賀云龍,齊玉春,彭 琴,董云社*,閆鐘清,李兆林
外源碳氮添加對草地碳循環(huán)關(guān)鍵過程的影響
賀云龍1,2,齊玉春1,彭 琴1,董云社1*,閆鐘清1,2,李兆林1,2
(1.中國科學(xué)院地理科學(xué)與資源研究所,中國科學(xué)院陸地表層格局與模擬重點實驗室,北京 100101;2.中國科學(xué)院大學(xué),北京 100049)
人類活動引起的大量的活性氮從大氣沉降到生物圈.當(dāng)前氮沉降對草地生態(tài)系統(tǒng)碳循環(huán)過程的影響機制仍然存在較大的不確定性.本文綜述草地生態(tài)系統(tǒng)碳循環(huán)過程(植物光合作用、地上生物量、地下生物量、土壤呼吸、凋落物分解和土壤有機碳含量)對添加不同的氮源水平和不同施氮年限的響應(yīng),并分析這些過程變化的可能原因,同時,也闡述草地碳循環(huán)關(guān)鍵過程對外源碳輸入的響應(yīng),并進一步分析了外源碳和氮輸入對草地碳循環(huán)關(guān)鍵過程影響的微生物學(xué)作用機制.通過上述總結(jié)旨在強調(diào)說明碳源可利用性變化作為氮沉降背景下草地生態(tài)系統(tǒng)碳循環(huán)關(guān)鍵過程重要調(diào)控因素之一,開展相關(guān)研究對科學(xué)的管理我國草地資源配置和增加土壤碳匯方面理論的重要意義.
氮沉降;外源碳;碳循環(huán);微生物;碳匯
從1860年到1995年,礦物燃料大量的應(yīng)用和農(nóng)業(yè)化肥過量的施用等人類活動向大氣中排放的氮氧化物和氨從34Tg N/a迅速增加到了100Tg N/a,并且這部分活性氮素70%以上又以干濕沉降的方式隨后回降到陸地生態(tài)系統(tǒng)[1].到2050年,全球人類活動向大氣中排放的氮氧化物和氨預(yù)計將達到200Tg N/a[1].在一些氮限制的陸地生態(tài)系統(tǒng)中,有研究報道,施氮可以增加植物地上[2-3]和地下[4-5]凈初級生產(chǎn)力,進而可能會擴大生態(tài)系統(tǒng)碳的輸入[4,6].但也有研究發(fā)現(xiàn),隨著施氮量增加或者施氮年限的增加,雖然施氮提高了土壤氮的可利用性,但也會導(dǎo)致植物向根系運輸光合產(chǎn)物減少[7-8]、植物細根生物量[4]和根系分泌物的降低[8],這些因素可能會減少地下部分碳源輸入,也可能會抵消植物地上部分的碳固定[9-10].另外,大部分氮沉降模擬試驗研究還發(fā)現(xiàn),施氮肥對土壤呼吸影響效應(yīng)也不一致,包括積極效應(yīng)、消極效應(yīng)或者無影響[8,11-13].所以,氮沉降對陸地生態(tài)系統(tǒng)碳循環(huán)過程影響仍然充滿著極大的不確定性,這必然影響著對陸地生態(tài)系統(tǒng)碳源與匯的準(zhǔn)確評估.
以往部分研究發(fā)現(xiàn),土壤呼吸對不同梯度的施氮水平[11,14-15]或者不同的施氮年限[13,16]響應(yīng)的不同與土壤中可利用碳源含量多少有關(guān)[8,11-13].即當(dāng)土壤可利用碳含量相對豐富時,土壤呼吸對施氮表現(xiàn)為積極響應(yīng),但是當(dāng)土壤可利用碳含量相對匱乏時,土壤呼吸對施氮表現(xiàn)為消極或者無響應(yīng)[17-18].那么,土壤碳源可利用性變化是否調(diào)控著土壤呼吸對氮的響應(yīng)呢.在農(nóng)田生態(tài)系統(tǒng)中,有些研究已發(fā)現(xiàn),相比僅施氮肥的處理,秸稈或有機肥的添加促進施氮處理土壤呼吸明顯的增加[19-23].另外,在農(nóng)田生態(tài)系統(tǒng)中還有研究發(fā)現(xiàn),秸稈和有機肥等碳源輸入促進施氮肥小區(qū)作物生長[24-25]和土壤有機碳含量增加[25-26].同農(nóng)田生態(tài)系統(tǒng)相比,探討碳源可利用性變化對模擬施氮作用下草地生態(tài)系統(tǒng)土壤呼吸等碳循環(huán)過程的影響研究報道幾乎為零.
隨著改革開放以來工業(yè)和經(jīng)濟的快速發(fā)展,我國逐漸成為僅次于歐美的第三大氮沉降區(qū)[27].草地作為我國最大陸地生態(tài)系統(tǒng),約占我國陸地面積的40%[28].草地生態(tài)系統(tǒng)一直處于氮素缺乏狀態(tài),同時,由于遭受著惡劣氣候環(huán)境和過渡放牧和刈割等人類活動的干擾,導(dǎo)致草地資源相對匱乏[10-12,28].基于此,有必要開展碳源可利用性變化對我國草地生態(tài)系統(tǒng)碳循環(huán)過程影響的研究,這也將對完善氮沉降作用下我國草地生態(tài)系統(tǒng)碳循環(huán)過程響應(yīng)機制有著十分重要的作用.
光合作用是植物通過固定大氣CO2為其生長提供物質(zhì)和能量的重要過程,也是生態(tài)系統(tǒng)碳輸入最重要的過程[9].植物光合作用速率一般常以植物葉片中葉綠素含量、葉面積指數(shù)和葉片中氮素含量等重要指標(biāo)代表[29-30].
