袁帥,廖思聰,王大新
血管平滑肌細(xì)胞(vascular smooth muscle cells,VSMCs)是構(gòu)成血管壁組織結(jié)構(gòu)和維持血管張力的主要細(xì)胞之一,其結(jié)構(gòu)及功能改變是導(dǎo)致高血壓、動(dòng)脈粥樣硬化(arteriosclerosis,AS)及血管成形術(shù)后再狹窄等多種心血管疾病的細(xì)胞病理學(xué)基礎(chǔ)。既往研究結(jié)果顯示,VSMCs的起源、表型轉(zhuǎn)化、凋亡及鈣化等均與AS發(fā)生發(fā)展密切相關(guān),其中VSMCs表型轉(zhuǎn)化、凋亡、鈣化具有促炎作用[1]。因此,了解VSMCs在AS發(fā)生發(fā)展中的作用機(jī)制對AS治療可能具有重要意義。筆者通過復(fù)習(xí)相關(guān)文獻(xiàn),綜述了VSMCs起源、VSMCs表型轉(zhuǎn)化、平滑肌源性泡沫細(xì)胞、VSMCs凋亡及VSMCs鈣化與AS的關(guān)系。
VSMCs譜系追蹤研究表明,血管平滑肌起源于胚胎時(shí)期的多能前體細(xì)胞,包括主動(dòng)脈、主動(dòng)脈弓、肺動(dòng)脈干等,其中頭頸部血管平滑肌起源于神經(jīng)嵴細(xì)胞,冠狀動(dòng)脈血管平滑肌起源于心外膜,而降主動(dòng)脈血管平滑肌主要起源于表達(dá)Pax3和FoxC2的體節(jié)上皮細(xì)胞[2]。譜系不同的血管平滑肌表型具有很大共性,但其調(diào)控因素(如Myocardin相關(guān)轉(zhuǎn)錄因子B)及成熟細(xì)胞對疾病發(fā)生發(fā)展相關(guān)介導(dǎo)因子(如轉(zhuǎn)化生長因子β)的應(yīng)答存在差異[1-2]。耐受性可能與VSMCs胚胎起源有關(guān),但具體機(jī)制尚未明確[2]。目前,研究血管平滑肌胚胎起源的挑戰(zhàn)是如何通過轉(zhuǎn)錄翻譯學(xué)和表觀遺傳學(xué)機(jī)制鑒定不同血管區(qū)域血管平滑肌的特征[3]。
動(dòng)物實(shí)驗(yàn)表明,敲除載脂蛋白E基因(ApoE-/-)小鼠AS進(jìn)展期分為4個(gè)不同血管區(qū)域,包括冠狀動(dòng)脈、主動(dòng)脈分支、腹腔臟器動(dòng)脈及腹主動(dòng)脈終末端,4個(gè)不同血管區(qū)域發(fā)生AS的危險(xiǎn)因素并不完全相同,其中AS易損斑塊內(nèi)>80%的VSMCs起源不明,>30%的VSMCs起源細(xì)胞可表達(dá)多種巨噬細(xì)胞標(biāo)志物,如LGALS3/Mac2、、F4/80及CD[4]。68
目前研究發(fā)現(xiàn),人類冠狀動(dòng)脈進(jìn)展期約40%的泡沫細(xì)胞同時(shí)表達(dá)平滑肌細(xì)胞標(biāo)志物肌動(dòng)蛋白α2(ACTA2)和巨噬細(xì)胞標(biāo)志物CD68,但尚不能明確泡沫細(xì)胞主要表達(dá)ACTA2還是CD68,抑或兩者均不是[4]。既往研究表明,與血管壁起源的VSMCs相比,骨髓起源的VSMCs可能具有促AS形成作用[5]。
VSMCs在生理或病理?xiàng)l件下均會發(fā)生表型轉(zhuǎn)化,主要是向巨噬細(xì)胞分化,且經(jīng)表型轉(zhuǎn)化的VSMCs具有巨噬細(xì)胞標(biāo)志物及特性。有學(xué)者認(rèn)為,VSMCs表型轉(zhuǎn)化對AS形成具有重要意義,其中抑制VSMCs表型轉(zhuǎn)化對動(dòng)脈具有保護(hù)作用[6]。盡管目前有關(guān)VSMCs表型轉(zhuǎn)化的研究報(bào)道較多,但VSMCs表型轉(zhuǎn)化具體機(jī)制尚有待進(jìn)一步研究[7]。
