袁陽,張泓,陳玲
結核病是由結核分枝桿菌(MTB)感染引起的慢性傳染性疾病。異質性耐藥是一種特殊的耐藥現(xiàn)象,迄今為止,異質性耐藥在利福平、異煙肼、鏈霉素、乙胺丁醇及氟喹諾酮中均有報道[1-2];此外,耐多藥結核?。∕DR)及敏感、多耐藥或單耐藥菌株亦存在異質性耐藥[1,3-7],該現(xiàn)象可能是菌株對利福平、異煙肼、鏈霉素、乙胺丁醇及氟喹諾酮敏感性發(fā)生變化的原因之一[8],分析其發(fā)生機制主要為混合感染或單一菌株分化成耐藥和敏感菌株[2,9-10]。自1975年首次發(fā)現(xiàn)結核菌異質性耐藥至今[11],異質性耐藥一直是藥物敏感試驗(DST)和GeneXpert法診斷菌株耐藥假陰性率不斷增加的原因之一[12-13],而早期診斷異質性耐藥對制定最佳抗結核方案及抑制全耐藥菌株出現(xiàn)具有重要意義[14],但如何提高異質性耐藥檢出率是目前臨床研究難題。筆者通過檢索相關文獻,綜述了MTB異質性耐藥的診斷方法,以期為臨床早期診斷耐藥結核病提供參考。
結核桿菌生長緩慢且具有生物危害,故表型DST存在成本較高、費時及可比性較差等缺點[15];此外,表型DST診斷異質性耐藥的靈敏度較低[16]。VAN DEUN等[17]研究結果顯示,表型DST很難檢測出低水平利福平耐藥,分析其原因可能與耐利福平菌株數(shù)量少及生長緩慢有關[18]。既往研究結果顯示,MTB異質性耐藥是導致表型DST結果不同的主要原因之一[19]。與表型DST相比,微量肉湯稀釋法對乙胺丁醇和異煙肼耐藥的檢出率較高[20-21],但不能檢測出低水平利福平耐藥[18]。近年來,臨床出現(xiàn)很多新的、快速的表型DST方法,雖然在不同實驗室行表型DST或培養(yǎng)基前處理對檢測結果無明顯影響[4,22],但傳統(tǒng)比例法仍是目前公認的診斷耐藥菌株(耐藥菌株占總菌株比例>1%時)較可靠、敏感的實驗室方法[23]。
MTB是單倍體菌株,其基因組的每個位點均有單一核苷酸代表DNA[24]。因此,異質性耐藥可理解為菌群在特定耐藥位點上核苷酸的不均勻[1]。既往研究結果顯示,在抗生素誘導下抗性菌株比例不斷增加,直到突變的等位基因頻率>95%才停止[25]。目前,診斷異質性耐藥的技術主要為傳統(tǒng)DST培養(yǎng)出多個亞克?。?]及基于聚合酶鏈反應(PCR)原理的技術〔如DNA直接測序[26]、限制性片段長度多態(tài)性(RFLP)技術[1]、線性探針(LPA)[27]、高通量測序[28]及全基因組測序等〕檢測出突變體和野生型共存。
2.1 DNA直接測序 在單一基因分型存在前提下,DNA直接測序是鑒定特定位點突變導致異質性耐藥的主要方法[24]。DNA直接測序是指采用光學方法對gyrA、gyrB、rpoB基因突變體進行序列分析,目前被認為是診斷利福平、氟諾酮類藥物異質性耐藥的金標準[16,29]。ZHANG等[21]研究發(fā)現(xiàn),與表型DST和微量肉湯稀釋法相比,DNA直接測序不受利福平耐藥菌株數(shù)量限制,但其僅能發(fā)現(xiàn)10%的利福平異質性耐藥菌株。目前,采用現(xiàn)有的分子生物學方法(特別是DNA直接測序)檢測MTB異質性耐藥仍存在困難[30-31],其原因是檢測基因突變的靈敏度較低或無法檢測其他突變位點。
2.2 測序圖譜分析 測序圖譜分析結果顯示,圖譜中同時出現(xiàn)同一位點低頻耐藥突變(非測序錯誤)和野生型測序曲線則提示菌株是由野生型和少量突變亞組組成[32]。因此,使用分子克隆和測序圖譜分析可將表型DST和基因型DST結果不一致降到最低[6,32]。
2.3 分子分型 MARTíN等[33]研究結果顯示,RFLP技術、DR區(qū)寡核苷酸序列分型方法、MIRU-VNTR技術是檢測混合感染的最佳方法。此外,ClassTR、LPA、高通量測序及全基因組測序等也用于檢測混合感染。