外源施氮會促進植物的光合作用,但是過量氮輸入也會抑制光合作用.氮元素是植物生長必需的生命元素[3,9].外源施氮會促進植物葉綠素含量、葉面積指數(shù)和葉氮含量的增加,進而增強植物的光合作用速率[29-30].但是隨著施氮量的增加,施氮對光合作用的效應(yīng)表現(xiàn)為降低或無影響[31-32].例如:肖勝生等[30]對內(nèi)蒙古羊草草原的氮沉降模擬試驗研究發(fā)現(xiàn),中氮處理凈光合速率高于高氮處理,而且葉綠素含量、葉面積指數(shù)和葉氮含量也有著相似變化.他們認(rèn)為主要歸因于植物具有自遮蔽效應(yīng)和對氮環(huán)境適應(yīng)能力高低的不同[30,33].
在農(nóng)業(yè)生態(tài)系統(tǒng)中,秸稈還田和施有機肥等[34-35]外源碳輸入對光合作用具有積極作用.例如,白偉等[36]研究了秸稈配施氮肥對玉米的光合性能的影響發(fā)現(xiàn),相同施氮條件下,秸稈還田處理相比未添加秸稈處理玉米光合速率增加4.8%.秸稈和有機肥輸入不僅會改善土壤結(jié)構(gòu)[37],而且還會增加微生物活性,加快有機質(zhì)分解,促進植物根系對氮等營養(yǎng)元素的吸收[38],間接地促進植物光合作用.那么未來隨著氮沉降速率增加,是否可以通過外源碳輸入進一步擴大植物光合作用速率,相關(guān)方面有待進一步研究.
外源氮輸入對植物地上生物量增加具有積極的效應(yīng).從已有大量研究中可以發(fā)現(xiàn),氮肥的添加對草地植物地上生物量的增加具有顯著的促進作用[2-3,6,39].主要歸因于施氮肥緩解了草地生態(tài)系統(tǒng)植物對氮素需求的限制,增加植物葉片中氮的含量,進而增強了植物光合作用.植物地上生物量作為草地生態(tài)系統(tǒng)主要碳庫之一[5],所以施氮可能會擴大草地生態(tài)系統(tǒng)碳匯.
不同碳源對植物地上生物量促進程度有所不同.Ryals等[40]對已有3年施綠肥的草地研究發(fā)現(xiàn),施綠肥增加了植物地上生物量.但也有研究發(fā)現(xiàn),添加凋落物處理地上生物量較未添加凋落物處理地上生物量沒有顯著變化[41].該研究認(rèn)為可能與添加的凋落物質(zhì)量較低有關(guān). T?r?k等[42]對匈牙利沙化草地研究還發(fā)現(xiàn),添加外源碳(植物瑣屑和葡萄糖)由于增加了土壤氮的固定,導(dǎo)致地表植被覆蓋減少.因此,在草地生態(tài)系統(tǒng)中,如何選擇合適碳源的添加,可能在未來氮沉降背景下是必須要面對的主要問題之一.
隨著施氮量的增加,根系生物量可能會逐漸由起初積極響應(yīng)轉(zhuǎn)向無響應(yīng)或消極響應(yīng). Zhang等[14]對中國蘭州區(qū)域半干旱草地研究表明,相比對照處理,施氮處理促進了根系生物量增加,低氮處理[2.3gN/(m2×a)]對根系生物量影響未達顯著性水平,而高氮處理[9.2gN/(m2×a)]根系生物量則顯著增加.然而Zhang等[29]對內(nèi)蒙半干旱區(qū)羊草草原研究則發(fā)現(xiàn),施氮水平為17.5gN/(m2×a)時,植物的根系生物量顯著降低.Harpole等[2]對美國半干旱草原的研究也發(fā)現(xiàn),相比對照處理,施氮[10gN/(m2×a)]處理草地地下生物量不具有顯著的變化.一般認(rèn)為,主要歸因于施氮提高了土壤氮素可利用性,可能導(dǎo)致植物消耗更少的能量從土壤中獲得更多的氮素,進而減少光合產(chǎn)物向根系的分配和細根的生長[4,43].根據(jù)Nguyen等[44]報道,年平均凈光合固定的碳化合產(chǎn)物向地下轉(zhuǎn)移的量相當(dāng)于植物地上部分向土壤輸入量的50%左右.因此,過量的氮施入所導(dǎo)致光合產(chǎn)物向地下分配的減少可能會抵消地上植物碳固定的增加[9-10].
外源碳輸入對地下生物量的增加具有積極作用.Ryals等[40]對山谷草地和濱海草地兩種類型草地研究發(fā)現(xiàn),施綠肥顯著提高了根系生物量,尤其是0~10cm層根系.這與慕平等[37]在農(nóng)田生態(tài)系統(tǒng)中研究結(jié)果一致.白偉等[45]對施氮肥的玉米農(nóng)田生態(tài)系統(tǒng)還發(fā)現(xiàn),秸稈還田處理玉米根干質(zhì)量、根體積、根數(shù)等根系形態(tài)指標(biāo)均優(yōu)于秸稈不還田處理.相比農(nóng)田生態(tài)系統(tǒng),我國草地生態(tài)系統(tǒng)相關(guān)方面研究亟待開展.