正常情況下,動(dòng)脈中層的VSMCs可表達(dá)平滑肌細(xì)胞標(biāo)志物,如MYH11、平滑肌22α(SM22α)、ACTA2及平滑肌細(xì)胞分化特異性抗原(SMTN),但伴有粥樣硬化的動(dòng)脈中層VSMCs表達(dá)上述標(biāo)志物的能力下降[8]。心肌素/血清反應(yīng)因子調(diào)控模式是VSMCs表型轉(zhuǎn)化的重要組成部分,其能有效整合對VSMCs收縮基因具有激活和/或抑制作用的信號和輔助因子[9];另外,Kruppel樣因子4(Kruppel-like factor 4,KLF4)能沉默平滑肌細(xì)胞標(biāo)志物基因,進(jìn)而抑制Myocardin依賴的基因激活[1]。既往研究表明,血管平滑肌中KLF4缺失與VSMCs損傷后表型轉(zhuǎn)化短暫延遲有關(guān),但敲除KLF4基因后VSMCs數(shù)量并未發(fā)生改變,僅表現(xiàn)為平滑肌源性巨噬細(xì)胞樣細(xì)胞和間充質(zhì)干細(xì)胞樣細(xì)胞減少,提示KLF4可能參與VSMCs向巨噬細(xì)胞的表型轉(zhuǎn)化過程[6]。
ALLAHVERDIAN等[7]研究表明,在膽固醇培養(yǎng)基中培養(yǎng)的血管平滑肌通過KLF4激活多種促炎因子,抑制VSMCs標(biāo)志物表達(dá),激活巨噬細(xì)胞標(biāo)志物并誘導(dǎo)吞噬發(fā)生,提示AS斑塊內(nèi)脂質(zhì)累積可能導(dǎo)致VSMCs向巨噬細(xì)胞樣細(xì)胞表型轉(zhuǎn)化。與單核細(xì)胞、巨噬細(xì)胞和樹突狀細(xì)胞相比,平滑肌源性巨噬細(xì)胞樣細(xì)胞吞噬能力明顯減弱,而吞噬能力(如對凋亡細(xì)胞的吞噬能力)在AS進(jìn)展期明顯減弱,故VSMCs表型轉(zhuǎn)化可能參與AS進(jìn)展[8]。
SHE等[10]研究表明,細(xì)胞外基質(zhì)能抑制VSMCs表型轉(zhuǎn)化,而巨噬細(xì)胞或VSMCs釋放的基質(zhì)金屬蛋白酶(matrix metalloproteinase,MMPs)可導(dǎo)致細(xì)胞外基質(zhì)、膠原或彈力纖維解離,進(jìn)而促使VSMCs表型轉(zhuǎn)化并加速細(xì)胞增殖及遷移。ROHWEDDER等[11]研究表明,粘連蛋白沉積可促進(jìn)AS形成,但其也能促進(jìn)纖維帽形成,從而加強(qiáng)AS斑塊穩(wěn)定性。
泡沫細(xì)胞主要來源于巨噬細(xì)胞和VSMCs,其中來源于VSMCs的泡沫細(xì)胞稱為平滑肌源性泡沫細(xì)胞。人體AS早期和進(jìn)展期斑塊中普遍存在平滑肌源性泡沫細(xì)胞,故平滑肌源性泡沫細(xì)胞是AS形成的重要標(biāo)志之一。但動(dòng)物模型與人體存在差異,如伴有高膽固醇血癥的動(dòng)物AS斑塊中平滑肌源性泡沫細(xì)胞較少,但AS進(jìn)展期平滑肌源性泡沫細(xì)胞較多[12]。因此,明確AS發(fā)生時(shí)平滑肌源性泡沫細(xì)胞形成機(jī)制具有重要意義。
既往研究表明,動(dòng)脈內(nèi)膜VSMCs中三磷腺苷結(jié)合盒轉(zhuǎn)運(yùn)體 A1(ATP-binding cassette transporter A1,ABCA1)和載脂蛋白AⅠ(apolipoprotein AⅠ,ApoAⅠ)表達(dá)較高,ABCA1和ApoAⅠ可通過介導(dǎo)膽固醇從胞內(nèi)流出形成高密度脂蛋白(HDL)而在膽固醇逆轉(zhuǎn)運(yùn)過程中發(fā)揮重要作用[13],故AS形成早期由于脂質(zhì)攝取與流出失衡而導(dǎo)致VSMCs發(fā)生泡沫化。再者,糖尿病患者AS發(fā)生風(fēng)險(xiǎn)增加與血糖升高有關(guān),分析其原因可能與血糖異常導(dǎo)致血脂異常有關(guān)[10]。BROWN等[13]研究表明,平滑肌源性泡沫細(xì)胞一旦形成將產(chǎn)生一系列反應(yīng),如膽固醇不斷聚集會誘導(dǎo)VSMCs凋亡,促進(jìn)鄰近VSMCs向內(nèi)膜遷移,而VSMCs凋亡或死亡亦會加劇炎性反應(yīng),同時(shí)趨化因子C-C基元配體19(CCL19)可直接調(diào)控VSMCs表型轉(zhuǎn)化、生長及釋放MMPs,上述病理生理過程均能促使內(nèi)膜增厚及 AS 形成[2]。
