long tubular photobioreactor [J]. Journal of Fermentation & Bioengineering, 1996, 82(82): 351-354.
[47] Zhang Z, Lin C, Liu C, et al. The effect of nitric oxide on the growth of marine phytoplankton [J]. Journal of Ocean University of China, 2003, 2(2): 185-188.
[48] Zhang Z B, Liu C Y, Wu Z Z, et al. Detection of nitric oxide in culture media and studies on nitric oxide formation by marine microalgae[J]. Medical Science Monitor International Medical Journal of Experimental & Clinical Research, 2006, 12(2): 75-85.
[49] Liu C Y, Zhang Z B, Chen X R. Mutual effects of nitric oxide and iron on the growth of marine algae [J]. Acta Oceanologica Sinica, 2005, 24(5): 100-109.
[50] Liu C Y, Kieber D J, Yang G P, et al. Evidence for the mutual effects of dimethylsulfoniopropionate and nitric oxide during the growth of marine microalgae[J]. Nitric Oxide, 2014, 42: 54-61.
[51] Lobysheva I I, Vanin A F, Sineshchekov O A, et al. Nitric oxide modulates phototaxis ofChlamydomonasreinhardtii[J]. Biophysics, 1996, 41(2): 538-541.
[52] Li P, Liu C Y, Liu H, et al. Protective function of nitric oxide on marine phytoplankton under abiotic stresses [J]. Nitric Oxide Biology & Chemistry, 2013, 33(9): 88-96.
[53] Chen T, Ren C, Li W, et al. Calmodulin of the tropical sea cucumber: gene structure, inducible expression and contribution to nitric oxide production and pathogen clearance during immune response [J]. Fish & Shellfish Immunology, 2015, 45(2): 231-238.
[54] Presto A A, Miracolo M A, Donahue N M, et al. Secondary organic aerosol formation from high-NOx photo-oxidation of low volatility precursors: n-Alkanes [J]. Environmental Science & Technology, 2010, 44(6): 2029-2034.