外源氮添加對土壤呼吸影響效應(yīng)是不一致的.隨著施氮水平增加[11,14-15]或者施氮年限[13,16]的增加,土壤呼吸由最初的積極的響應(yīng)變?yōu)橄麡O的或者無響應(yīng).一般認(rèn)為,土壤碳可利用性變化是導(dǎo)致土壤呼吸對施氮水平不同響應(yīng)重要因素之一.因為如下幾個方面可能會加劇土壤碳限制:(1)在施氮初期或者低氮水平下,氮素添加會促進植物的生長,增加光合作用產(chǎn)物向地下的配置和植物根系生物量[5,14,46];隨著施氮量增加,植物會減少光合產(chǎn)物向根系的分配和細根的生長[4,43];(2)過量施氮抑制多酚氧化酶活性,降低不易利用的土壤有機質(zhì)分解[16,39,47];(3)土壤中過量的活性氮施入還會通過土壤物理和化學(xué)方式與土壤團聚體或有機碳進行結(jié)合,進而造成土壤碳可利用性降低[39,47].
外源碳添加對土壤呼吸有著積極的影響.當(dāng)向土壤中添加碳源時,土壤CO2排放呈現(xiàn)迅速的增加[40-41,48-50].這一現(xiàn)象反映了土壤處于碳限制.在農(nóng)田和森林生態(tài)系統(tǒng)室內(nèi)模擬實驗中, Eberwein等[17]通過利用外源碳添加的方式已經(jīng)發(fā)現(xiàn),土壤碳可利用性調(diào)控著土壤呼吸對氮肥響應(yīng).因為當(dāng)葡萄糖和氮肥共同添加時,土壤呼吸表現(xiàn)為積極的響應(yīng),而僅有氮肥添加時,土壤呼吸呈降低或無明顯變化.到目前,外源碳對氮沉降作用下草地生態(tài)系統(tǒng)土壤呼吸影響的相關(guān)報道幾乎未見報道.另外由于添加碳源質(zhì)量的不同,引起土壤CO2激發(fā)效應(yīng)的幅度也會有所差異.根據(jù)已有研究發(fā)現(xiàn),土壤呼吸對不同碳源響應(yīng)最明顯的為低分子有機碳(葡萄糖和纖維素),其次是植物凋落物或殘落物和糞肥[19,49,51].因此,未來開展草地碳源添加試驗時,也要注意碳源類型的選擇.
外源氮輸入對凋落物不同的分解階段影響效應(yīng)不同.纖維素和木質(zhì)素作為組成凋落物主要成分[52].在凋落物剛分解初期,施氮會促進纖維素快速分解;到了凋落物分解后期,木質(zhì)素占有比例的增加,并且木質(zhì)素和酚類物質(zhì)會在氮素作用下發(fā)生聚合反應(yīng),加之,過量氮素輸入也會對木質(zhì)素分解酶產(chǎn)生抑制作用,這一系列因素將降低凋落物后期的分解速率[53-55].另外,外源氮輸入也會增加植物組織中氮素含量,影響其C/N比值和化學(xué)組成,進而可能會降低凋落物的分解速率[56].凋落物作為植物地上碳庫重要組成部分[54,57],其質(zhì)量降低一定程度上有利于草地生態(tài)系統(tǒng)碳儲存[56].
凋落物分解對不同質(zhì)量的外源碳具有不同的響應(yīng).目前以森林生態(tài)系統(tǒng)相關(guān)方面的研究較多.當(dāng)輸入外源碳的質(zhì)量較高時,表現(xiàn)為促進凋落物分解速率的增加,主要歸因于高質(zhì)量碳源的輸入增加了微生物的活性[58-59].當(dāng)輸入外源碳的質(zhì)量較低時,凋落物分解速率則表現(xiàn)為相反的結(jié)果.例如,Fang等[57]研究發(fā)現(xiàn),添加高C/N比值凋落物處理比添加低C/N比值凋落物處理具有更低的凋落物的損失量.因此,當(dāng)選擇外源碳的類型時,必須要考慮其對凋落物分解的影響.
土壤有機碳含量變化對施氮響應(yīng)仍存在不確定性.在先前有關(guān)草地研究中,施氮對土壤有機碳含量影響表現(xiàn)為增加[60],減少[61]或無影響[39].也有研究認(rèn)為,氮肥輸入水平在草地氮載荷的范圍內(nèi)時,任何施氮水平均有利于土壤有機碳含量增加[61].土壤有機碳對施氮的響應(yīng)差異一般歸因于土壤C/N比值的變化[39].但也有研究認(rèn)為,施氮增加土壤有機碳也可能歸因于土壤有機碳質(zhì)量的降低[47,60].因為過量氮素添加會促進土壤團聚體膠結(jié)或通過復(fù)合作用形成更大團聚體將有機碳包裹在內(nèi)部;其次,土壤累積的氮化合物與簡單的碳水化合物作用形成高分子難分解的化合物[47];同時,上述因素和添加過量的氮素又會降低土壤微生物量[47,62],進而減少分解有機質(zhì)酶(多酚氧化酶)的分泌[63].
土壤有機碳含量對外源碳的響應(yīng)因其質(zhì)量差異而不同.有研究發(fā)現(xiàn),向草地生態(tài)系統(tǒng)添加纖維素后,增加了土壤有機碳含量的損失[64].但也有研究發(fā)現(xiàn),綠肥的添加促進土壤有機碳含量的增加[65].當(dāng)葡萄糖、纖維素等高質(zhì)量碳源輸入時,增加微生物活性,會促進土壤中有機碳分解[66-68].添加高質(zhì)量碳源是否會對土壤有機碳含量產(chǎn)生影響,目前有兩種解釋機制.一種是外源碳源添加僅僅增加了微生物內(nèi)部的碳周轉(zhuǎn)速率,不會影響土壤有機碳含量;一種是外源碳源輸入提高了微生物和酶活性,促進了土壤有機碳的礦化分解,增加了土壤有機碳的損失[69].與其生態(tài)系統(tǒng)相比,草地生態(tài)系統(tǒng)的碳大部分主要儲存在土壤中,因此,外源碳類型的選擇對草地土壤碳庫的影響是不容忽視的.