細(xì)胞凋亡是一種程序性細(xì)胞死亡。AS早期細(xì)胞凋亡率較低,隨著病情發(fā)展AS壞死核心及纖維帽形成,導(dǎo)致細(xì)胞凋亡率逐漸升高,其中巨噬細(xì)胞和VSMCs是凋亡率最高的細(xì)胞。斑塊破裂主要發(fā)生于斑塊肩部,該區(qū)域具有VSMCs減少和巨噬細(xì)胞增多等特征,分析其原因可能是巨噬細(xì)胞通過死亡受體與死亡配體作用而誘導(dǎo)VSMCs凋亡,而該過程對斑塊破裂及心血管事件發(fā)生具有重要作用。此外,與穩(wěn)定型斑塊相比,不穩(wěn)定型斑塊中VSMCs凋亡率更高[14]。
既往研究表明,AS患者VSMCs凋亡與炎癥有關(guān),但血管衰老、基質(zhì)降解及血管重塑時(shí)炎性反應(yīng)明顯減弱,分析其原因可能與凋亡細(xì)胞清除過程中釋放細(xì)胞因子有關(guān)。細(xì)胞死亡時(shí)會釋放白介素1(IL-1),細(xì)胞凋亡和壞死時(shí)分別釋放白介素1β(IL-1β)、白介素1α(IL-1α),而繼細(xì)胞凋亡后發(fā)生壞死則同時(shí)釋放IL-1β和IL-1α。凋亡細(xì)胞一般在48 h內(nèi)會被清除,但發(fā)生高脂血癥時(shí)會延遲吞噬過程,因此VSMCs表型轉(zhuǎn)化后炎性反應(yīng)與細(xì)胞吞噬能力減弱有關(guān)。此外,與心血管疾病高度相關(guān)的基因組——人類9號染色體長臂2區(qū)1帶(9p21)與細(xì)胞周期蛋白依賴性激酶抑制劑2B和鈣網(wǎng)質(zhì)蛋白表達(dá)減少密切相關(guān),而后者是激活吞噬細(xì)胞上吞噬受體所必需的配體[15]。細(xì)胞周期蛋白依賴性激酶抑制劑2B缺陷的凋亡小體具有抗吞噬能力,不能被鄰近巨噬細(xì)胞有效吞噬。既往研究表明,細(xì)胞周期蛋白依賴性激酶抑制劑2B缺失引發(fā)的胞葬能力受損會增加脂質(zhì)負(fù)荷的壞死核心面積及復(fù)雜性,從而加劇 AS[16-19]。
此外,VSMCs凋亡誘導(dǎo)的炎性反應(yīng)還與細(xì)胞來源有關(guān),如血管壁來源的VSMCs凋亡具有促炎作用,而骨髓來源的VSMCs具有抗炎作用[20-22]。
AS形成過程通常存在血管鈣化,而血管鈣化可降低血管彈性及改變血流動(dòng)力學(xué);此外,磷酸鈣沉積導(dǎo)致血管壁彈性降低還可引發(fā)收縮期高血壓,進(jìn)而導(dǎo)致左心室肥厚、氧化應(yīng)激反應(yīng)增加、心臟舒張功能異常及瓣膜關(guān)閉不全等病理學(xué)改變[23]。AS血管中的VSMCs可表達(dá)大量生物礦化標(biāo)志物,如骨橋蛋白、骨形態(tài)發(fā)生蛋白2(bone morphogenetic protein-2,BMP-2)、骨連接蛋白、Ⅰ型膠原、骨鈣蛋白和S100A9,故認(rèn)為AS發(fā)生機(jī)制與骨質(zhì)生物礦化相似;另外,衰老的VSMCs在血管鈣化形成過程中具有重要作用[24-25]。
斑塊鈣化可分為微小型鈣化(斑點(diǎn))和巨大型鈣化(密集)兩種形式,其中微小型鈣化不穩(wěn)定、易破裂,故認(rèn)為其是AS的“犯罪”斑塊,分析其原因可能與內(nèi)膜病理學(xué)增厚有關(guān);此外,VSMCs凋亡還能促進(jìn)AS斑塊鈣化[26]。
VSMCs對AS具有多種效應(yīng),一方面,VSMCs可通過穩(wěn)固纖維帽而使AS斑塊穩(wěn)定;另一方面,VSMCs增殖或表型轉(zhuǎn)化又會促進(jìn)AS惡化[27-28]。目前,有關(guān)AS細(xì)胞學(xué)機(jī)制還需深入研究,以尋找AS新的治療靶點(diǎn)。
[1]SINHA S,IYER D,GRANATA A.Embryonic origins of human vascular smooth muscle cells:implications for in vitro modeling and clinical application[J].Cell Mol Life Sci,2014,71(12):2271-2288.DOI:10.1007/s00018-013-1554-3.