2.3.1 RFLP技術 RFLP技術是基于插入序列IS 6110的一種方法。序列IS 6110僅存在于MTB復合體中,通常為多個拷貝,拷貝數(shù)取決于換位頻率,拷貝數(shù)差異是導致序列IS 6110多態(tài)性的主要原因[34],故序列IS 6110是MTB基因分型的特異性分子標志物[35]。RFLP技術的主要優(yōu)勢是穩(wěn)定性良好、重現(xiàn)性較高及鑒別能力較強,故有研究將其作為MTB基因分型的金標準[36]。RFLP技術的主要缺點是在菌量較少或<5個序列IS 6110拷貝的菌株中檢測能力較低[37]。
2.3.2 DR區(qū)寡核苷酸序列分型方法 DR區(qū)寡核苷酸序列分型方法是以PCR為基礎的一種快速分型方法[38],其利用雜交法來檢測MTB中43個間隔區(qū)序列,從而對MTB進行分型。DR區(qū)寡核苷酸序列分型方法的優(yōu)點是簡單、高通量、高性價比,缺點主要包括以下兩個方面:(1)因一種分型可能由所有菌株累積的間隔區(qū)序列或混合感染中的主要菌株決定[39],故DR區(qū)寡核苷酸序列分型結果易受影響,但有學者認為找到DR區(qū)寡核苷酸序列分型和混合感染之間的聯(lián)系就能減少混合感染的影響[40];(2)DR區(qū)寡核苷酸序列分型方法無法鑒別相同家族的不同菌株感染及未明確家族(如Manu)菌株的混合感染[41]。
2.3.3 MIRU-VNTR技術 MIRU-VNTR技術是檢測混合感染的主要方法之一,近年來應用較為廣泛[42]。MIRU是結核病基因組中40~100 bp的重復序列,VNTR是所有真核生物的基因組串聯(lián)重復序列[43-44]。SHAMPUTA等[45]研究結果顯示,MIRU-VNTR技術可用于檢測亞克隆群體和混合感染,其作用原理如下:首先利用與側翼區(qū)互補的特殊引物對12個可變串聯(lián)重復序列位點進行自動PCR分析,然后使用凝膠電泳及計算機進行自動化基因分型,在同一樣本中具有不同基因座的不同MIRU-VNTR模式的生物體及在單一基因座中具有不同MIRU-VNTR模式的亞克隆株均被定義為混合感染[39,46]。
2.3.4 ClassTR ClassTR主要利用來自菌株的多位點可變數(shù)目串聯(lián)重復序列分析(MLVA)信息的分型系統(tǒng),該系統(tǒng)會顯示幾個預先選取的基因座的重復區(qū)域拷貝數(shù)[47-48],而拷貝數(shù)變異體(CNV)可區(qū)分混合感染和突變菌株。CHINDELEVITCH等[49]研究結果顯示,ClassTR的分類能力較標準方法更強。
2.3.5 LPA GenoType MTBDRplus和MTBDRsl是兩種不同用途的LPA,分別用于檢測一線、二線抗結核藥物耐藥性,兩者作用原理均為先擴增MTB復合物中DNA片段,然后將擴增后的DNA片段與固定在硝化纖維素條上的特異性探針進行雜交。GenoType MTBDRplus試劑盒是指應用核酸反向線性探針雜交技術檢測利福平與異煙肼耐藥的相關基因[50]。既往研究結果顯示,采用LPA、直接對gyrA突變基因體測序及DR區(qū)寡核苷酸序列分型方法直接對gyrA和gyrB突變基因體測序等檢測菌株對氟喹諾酮異質性耐藥的最低耐藥菌株比例分別為20%、23%、21%[2,5-6]。不同文獻報道LPA檢測最低耐藥菌株比例各不相同[2,25,51-52],分析其原因可能與當?shù)亟Y核病和MDR流行狀況、分型方法及分離菌來源(培養(yǎng)或直接標本)不同有關[51]。
2.3.6 高通量測序 高通量測序包括454焦磷酸測序和Illumina(Solexa)測序,其精度較高、產量較高、靈敏度較高、運行成本較低。Illumina(Solexa)測序將微陣列技術與可逆終止子技術相結合,在測序同時行大規(guī)模平行合成,然后將基因組DNA或cDNA的隨機片段以連接序列方式附著于光學透明狹縫(流動細胞)表面流動;之后使用橋擴展方法產生數(shù)以億計的DNA(也稱為簇),每個簇中有1 000~6 000個拷貝相同的DNA模板;最后,將DNA中4種末端封閉的堿基采用不同熒光標記并合成、測序。Illumina(Solexa)可擴增個體DNA簇,且能在菌群中擴增低至1%的突變[53]。對于MTB中的低頻變體,高通量測序比Sanger測序更為敏感,而后者可檢測到>10%~15%的次要等位基因頻率[2,54]。因此,使用高通量測序可發(fā)現(xiàn)更多對氟喹諾酮異質性耐藥的MTB[27]。