土壤微生物是生態(tài)系統(tǒng)碳循環(huán)過程的驅(qū)動者,所以土壤微生物生物量及其組分以及土壤酶活性常被視為土壤碳循環(huán)過程對外環(huán)境變化的最敏感指標(biāo)[47,70].因此,這些微生物指標(biāo)對外源碳和氮輸入響應(yīng)必然是極為敏感.
土壤微生物量對不同施氮水平以及不同施氮年限有著不同的響應(yīng).根據(jù)已有的草地生態(tài)系統(tǒng)氮沉降模擬試驗的研究結(jié)果發(fā)現(xiàn)(如表1),隨著施氮量的增加,土壤微生物生物量呈先增加后降低的變化趨勢.特別是在較長的施肥年限的試驗中研究發(fā)現(xiàn),施氮年限的增加會導(dǎo)致微生物生物量的降低.可能歸因于如下原因:(1)土壤氮源可利用性提高降低了植物光合產(chǎn)物向根系的分配;(2)土壤中活性氮素的累積會導(dǎo)致微生物對碳源需求的增加或者碳的限制;(3)土壤酸化以及過量積累的氮素引起的毒害作用也會抑制微生物生長和活性.Jian等[63]和Treseder等[47]通過薈萃分析研究的結(jié)果表明,施氮會導(dǎo)致土壤微生物量降低.次外,由于土壤類型的不同和土壤物理和化學(xué)性質(zhì)的差異,導(dǎo)致土壤微生物量對外源氮素輸入速率具有不同的承載臨界值[15,71-72],也會影響微生物量對施氮的響應(yīng)差異.
不同質(zhì)量的外源碳對微生物生物量影響是有差異的.外源碳源輸入會改變土壤碳源質(zhì)量,促進土壤微生物生物量的增加[19,42,73-74].與復(fù)雜有機碳源(植物殘落物等)相比,短時間內(nèi)添加簡單的低分子有機碳源對促進土壤微生物生物量的增加更為明顯[50,75].但Jiang等[19]對美國兩個州的草地研究發(fā)現(xiàn),在科羅拉多州,添加生物碳處理和添加蔗糖處理之間土壤微生物生物量沒有顯著的差異,但在俄克拉荷馬州,添加生物碳處理土壤微生物生物量高于添加蔗糖處理.這也說明了土壤類型以及土壤有機碳質(zhì)量影響著外源碳源對土壤微生物生物量的作用效應(yīng).
微生物群落組分對不同的氮肥種類和施氮年限的響應(yīng)也會有所差異.不同研究區(qū)域的施氮水平如表2所示.Sun等[79]對中國溫帶草原的研究發(fā)現(xiàn),在持續(xù)施氮的第三年,與對照相比,中等施氮水平下細菌生物量、革蘭氏陰性細菌生物量和革蘭氏陽性細菌生物量、細菌和真菌比值和革蘭氏陽性細菌與革蘭氏陰性細菌的比值均顯著的降低,而其它施氮水平這些微生物群落與對照沒有顯著的不同.Farrer等[78]研究了美國科羅拉多州草地微生物群落變化的結(jié)果表明,過量氮素的添加會改變微生物群落結(jié)構(gòu),并且降低真菌和細菌生物量以及真菌和細菌的比例.還有研究發(fā)現(xiàn),雖然施氮處理對土壤微生物量的影響不顯著,但施氮處理顯著的降低了真菌和細菌生物量的比值以及革蘭氏陰性細菌的生物量[80]. Zeng等[81]研究草地生態(tài)系統(tǒng)微生物群落對不同的氮素水平的響應(yīng)則表明,當(dāng)施氮量大于120gN/(m2×a)時,會改變細菌的微生物群落組成,并且降低細菌種類的豐富度.Carey等[82]對美國加利福尼亞州的草地研究也支持了這一觀點.然而Hamer等[83]對荒廢的草地和施氮肥草地研究表明,在室內(nèi)培養(yǎng)條件下,與對照相比,添加尿素處理真菌PLFAs和革蘭氏陰性細菌PLFAs相對豐度顯著增加,而革蘭氏陽性細菌PLFAs相對豐度顯著降低.
表1 不同施氮水平和施氮年限下草地土壤微生物量變化趨勢匯總
表2 不同施氮水平和氮肥種類下有關(guān)草地土壤微生物群落結(jié)構(gòu)變化的文獻匯總
外源碳輸入對不同的微生物群落的影響也有所不同.有研究表明,外源碳的添加只會影響特殊的微生物群落變化[84].因為微生物群落組分對添加碳源可利用性的高低有著不同的響應(yīng)[51].有研究發(fā)現(xiàn),添加糞肥促進了草地土壤中細菌生長,而降低或抑制真菌生長[74].但也有研究發(fā)現(xiàn),真菌對葡萄糖的利用能力強于細菌[85].Reischke等[86]研究真菌和細菌對不同葡萄糖水平的響應(yīng)發(fā)現(xiàn),葡萄糖添加量4mg/g是影響真菌和細菌生長速率變化的閥值,當(dāng)添加葡萄糖量超過這一數(shù)值時,真菌生長速率明顯高于細菌生長速率.