[2]PFALTZGRAFF E R,BADER D M.Heterogeneity in vascular smooth muscle cell embryonic origin in relation to adult structure,physiology,and disease[J].Dev Dyn,2015,244(3):410-416.DOI:10.1002/dvdy.24247.
[3]CHEUNG C,BERNARDO A S,TROTTER M W,et al.Generation of human vascular smooth muscle subtypes provides insight into embryological origin-dependent disease susceptibility[J].Nat Biotechnol,2012,30(2):165-173.DOI:10.1038/nbt.2107.
[4]YEUNG K K,BOGUNOVIC N,KEEKSTRA N,et al.Transdifferentiation of Human Dermal Fibroblasts to Smooth Muscle-Like Cells to Study the Effect of MYH11 and ACTA2 Mutations in Aortic Aneurysms[J].Hum Mutat,2017,38(4):439-450.DOI:10.1002/humu.23174.
[5]YU H,STONEMAN V,CLARKE M,et al.Bone marrow-derived smooth muscle-like cells are infrequent in advanced primary atherosclerotic plaques but promote atherosclerosis[J].Arterioscler Thromb Vasc Biol,2011,31(6):1291-1299.DOI:10.1161/ATVBAHA.110.218578.
[6]SHANKMAN L S,GOMEZ D,CHEREPANOVA O A,et al.KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis[J].Nat Med,2015,21(6):628-637.DOI:10.1038/nm.3866.
[7]ALLAHVERDIAN S,CHEHROUDI A C,MCMANUS B M,et al.Contribution of intimal smooth muscle cells to cholesterol accumulation and macrophage-like cells in human atherosclerosis[J].Circulation,2014,129(15):1551-1559.DOI:10.1161/CIRCULATIONAHA.113.005015.
[8]BENNETT M R,SINHA S,OWENS G K.Vascular Smooth Muscle Cells in Atherosclerosis[J].Circ Res,2016,118(4):692-702.
[9]ALEXANDER M R,OWENS G K.Epigenetic control of smooth muscle cell differentiation and phenotypic switching in vascular development and disease[J].Annu Rev Physiol,2012,74:13-40.DOI:10.1146/annurev-physiol-012110-142315.
[10]SHE Z G,CHANG Y,PANG H B,et al.NG2 Proteoglycan Ablation Reduces Foam Cell Formation and Atherogenesis via Decreased Low-Density Lipoprotein Retention by Synthetic Smooth Muscle Cells[J].Arterioscler Thromb Vasc Biol,2016,36(1):49-59.DOI:10.1161/ATVBAHA.115.306074.
[11]ROHWEDDER I,MONTANEZ E,BECKMANN K,et al.Plasma fibronectin deficiency impedes atherosclerosis progression and fibrous cap formation[J].EMBO Mol Med,2012,4(7):564-576.DOI:10.1002/emmm.201200237.
[12]ZAMANIAN-DARYOUSH M,LINDNER D J,DIDONATO J A,et al.Myeloid-specific genetic ablation of ATP-binding cassette transporter ABCA1 is protective against cancer[J].Oncotarget,2017,8(42):71965-71980.
[13]BROWN B A,WILLIAMS H,GEORGE S J.Evidence for the Involvement of Matrix-Degrading Metalloproteinases (MMPs) in Atherosclerosis[J].Prog Mol Biol Transl Sci,2017,147:197-237.DOI:10.1016/bs.pmbts.2017.01.004.