2.3.7 全基因組測序 全基因組測序過程較為復雜,首先是從樣本中提取基因組DNA,然后隨機打斷DNA,在電泳中回收所需長度的DNA片段(0.2~5.0 kB),之后加入用于基因簇制備或電子放大的連接,最后應用配對末端(Solexa)或配對(SOLiD)方法對插入片段進行測序。目前,全基因組測序已能分辨出12%耐藥菌株比例的MTB混合感染[55],但其存在成本較高、數(shù)據(jù)分析較復雜、重復區(qū)域測序讀數(shù)較短等不足[42]。
既往研究表明,表型DST較基因型DST檢測MTB異質性耐藥更為敏感[25,30],但表型DST結果需要4~6周,基因型DST結果則需要幾個小時。大多數(shù)遺傳學檢測方法存在的問題均是突變菌株必須在菌群中占相當比例時才能被檢測出,其中耐藥菌株比例為5%~50%時基因型DST檢測異質性耐藥的靈敏度較低。鑒于目前基因型DST診斷氟喹諾酮異質性耐藥的靈敏度較低,因此世界衛(wèi)生組織建議基因型DST只能用于檢測“納入”的突變,故存在陽性突變結果[56]。
低耐藥比例的突變不能擴增到檢測水平是測序的缺陷之一,為了克服這一缺陷,科學家們開發(fā)了可以從突變體和野生型序列混合物中優(yōu)先擴增少數(shù)等位基因的新技術[31]。
4.1 低變性溫度下的復合PCR(COLD-PCR) COLD-PCR是結合高分辨率熔融和較低變性溫度下共擴增的PCR技術,其使MTB中可檢測到利福平異質性耐藥的耐藥菌株比例從20.0%降至2.5%,較分子線性探針雜交方法(MTBDRplus)的5%更低[30-31]。由于每個擴增子在PCR反應中具有特定的臨界變性溫度(Tc)[57],故COLD-PCR是一種有效的分析方法,其可以選擇性地擴增來自野生型和含突變序列混合物的低等位基因[58]。PANG等[31]研究結果顯示,使用COLDPCR檢測rpoB耐藥基因突變較普通PCR更為敏感,其可發(fā)現(xiàn)87.0%~95.2%的耐藥基因突變。
4.2 MeltPro TB/INH分析 近期,中國食品和藥物管理局批準了MeltPro TB/INH分析的臨床應用,其是一種基于雙色閉合試管、熔解曲線分析的實時PCR,并采用特殊雙重標記的自淬滅探針[59-60]。MeltPro TB/INH分析用于MTB的inhA啟動子(位置-17至-8)、inhA94、katG315中共檢測到30個異煙肼耐藥突變位點,其優(yōu)點是可以通過減慢PCR反應中溫度上升速率而檢測到樣本中低突變比例的異質性耐藥,且與各種主流實時PCR儀器兼容[61]。
4.3 雙標記探針熔解溫度檢測(DLP) DLP探針是具有檢測突變能力的線性探針。有研究表明,SMB檢測結果較DLP更好,尤其是檢測低突變菌株比例和氟喹諾酮異質性耐藥[62]。
4.4 數(shù)字化PCR 數(shù)字化PCR是基于單分子PCR的最新的定量技術,通過使用計數(shù)的方法對DNA進行量化,故是一個絕對的量化工具[63]。為了提高PCR檢測的靈敏度和定量異質性耐藥,該方法將混合的MTB DNA稀釋為單拷貝,因此,即使亞群菌株僅占總菌群的0.1%,使用數(shù)字化PCR也能檢測到異質性耐藥[63]。
4.5 Sloppy Molecular Beacon Sloppy Molecular Beacon是指擴大雜交范圍、多融解溫度(Tm)及使用多探針鑒定細菌種類的方法[64],其測試的目標區(qū)域是細菌的16S-23S rRNA基因間隔區(qū)或16S rRNA基因[65],因為這些DNA區(qū)域含有可以鑒定細菌種類的高變序列[64]。