大部分的土壤酶產(chǎn)生于微生物從土壤有機質(zhì)和凋落物中獲取養(yǎng)分的過程[87],所以土壤酶活性變化直接的代表了微生物對養(yǎng)分需求的信號[88].例如:β-葡萄糖苷酶和β-N-乙酰氨基葡萄糖苷酶分別代表碳獲得酶和氮獲得酶[63].本文主要從與碳循環(huán)過程變化和微生物能量獲得的角度,總結(jié)了以水解酶(β-葡萄糖苷酶和β-N-乙酰氨基葡萄糖苷酶)和氧化還原酶(多酚氧化酶)為主要代表的土壤酶對外源碳和氮添加的響應(yīng).
不同土壤酶活性對外源氮輸入有著不同的響應(yīng).Alster等[72]模擬了氮沉降對加利福尼亞南部草地土壤酶活性的影響表明,在施氮量為20kg/ha和40kg/ha條件下,β-1-4-N乙酰葡糖胺糖甘酶和多酚氧化酶活性顯著增加,尤其是多酚氧化酶活性提高了52%,而β-葡萄糖苷酶活性沒有顯著變化.Jian等[63]對已發(fā)表的模擬氮沉降對土壤酶活性影響的研究結(jié)果綜合分析發(fā)現(xiàn),草地生態(tài)系統(tǒng)β-葡萄糖苷酶和β-N-乙酰氨基葡萄糖苷酶比例對氮肥具有消極的響應(yīng),并且施氮會導(dǎo)致多酚氧化酶活性顯著的降低.β-葡萄糖苷酶活性與土壤中易于利用碳源含量具有顯著的積極線性關(guān)系[89],所以,β-葡萄糖苷酶活性降低反映了土壤微生物易于利用的碳源含量的降低,進而預(yù)示了微生物可能存在著碳源需求的限制.
外源碳輸入增加了土壤酶活性.有研究發(fā)現(xiàn),與未添加凋落物處理相比,添加凋落物的處理β-葡萄糖苷酶和β-N-乙酰氨基葡萄糖苷酶活性顯著的增加[41].Gavrichkova等[90]研究地中海氣候區(qū)的草原也發(fā)現(xiàn),添加植物落葉處理相比除去植物落葉處理β-葡萄糖苷酶和β-N-乙酰氨基葡萄糖苷酶活性顯著的增加.說明了外源碳添加促進了微生物分泌更多酶以分解有機物質(zhì),進而獲得更多養(yǎng)分.當(dāng)前,有關(guān)外源碳添加對多酚氧化酶活性影響的研究較少,今后有必要在草地生態(tài)系統(tǒng)開展相關(guān)指標(biāo)的研究.
我國為世界的第三大氮沉降區(qū),氮沉降的持續(xù)增加必然影響著草地生態(tài)系統(tǒng)碳循環(huán)過程.碳源可利用性是影響土壤呼吸等碳循環(huán)關(guān)鍵過程對氮沉降響應(yīng)的重要因素之一,雖然該理論假設(shè)在以往的部分研究結(jié)果中獲得了支持,但目前碳源可利用性變化是否調(diào)控土壤呼吸等碳循環(huán)關(guān)鍵過程對氮沉降響應(yīng),該理論相關(guān)研究在我國草地生態(tài)系統(tǒng)報道幾乎為零.同農(nóng)田和森林生態(tài)系統(tǒng)相比,考慮到草地生態(tài)系統(tǒng)的特殊性,通過上述有關(guān)外源碳和氮輸入對草地生態(tài)系統(tǒng)碳循環(huán)過程影響的總結(jié),作者認(rèn)為:(1)外源碳源類型選擇最好因地制宜,可以從凋落物或者當(dāng)?shù)刂饕曫B(yǎng)牲畜的糞肥等碳源中進行選擇;(2)應(yīng)開展不同的外源碳源施入水平對施氮肥草地碳循環(huán)關(guān)鍵過程的影響研究,以選擇合適碳氮配施比,進而擴大草地碳增匯;(3)同時,也要深入研究不同的外源碳源質(zhì)量對草地生態(tài)系統(tǒng)碳循環(huán)過程調(diào)控效應(yīng).
[1] Galloway J N, Townsend A R, Erisman J W, et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions [J]. Science, 2008,320:889-892.
[2] Harpole W S, Potts D L, Suding K N. Ecosystem responses to water and nitrogen amendment in a California grassland [J]. Global Change Biology, 2007,13(11):2341-2348.
[3] LeBauer D S, Treseder K K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed [J]. Ecology, 2008,89(2):371-379.
[4] Li W B, Jin C J, Guan D X, et al. The effects of simulated nitrogen deposition on plant root traits: a meta-analysis [J]. Soil Biology and Biochemistry, 2015,82:112-118.
[5] Xu W H, Wan S Q. Water- and plant-mediated responses of soil respiration to topography, fire, and nitrogen fertilization in a semiarid grassland in northern China [J]. Soil Biology and Biochemistry, 2008,40:679-687.
[6] Yue K, Peng Y, Peng C H, et al. Stimulation of terrestrial ecosystem carbon storage by nitrogen addition: a meta-analysis [J]. Scientific Reports, 2016,6:19895-19904.
[7] Treseder K K. Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies [J]. Ecology Letters, 2008, 11(10):1111-1120.
[8] Phillips R P, Fahey T J. Fertilization effects on fineroot biomass, rhizosphere microbes and respiratory fluxes in hardwood forest soils [J]. New Phytologist, 2007,176(3):655-664.
[9] 平曉燕,周廣勝,孫敬松.植物光合產(chǎn)物分配及其影響因子研究進展[J]. 植物生態(tài)學(xué)報, 2010,34(1):100-111.