[14]GONZALEZ L,TRIGATTI B L.Macrophage Apoptosis and Necrotic Core Development in Atherosclerosis:A Rapidly Advancing Field with Clinical Relevance to Imaging and Therapy[J].Can J Cardiol,2017,33(3):303-312.DOI:10.1016/j.cjca.2016.12.010.
[15]KOJIMA Y,DOWNING K,KUNDU R,et al.Cyclin-dependent kinase inhibitor 2B regulates efferocytosis and atherosclerosis[J].J Clin Invest,2014,124(3):1083-1097.DOI:10.1172/JCI70391.
[16]ABU-AMERO K K,KONDKAR A A,MOUSA A,et al.Analysis of Cyclin-Dependent Kinase Inhibitor-2B rs1063192 Polymorphism in Saudi Patients with Primary Open-Angle Glaucoma[J].Genet Test Mol Biomarkers,2016,20(10):637-641.
[17]GAO P,SI J,YANG B,et al.Upregulation of MicroRNA-15a Contributes to Pathogenesis of Abdominal Aortic Aneurysm (AAA)by Modulating the Expression of Cyclin-Dependent Kinase Inhibitor 2B (CDKN2B)[J].Med Sci Monit,2017,23:881-888.DOI:10.12659/MSM.898233.
[18]YU J H,ZHU B M,WICKRE M,et al.The transcription factors signal transducer and activator of transcription 5A(STAT5A)and STAT5B negatively regulate cell proliferation through the activation of cyclin-dependent kinase inhibitor 2b(Cdkn2b)and Cdkn1a expression[J].Hepatology,2010,52(5):1808-1818.DOI:10.1002/hep.23882.
[19]KOJIMA Y,DOWNING K,KUNDU R,et al.Cyclin-dependent kinase inhibitor 2B regulates efferocytosis and atherosclerosis[J].J Clin Invest,2014,124(3):1083-1097.DOI:10.1172/JCI70391.
[20]WANG J,URYGA A K,REINHOLD J,et al.Vascular Smooth Muscle Cell Senescence Promotes Atherosclerosis and Features of Plaque Vulnerability[J].Circulation,2015,132(20):1909-1919.DOI: 10.1161/CIRCULATIONAHA.115.016457.
[21]NAKANO-KURIMOTO R,IKEDA K,URAOKA M,et al.Replicative senescence of vascular smooth muscle cells enhances the calcification through initiating the osteoblastic transition[J].Am J Physiol Heart Circ Physiol,2009,297(5):H1673-1684.DOI:10.1152/ajpheart.00455.2009.
[22]BOBRYSHEV Y V,OREKHOV A N,SOBENIN I,et al.Role of bone-type tissue-nonspecific alkaline phosphatase and PHOSPO1 in vascular calcification[J].Curr Pharm Des,2014,20(37):5821-5828.
[23]SUN Y,BYON C H,YUAN K,et al.Smooth muscle cellspecific runx2 deficiency inhibits vascular calcification[J].Circ Res,2012,111(5):543-552.DOI:10.1161/CIRCRESAHA.112.267237.
[24]WOLDT E,TERRAND J,MLIH M,et al.The nuclear hormone receptor PPARgamma counteracts vascular calcification by inhibiting Wnt5a signalling in vascular smooth muscle cells[J].Nat Commun,2012,3:1077.DOI:10.1038/ncomms2087.
[25]SASAKI T,NAKAMURA K,SASADA K,et al.Matrix metalloproteinase-2 deficiency impairs aortic atherosclerotic calcification in ApoE-deficient mice[J].Atherosclerosis,2013,227(1):43-50.DOI:10.1016/j.atherosclerosis.2012.12.008.
[26]LIBBY P,BORNFELDT K E,TALL A R.Atherosclerosis:Successes,Surprises,and Future Challenges[J].Circ Res,2016,118(4):531-534.DOI:10.1161/CIRCRESAHA.116.308334.
[27]PFALTZGRAFF E R,BADER D M.Heterogeneity in vascular smooth muscle cell embryonic origin in relation to adult structure,physiology,and disease[J].Dev Dyn,2015,244(3):410-416.DOI:10.1002/dvdy.24247.
[28]PFALTZGRAFF E R,SHELTON E L,GALINDO C L,et al.Embryonic domains of the aorta derived from diverse origins exhibit distinct properties that converge into a common phenotype in the adult[J].J Mol Cell Cardiol,2014,69:88-96.DOI:10.1016/j.yjmcc.2014.01.016.