當結核病患者依從性較差或藥物劑量較低、用藥間隔時間較長時,由于間接暴露低于最低藥物抑菌濃度,故可能出現(xiàn)菌群對耐藥菌株進行選擇,進而逐漸出現(xiàn)異質性耐藥甚至耐多藥菌株、全耐藥菌株。因此,從某種意義上講,異質性耐藥菌株是全耐藥菌株的前體。此外,慢性感染時患者可能同時感染具有不同藥物敏感性的幾個亞群,故異質性耐藥菌株也可能在慢性感染期間出現(xiàn)[66]。
目前,DST結果尚不能檢測出感染患者的全部MTB及結核病患者體內單克隆菌株的耐藥位點突變,且其結果還受到MTB菌株混合感染、培養(yǎng)物污染等影響。近年來,隨著遺傳分析方法發(fā)展,新的檢測方法檢測異質性耐藥的靈敏度升高。因此,臨床醫(yī)生應選擇合適的檢測方法并制定有效的抗結核方案以降低耐藥結核病發(fā)病率及改善患者預后。
[1]RINDER H,MIESKES K T,LOSCHER T.Heteroresistance in Mycobacterium tuberculosis[J].Int J Tuberc Lung Dis,5(4):339-345.
[2]HOFMANN-THIEL S,VAN INGEN J,F(xiàn)ELDMANN K,et al.Mechanisms of heteroresistance to isoniazid and rifampin of Mycobacterium tuberculosis in Tashkent,Uzbekistan[J].E u r R e s p i r J,2 0 0 9,3 3(2):3 6 8-3 7 4.D O I:10.1183/09031936.00089808.
[3]SOMOSKOVI A,DEGGIM V,CIARDO D,et al.Diagnostic implications of inconsistent results obtained with the Xpert MTB/Rif assay in detection of Mycobacterium tuberculosis isolates with an rpoB mutation associated with low-level rifampin resistance[J].J Clin Microbiol,2013,51(9):3127-3129.DOI:10.1128/JCM.01377-13.
[4]ZETOLA N M,MODONGO C,MOONAN P K,et al.Clinical outcomes among persons with pulmonary tuberculosis caused by Mycobacterium tuberculosis isolates with phenotypic heterogeneity in results of drug-susceptibility tests[J].J Infect Dis,2014,209(11):1754-1763.DOI:10.1093/infdis/jiu040.
[5]STREICHER E M,BERGVAL I,DHEDA K,et al.Mycobacterium tuberculosis population structure determines the outcome of geneticsbased second-line drug resistance testing[J].Antimicrob Agents Chemother,2012,56(5):2420-2427.DOI:10.1128/AAC.05905-11.
[6]ZHANG X,ZHAO B,LIU L,et al.Subpopulation analysis of heteroresistance to fluoroquinolone in Mycobacterium tuberculosis isolates from Beijing,China[J].J Clin Microbiol,2012,50(4):1471-1474.DOI:10.1128/JCM.05793-11.