[10] Luo Q P, Gong J R, Yang L L, et al. Impacts of nitrogen addition on the carbon balance in a temperate semiarid grassland ecosystem [J]. Biology and Fertility of Soils, 2017,53:911-927.
[11] Peng Q, Dong Y S, Qi Y C, et al. Effects of nitrogen fertilization on soil respiration in temperate grassland in Inner Mongolia, China [J]. Environmental Earth Sciences, 2011,62(6):1163-1171.
[12] Qi Y C, Liu X C, Dong Y S, et al. Differential responses of short-term soil respiration dynamics to the experimental addition of nitrogen and water in the temperate semi-arid steppe of Inner Mongolia, China [J]. Journal of Environmental Sciences-China, 2014,26(4):834-845.
[13] Janssens I A, Dieleman W, Luyssaert S, et al. Reduction of forest soil respiration in response to nitrogen deposition [J]. Nature Geoscience, 2010,3(5):315-322.
[14] Zhang C P, Niu D C, Hall S J, et al. Effects of simulated nitrogen deposition on soil respiration components and their temperature sensitivities in a semiarid grassland [J]. Soil Biology and Biochemistry, 2014,75:113-123.
[15] Li Y, Liu Y H, Wu S M, et al. Microbial properties explain temporal variation in soil respiration in a grassland subjected to nitrogen addition [J]. Scientific Reports, 2015,5:18496-18506.
[16] Yan L M, Chen S P, Huang J H, et al. Differential responses of auto- and heterotrophic soil respiration to water and nitrogen addition in a semiarid temperate steppe [J]. Global Change Biology, 2010,16(8):2345-2357.
[17] Eberwein J R, Oikawa P Y, Allsman L A, et al. Carbon availability regulates soil respiration response to nitrogen and temperature [J]. Soil Biology and Biochemistry, 2015,88:158-164.
[18] Liang L L, Grantz D A, Jenerette G D. Multivariate regulation of soil CO2and N2O pulse emissions from agricultural soils [J]. Global change biology, 2016,22(3):1286-1298.
[19] Jiang X Y, Haddix M L, Cotrufo M F. Interactions between biochar and soil organic carbon decomposition: effects of nitrogen and low molecular weight carbon compound addition [J]. Soil Biology and Biochemistry, 2016,100:92-101.
[20] Liu C, Lu M, Cui J, et al. Effects of straw carbon input on carbon dynamics in agricultural soils: a meta-analysis [J]. Global Change Biology, 2014,20(5):1366-1381.
[21] 龐荔丹,孟婷婷,張宇飛,等.玉米秸稈配氮還田對土壤酶活性、微生物量碳含量及土壤呼吸量的影響[J]. 作物雜志, 2017, (1):1-6.
[22] 張慶忠,吳文良,王明新,等.秸稈還田和施氮對農(nóng)田土壤呼吸的影響[J]. 生態(tài)學(xué)報, 2005,25(11):91-95.
[23] 何向南,黃高寶,黃 鵬.秸稈還田及施肥對小麥復(fù)種油菜農(nóng)田土壤呼吸的影響[J]. 干旱區(qū)研究, 2012,29(6):1003-1008.
[24] 葉文培,謝小立,王凱榮,等.不同時期秸稈還田對水稻生長發(fā)育及產(chǎn)量的影響[J]. 中國水稻科學(xué), 2008,22(1):65-70.
[25] 徐國偉,談桂露,王志琴,等.秸稈還田與實地氮肥管理對直播水稻產(chǎn)量、品質(zhì)及氮肥利用的影響[J]. 中國農(nóng)業(yè)科學(xué), 2009, 42(8):2736-2746.
[26] 吳榮美,王永鵬,李鳳民,等.秸稈還田與全膜雙壟集雨溝播耦合對半干旱黃土高原玉米產(chǎn)量和土壤有機碳庫的影響[J]. 生態(tài)學(xué)報, 2012,32(9):2855-2862.
[27] Lu C Q, Tian H Q, Liu M L, et al. Effect of nitrogen deposition on China's terrestrial carbon uptake in the context of multifactor environmental changes [J]. Ecological Applications, 2012,22(1): 53-75.
[28] 齊玉春,董云社,耿元波,等.我國草地生態(tài)系統(tǒng)碳循環(huán)研究進展[J]. 地理科學(xué)研究進展, 2003,22:342-52.
[29] Zhang L, Yang Y X, Zhan X Y, et al. Responses of a dominant temperate grassland plant () to elevated carbon dioxide and nitrogen addition in China [J]. Journal of Environmental Quality, 2010,39(1):251-259.
[30] 肖勝生,董云社,齊玉春,等.內(nèi)蒙古溫帶草原羊草葉片功能特性與光合特征對外源氮輸入的響應(yīng)[J]. 環(huán)境科學(xué)學(xué)報, 2010, 30(12):2535-2543.
[31] Niu S L, Zhang Y F, Yuan Z Y, et al. Effects of interspecific competition and nitrogen seasonality on the photosynthetic characteristics of C3 and C4 grasses [J]. Environmental and Experimental Botany, 2006,57(3):270-277.
[32] Zhang Y F, Niu S L, Xu W H, et al. Species-specific response of photosynthesis to burning and nitrogen fertilization [J]. Journal of Integrative Plant Biology, 2008,50(5):565–574.
[33] Nakaji T, Fukami M, Dokiya Y, et al. Effects of high nitrogen load on growth, photosynthesis and nutrient status of Cryptomeria japonica and Pinus densiflora seedlings [J]. Trees, 2001,15(8): 453-461.
[34] 張向前,趙秀玲,王鈺喬,等.耕作方式對冬小麥灌漿期光合性能日變化和籽粒產(chǎn)量的影響[J]. 應(yīng)用生態(tài)學(xué)報, 2017,28(3):885- 893.
[35] 楊勁峰,魯 豫,劉小華,等.施用炭基緩釋肥對花生光合功能的影響[J]. 植物營養(yǎng)與肥料學(xué)報, 2017,23(2):408-415.
[36] 白 偉,張立禎,逄煥成,等.秸稈還田配施氮肥對東北春玉米光合性能和產(chǎn)量的影響[J]. 作物學(xué)報, 2017,43(12):1845-1855.
[37] 慕 平,張恩和,王漢寧,等.不同年限全量玉米秸稈還田對玉米生長發(fā)育及土壤理化性狀的影響[J]. 中國生態(tài)農(nóng)業(yè)學(xué)報, 2012,20(3):291-296.
[38] Drake J E, Gallet-Budynek A, Hofmockel KS, et al. Increases in the flux of carbon belowground stimulate nitrogen uptake and sustain the long-term enhancement of forest productivity under elevated CO2[J]. Ecology Letters, 2011,14(4):349-357.
[39] Lu M, Zhou X H, Luo Y Q, et al. Minor stimulation of soil carbon storage by nitrogen addition: a meta-analysis [J]. Agriculture Ecosystems and Environment, 2011,140(1/2):234-244.
[40] Ryals R, Silver W L. Effects of organic matter amendments on net primary productivity and greenhouse gas emissions in annual grasslands [J]. Ecological Applications, 2013,23(1):46-59.
[41] Dornbush M E. Grasses, litter, and their interaction affect microbial biomass and soil enzyme activity [J]. Soil Biology and Biochemistry, 2007,39(9):2241-2249.
[42] Torok K, Szitar K, Halassy M, et al. Long-term outcome of nitrogen immobilization to restore endemic sand grassland in Hungary [J]. Journal of Applied Ecology, 2014,51(3):756-765.
[43] Liu L L, Greaver T L. A global perspective on belowground carbon dynamics under nitrogen enrichment [J]. Ecology Letters, 2010,13(7):819-828.
[44] Nguyen C. Rhizodeposition of organic C by plants: mechanisms and controls [J]. Agronomie, 2003,23(5/6):375-396.
[45] 白 偉,安景文,張立禎,等.秸稈還田配施氮肥改善土壤理化性狀提高春玉米產(chǎn)量[J]. 農(nóng)業(yè)工程學(xué)報, 2017,33(15):168-176.
[46] Fang H J, Cheng S L, Yu G R, et al. Responses of CO2efflux from an alpine meadow soil on the Qinghai Tibetan Plateau to multi-form and low-level N addition [J]. Plant and Soil, 2012, 351(1/2):177-190.
[47] Treseder K K. A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2in field studies [J]. New Phytologist, 2004,164(2):347-355.
[48] Luo Y Q, Zhao X Y, Andren O, et al. Artificial root exudates and soil organic carbon mineralization in a degraded sandy grassland in northern China [J]. Journal of Arid Land, 2014,6(4):423-431.
[49] Kuzyakov Y, Bol R. Sources and mechanisms of priming effect induced in two grassland soils amended with slurry and sugar [J]. Soil Biology and Biochemistry, 2006,38(4):747-758.
[50] Blagodatskaya E, Yuyukina T, Blagodatsky S, et al. Three- source-partitioning of microbial biomass and of CO2efflux from soil to evaluate mechanisms of priming effects [J]. Soil Biology and Biochemistry, 2011,43(4):778-786.
[51] Blagodatskaya E V, Blagodatsky S A, Anderson T H, et al. Contrasting effects of glucose, living roots and maize straw on microbial growth kinetics and substrate availability in soil [J]. European Journal of Soil Science, 2009,60(2):186-197.
[52] Carreiro M M, Sinsabaugh R L, Repert D A, et al. Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition [J]. Ecology, 2000,81(9):2359-2365.
[53] Peng Q, Qi Y C, Dong Y S, et al. Litter decomposition and the C and N dynamics as affected by N additions in a semi-arid temperate steppe, Inner Mongolia of China [J]. Journal of Arid Land, 2014,6(4):432-444.
[54] 于雯超,宋曉龍,王 慧,等.氮沉降對草原凋落物分解的影響[J]. 農(nóng)業(yè)資源與環(huán)境學(xué)報, 2013,30(6):14-19.
[55] Rahman M M, Tsukamoto J, Rahman M M, et al. Lignin and its effects on litter decomposition in forest ecosystems [J]. Chemistry and Ecology, 2013,29(6):540-553.
[56] Liu J, Wu N N, Wang H, et al. Nitrogen addition affects chemical compositions of plant tissues, litter and soil organic matter [J]. Ecology, 2016,97(7):1796-1806.
[57] Fang X, Zhao L, Zhou G Y, et al. Increased litter input increases litter decomposition and soil respiration but has minor effects on soil organic carbon in subtropical forests [J]. Plant and Soil, 2015, 392(1/2):139-153.
[58] Barantal S, Schimann H, Fromin N, H?ttenschwiler S. Nutrient and Carbon Limitation on Decomposition in an Amazonian Moist Forest [J]. Ecosystems, 2012,15(7):1039-1052.
[59] Kuzyakov Y, Hill P W, Jones D L. Root exudate components change litter decomposition in a simulated rhizosphere depending on temperature [J]. Plant and Soil, 2007,290(1/2):293-305.
[60] Riggs C E, Hobbie S E, Bach E M, et al. Nitrogen addition changes grassland soil organic matter decomposition [J]. Biogeochemistry, 2015,125(2):203-219.