[7]COHEN T,CHINDELEVITCH L,MISRA R,et al.Within-Host Heterogeneity of Mycobacterium tuberculosis Infection Is Associated With Poor Early Treatment Response: A Prospective Cohort Study[J].J Infect Dis,2016,213(11):1796-1799.DOI:10.1093/infdis/jiw014.
[8]ADJERS-KOSKELA K,KATILA M L.Susceptibility Testing with the Manual Mycobacteria Growth Indicator Tube (MGIT) and the MGIT 960 System Provides Rapid and Reliable Verification of Multidrug-Resistant Tuberculosis[J].J Clin Microbiol,2003,41(3):1235-1239.
[9]ZHENG C,LI S,LUO Z,et al.Mixed Infections and Rifampin Heteroresistance among Mycobacterium tuberculosis Clinical Isolates[J].J Clin Microbiol,2015,53(7):2138-2147.DOI:10.1128/JCM.03507-14.
[10]FORD C,YUSIM K,IOERGER T,et al.Mycobacterium tuberculosis—heterogeneity revealed through whole genome sequencing[J].Tuberculosis(Edinb),2012,92(3):194-201.DOI:10.1016/j.tube.2011.11.003.
[11]MANKIEWICZ E,LIIVAK M.Phage types of mycobacterium tuberculosis in cultures isolated from Eskimo patients[J].Am Rev Respir Dis,1975,111(3):307-312.
[12]VAN RIE A,VICTOR T C,RICHARDSON M,et al.Reinfection and mixed infection cause changing Mycobacterium tuberculosis drug-resistance patterns[J].Am J Respir Crit Care Med,2005,172(5):636-642.
[13]ZETOLA N M,SHIN S S,TUMEDI K A,et al.Mixed Mycobacterium tuberculosis complex infections and false-negative results for rifampin resistance by GeneXpert MTB/RIF are associated with poor clinical outcomes[J].J Clin Microbiol,2014,52(7):2422-2429.DOI:10.1128/JCM.02489-13.
[14]ZHANG X,ZHAO B,HUANG H,et al.Co-occurrence of amikacin-resistant and -susceptible Mycobacterium tuberculosis isolates in clinical samples from Beijing,China[J].J Antimicrob Chemother,2013,68(7):1537-1542.DOI:10.1093/jac/dkt082.
[15]劉永安,李學瑞,劉永生.結核分枝桿菌耐藥機制與檢測技術研究進展[J].中國畜牧獸醫(yī),2017,44(6):1884-1889.DOI:10.16431/j.cnki.1671-7236.2017.06.043
[16]KUMAR P,BALOONI V,SHARMA B K,et al.High degree of multi-drug resistance and hetero-resistance in pulmonary TB patients from Punjab state of India[J].Tuberculosis(Edinb),2014,94(1):73-80.DOI:10.1016/j.tube.2013.10.001.
[17]VAN DEUN A,AUNG K J,BOLA V,et al.Rifampin drug resistance tests for tuberculosis: challenging the gold standard[J].J Clin Microbiol,2013,51(8):2633-2640.DOI:10.1128/JCM.00553-13.
[18]ZHANG Z,WANG Y,PANG Y,et al.Comparison of different drug susceptibility test methods to detect rifampin heteroresistance in Mycobacterium tuberculosis[J].Antimicrob Agents Chemother,2014,58(9):5632-5635.DOI:10.1128/AAC.02778-14.
[19]VAN DEUN A,BARRERA L,BASTIAN I,et al.Mycobacterium tuberculosis strains with highly discordant rifampin susceptibility test results[J].J Clin Microbiol,2009,47(11):3501-3506.DOI:10.1128/JCM.01209-09.
[20]CHAN R C,HUI M,CHAN E W,et al.Genetic and phenotypic characterization of drug-resistant Mycobacterium tuberculosis isolates in Hong Kong[J].J Antimicrob Chemother,2007,59(5):866-873.
[21]ZHANG Z,WANG Y,PANG Y,et al.Ethambutol resistance as determined by broth dilution method correlates better than sequencing results with embB mutations in multidrug-resistant Mycobacterium tuberculosis isolates[J].J Clin Microbiol,2014,52(2):638-641.DOI:10.1128/JCM.02713-13.
[22]FOLKVARDSEN D B,SVENSSON E,THOMSEN V ?,et al.Can molecular methods detect 1% isoniazid resistance in Mycobacterium tuberculosis?[J].J Clin Microbiol,2013,51(5):1596-1599.DOI:10.1128/JCM.00472-13.
[23]MAYER C,TAKIFF H.The Molecular Genetics of Fluoroquinolone Resistance in Mycobacterium tuberculosis[J].Microbiol Spectr,2014,2(4):MGM2-0009-2013.DOI:10.1128/microbiolspec.MGM2-0009-2013.
[24]EILERTSON B,MARURI F,BLACKMAN A,et al.High proportion of heteroresistance in gyrA and gyrB in fluoroquinoloneresistant Mycobacterium tuberculosis clinical isolates[J].Antimicrob Agents Chemother,2014,58(6):3270-3275.DOI:10.1128/AAC.02066-13.
[25]SUN G,LUO T,YANG C,et al.Dynamic population changes in Mycobacterium tuberculosis during acquisition and fixation of drug resistance in patients[J].J Infect Dis,2012,206(11):1724-1733.DOI:10.1093/infdis/jis601.
[26]KARAHAN Z C,AKAR N.Restriction endonuclease analysis as a solution for determining rifampin resistance mutations by automated DNA sequencing in heteroresistant Mycobacterium tuberculosis strains[J].Microb Drug Resist,2005,11(2):137-140.
[27]DE OLIVEIRA M M,DA SILVA ROCHA A,CARDOSO OELEMANN M,et al.Rapid detection of resistance against rifampicin in isolates of from Brazilian patients using a reversephase hybridization assay[J].J Microbiol Methods,2003,53(3):335-342.
[28]ENGSTR?M A,HOFFNER S,JURéEN P.Detection of heteroresistant Mycobacterium tuberculosis by pyrosequencing[J].J Clin Microbiol,2013,51(12):4210-4212.DOI:10.1128/JCM.01761-13.
[29]K?SER C U,F(xiàn)EUERRIEGEL S,SUMMERS D K,et al.Importance of the genetic diversity within the Mycobacterium tuberculosis complex for the development of novel antibiotics and diagnostic tests of drug resistance[J].Antimicrob Agents Chemother,2012,56(12):6080-6087.DOI:10.1128/AAC.01641-12.
[30]FOLKVARDSEN D B,THOMSEN V ?,RIGOUTS L,et al.Rifampin heteroresistance in Mycobacterium tuberculosis cultures as detected by phenotypic and genotypic drug susceptibility test methods[J].J Clin Microbiol,2013,51(12):4220-4222.DOI:10.1128/JCM.01602-13.
[31]PANG Y,LIU G,WANG Y,et al.Combining COLD-PCR and high-resolution melt analysis for rapid detection of low-level,rifampin-resistant mutations in Mycobacterium tuberculosis[J].J Microbiol Methods,2013,93(1):32-36.DOI:10.1016/j.mimet.2013.01.008.
[32]GAO X,LI J,LIU Q,et al.Heteroresistance in Mycobacteria tuberculosis is an important factor for the inconsistency between the results of phenotype and genotype drug susceptibility tests[J].Chin J Tuberc Respir Dis,2014,37(4):260-265.
[33]MARTíN A,HERRANZ M,NAVARRO Y,et al.Evaluation of the inaccurate assignment of mixed infections by Mycobacterium tuberculosis as exogenous reinfection and analysis of the potential role of bacterial factors in reinfection[J].J Clin Microbiol,2011,49(4):1331-1338.DOI:10.1128/JCM.02519-10.
[34]WALL S,GHANEKAR K,MCFADDEN J,et al.Contextsensitive transposition of IS6110 in mycobacteria[J].Microbiology,1999,145(Pt 11):3169-3176.
[35]CAVE M D,EISENACH K D,MCDERMOTT P F,et al.IS6110:conservation of sequence in the Mycobacterium tuberculosis complex and its utilization in DNA fingerprinting[J].Mol Cell Probes,1991,5(1):73-80.
[36]ASGHARZADEH M,SHAHBABIAN K,MAJIDI J,et al.IS6110 restriction fragment length polymorphism typing of Mycobacterium tuberculosis isolates from East Azerbaijan Province of Iran[J].Mem Inst Oswaldo Cruz,2006,101(5):517-521.
[37]EI P W,AUNG W W,LEE J S,et al.Molecular Strain Typing of Mycobacterium tuberculosis: a Review of Frequently Used Methods[J].J Korean Med Sci,2016,31(11):1673-1683.DOI:10.3346/jkms.2016.31.11.1673.
[38]王兆芬,李斌,蔣明霞,等.青海省251株結核分枝桿菌Spoligotyping基因型與4種一線藥物耐藥表型的研究[J].中國人獸共患病學報,2017,33(4):332-336.DOI:10.3969/j.issn.1002-2694.2017.04.008.
[39]COHEN T,WILSON D,WALLENGREN K,et al.Mixed-strain Mycobacterium tuberculosis infections among patients dying in a hospital in KwaZulu-Natal,South Africa[J].J Clin Microbiol,2011,49(1):385-388.DOI:10.1128/JCM.01378-10.
[40]LAZZARINI L C,ROSENFELD J,HUARD R C,et al.Mycobacterium tuberculosis spoligotypes that may derive from mixed strain infections are revealed by a novel computational approach[J].Infect Genet Evol,2012,12(4):798-806.DOI:10.1016/j.meegid.2011.08.028.
[41]HANEKOM M,STREICHER E M,VAN DE BERG D,et al.Population structure of mixed Mycobacterium tuberculosis infection is strain genotype and culture medium dependent[J].PLoS One,2013,8(7):e70178.DOI:10.1371/journal.pone.0070178.
[42]COHEN T,VAN HELDEN P D,WILSON D,et al.Mixedstrain mycobacterium tuberculosis infections and the implications for tuberculosis treatment and control[J].Clin Microbiol Rev,2012,25(4):708-719.DOI:10.1128/CMR.00021-12.
[43]COX R,MIRKIN S M.Characteristic enrichment of DNA repeats in different genomes[J].Proc Natl Acad Sci U S A,1997,94(10):5237-5242.
[44]NAKAMURA Y,CARLSON M,KRAPCHO K,et al.New approach for isolation of VNTR markers[J].Am J Hum Genet,1988,43(6):854-859.
[45]SHAMPUTA I C,JUGHELI L,SADRADZE N,et al.Mixed infection and clonal representativeness of a single sputum sample in tuberculosis patients from a penitentiary hospital in Georgia[J].Respir Res,2006,7:99.
[46]DICKMAN K R,NABYONGA L,KATEETE D P,et al.Detection of multiple strains of Mycobacterium tuberculosis using MIRUVNTR in patients with pulmonary tuberculosis in Kampala,Uganda[J].BMC Infect Dis,2010,10:349.DOI:10.1186/1471-2334-10-349.
[47]ABLORDEY A,SWINGS J,HUBANS C,et al.Multilocus variable-number tandem repeat typing of Mycobacterium ulcerans[J].J Clin Microbiol,2005,43(4):1546-1551.
[48]SUPPLY P,ALLIX C,LESJEAN S,et al.Proposal for standardization of optimized mycobacterial interspersed repetitive unit-variable-number tandem repeat typing of Mycobacterium tuberculosis[J].J Clin Microbiol,2006,44(12):4498-4510.
[49]CHINDELEVITCH L,COLIJN C,MOODLEY P,et al.ClassTR:Classifying Within-Host Heterogeneity Based on Tandem Repeats with Application to Mycobacterium tuberculosis Infections[J].PLoS Comput Biol,2016,12(2):e1004475.DOI:10.1371/journal.pcbi.1004475.
[50]張海燕,繆家文,潘洪秋,等.應用線性探針雜交技術快速檢測結核分枝桿菌的多藥耐藥性[J].江蘇大學學報(醫(yī)學版),2017,6(27):539-541.
[51]MEKONNEN D,ADMASSU A,MULU W,et al.Multidrugresistant and heteroresistant Mycobacterium tuberculosis and associated gene mutations in Ethiopia[J].Int J Infect Dis,2015,39:34-38.DOI:10.1016/j.ijid.2015.06.013.
[52]TOLANI M P,D'SOUZA D T,MISTRY N F.Drug resistance mutations and heteroresistance detected using the GenoType MTBDRplus assay and their implication for treatment outcomes in patients from Mumbai,India[J].BMC Infect Dis,2012,12:9.DOI:10.1186/1471-2334-12-9.
[53]BLACK P A,DE VOS M,LOUW G E,et al.Whole genome sequencing reveals genomic heterogeneity and antibiotic purification in Mycobacterium tuberculosis isolates[J].BMC Genomics,2015,16:857.DOI:10.1186/s12864-015-2067-2.
[54]ROHLIN A,WERNERSSON J,ENGWALL Y,et al.Parallel sequencing used in detection of mosaic mutations: comparison with four diagnostic DNA screening techniques[J].Hum Mutat,2009,30(6):1012-1020.DOI:10.1002/humu.20980.
[55]BRYANT J M,HARRIS S R,PARKHILL J,et al.Whole-genome sequencing to establish relapse or re-infection with Mycobacterium tuberculosis: a retrospective observational study[J].Lancet Respir Med,2013,1(10):786-792.DOI:10.1016/S2213-2600(13)70231-5.
[56]GILPIN C.Summary of outcomes from the WHO Expert Group Meeting on Drug Susceptibility Testing[C].Geneva:WHO,2012.
[57]LI J,WANG L,MAMON H,et al.Replacing PCR with COLDPCR enriches variant DNA sequences and redefines the sensitivity of genetic testing[J].Nat Med,2008,14(5):579-584.DOI:10.1038/nm1708.
[58]PAGANINI I,MANCINI I,BARONCELLI M,et al.Application of COLD-PCR for improved detection of NF2 mosaic mutations[J].J Mol Diagn,2014,16(4):393-399.DOI:10.1016/j.jmoldx.2014.02.007.
[59]LIAO Y,WANG X,SHA C,et al.Combination of fluorescence color and melting temperature as a two-dimensional label for homogeneous multiplex PCR detection[J].Nucleic Acids Res,2013,41(7):e76.DOI:10.1093/nar/gkt004.
[60]LIAO Y,ZHOU Y,GUO Q,et al.Simultaneous detection,genotyping,and quantification of human papillomaviruses by multicolor real-time PCR and melting curve analysis[J].J Clin Microbiol,2013,51(2):429-435.DOI:10.1128/JCM.02115-12.
[61]HU S,LI G,LI H,et al.Rapid Detection of Isoniazid Resistance in Mycobacterium tuberculosis Isolates by Use of Real-Time-PCRBased Melting Curve Analysis[J].J Clin Microbiol,2014,52(5):1644-1652.DOI:10.1128/JCM.03395-13.
[62]ROH S S,SMITH L E,LEE J S,et al.Comparative Evaluation of Sloppy Molecular Beacon and Dual-Labeled Probe Melting Temperature Assays to Identify Mutations in Mycobacterium tuberculosis Resulting in Rifampin,F(xiàn)luoroquinolone and Aminoglycoside Resistance[J].PLoS One,2015,10(5):e0126257.DOI:10.1371/journal.pone.0126257.
[63]PHOLWAT S,STROUP S,F(xiàn)OONGLADDA S,et al.Digital PCR to Detect and Quantify Heteroresistance in Drug Resistant Mycobacterium tuberculosis[J].PLoS One,2013,8(2):e57238.DOI:10.1371/journal.pone.0057238.
[64]CHAKRAVORTY S,ALADEGBAMI B,BURDAY M,et al.Rapid universal identification of bacterial pathogens from clinical cultures by using a novel sloppy molecular beacon melting temperature signature technique[J].J Clin Microbiol,2010,48(1):258-267.DOI:10.1128/JCM.01725-09.
[65]RAFI W,CHANDRAMUKI A,MANI R,et al.Rapid diagnosis of acute bacterial meningitis: role of a broad range 16S rRNA polymerase chain reaction[J].J Emerg Med,2010,38(2):225-230.DOI:10.1016/j.jemermed.2008.02.053.
[66]SOMOSKOVI A,PARSONS L M,SALFINGER M.The molecular basis of resistance to isoniazid,rifampin,and pyrazinamide in Mycobacterium tuberculosis[J].Respir Res,2001,2(3):164-168.