[61] Fang H J, Cheng S L, Yu G R, et al. Nitrogen deposition impacts on the amount and stability of soil organic matter in an alpine meadow ecosystem depend on the form and rate of applied nitrogen [J]. European Journal of Soil Science, 2014,65(4):510- 519.
[62] Riggs C E, Hobbie S E. Mechanisms driving the soil organic matter decomposition response to nitrogen enrichment in grassland soils [J]. Soil Biology and Biochemistry, 2016,99:54- 65.
[63] Jian S Y, Li J W, Chen J, et al. Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: a meta-analysis [J]. Soil Biology and Biochemistry, 2016,101:32- 43.
[64] Fontaine S, Bardoux G, Abbadie L, et al. Carbon input to soil may decrease soil carbon content [J]. Ecology Letters, 2004,7(4):314- 320.
[65] Ryals R, Kaiser M, Torn M S, et al. Impacts of organic matter amendments on carbon and nitrogen dynamics in grassland soils [J]. Soil Biology and Biochemistry, 2014,68:52-61.
[66] Diochon A, Gregorich E G, Kellman L, et al. Greater soil C inputs accelerate loss of C in cropping systems with low N input [J]. Plant and Soil, 2016,400(1/2):93-105.
[67] Nguyen T T, Marschner P. Soil respiration, microbial biomass and nutrient availability in soil after repeated addition of low and high C/N plant residues [J]. Biology and Fertility of Soils, 2016,52(2): 165-176.
[68] Hartley I P, Hopkins D W, Sommerkorn M, et al. The response of organic matter mineralisation to nutrient and substrate additions in sub-arctic soils [J]. Soil Biology and Biochemistry, 2010,42(1): 92-100.
[69] Blagodatskaya E, Kuzyakov Y. Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review [J]. Biology and Fertility of Soils, 2008,45(2):115-131.
[70] Holden S R, Treseder K K. A meta-analysis of soil microbial biomass responses to forest disturbances [J]. Frontiers in Microbiology, 2013,4:17.
[71] Chen D M, Lan Z C, Hu S J, et al. Effects of nitrogen enrichment on belowground communities in grassland: Relative role of soil nitrogen availability vs. soil acidification [J]. Soil Biology and Biochemistry, 2015,89:99-108.
[72] Alster C J, German D P, Lu Y, et al. Microbial enzymatic responses to drought and to nitrogen addition in a southern California grassland [J]. Soil Biology and Biochemistry, 2013, 64:68-79.
[73] Bach E M, Hofmockel K S. Coupled carbon and nitrogen inputs increase microbial biomass and activity in prairie bioenergy systems [J]. Ecosystems, 2015,18(3):417-427.
[74] Murugan R, Loges R, Taube F, et al. Changes in soil microbial biomass and residual indices as ecological indicators of land use change in temperate permanent grassland [J]. Microbial Ecology, 2014,67(4):907-918.
[75] Nottingham A T, Griffiths H, Chamberlain P M, et al. Soil priming by sugar and leaf-litter substrates: A link to microbial groups [J]. Applied Soil Ecology, 2009,42(3):183-190.
[76] Zeglin L, Stursova M, Sinsabaugh R, et al. Microbial responses to nitrogen addition in three contrasting grassland ecosystems [J]. Oecologia, 2007,154(2):349-359.
[77] Tian X F, Hu H W, Ding Q, et al. Influence of nitrogen fertilization on soil ammonia oxidizer and denitrifier abundance, microbial biomass, and enzyme activities in an alpine meadow [J]. Biology and Fertility of Soils, 2014,50(4):703-713.
[78] Farrer E C, Herman D J, Franzova E, et al. Nitrogen deposition, plant carbon allocation, and soil microbes: changing interactions due to enrichment [J]. American Journal of Botany, 2013,100(7): 1458-1470.
[79] Sun L J, Qi Y C, Dong Y S, et al. Interactions of water and nitrogen addition on soil microbial community composition and functional diversity depending on the inter-annual precipitation in a Chinese steppe [J]. Journal of Integrative Agriculture, 2015, 14(4):788-799.
[80] Docherty K, Balser T, Bohannan B M, et al. Soil microbial responses to fire and interacting global change factors in a California annual grassland [J]. Biogeochemistry, 2012,109(1-3): 63-83.
[81] Zeng J, Liu X J, Song L, et al. Nitrogen fertilization directly affects soil bacterial diversity and indirectly affects bacterial community composition [J]. Soil Biology and Biochemistry, 2016,92:41-49.
[82] Carey C J, Beman J M, Eviner V T, et al. Soil microbial community structure is unaltered by plant invasion, vegetation clipping, and nitrogen fertilization in experimental semi-arid grasslands [J]. Frontiers in Microbiology, 2015,6:14.
[83] Hamer U, Potthast K, Makeschin F. Urea fertilisation affected soil organic matter dynamics and microbial community structure in pasture soils of Southern Ecuador [J]. Applied Soil Ecology, 2009,43(2/3):226-233.
[84] Paterson E, Sim A. Soil-specific response functions of organic matter mineralization to the availability of labile carbon [J]. Global Change Biology, 2013,19(5):1562-1571.
[85] Lemanski K, Scheu S. Incorporation of13C labelled glucose into soil microorganisms of grassland: effects of fertilizer addition and plant functional group composition [J]. Soil Biology and Biochemistry, 2014,69:38-45.
[86] Reischke S, Rousk J, B??th E. The effects of glucose loading rates on bacterial and fungal growth in soil [J]. Soil Biology and Biochemistry, 2014,70:88-95.
[87] German D P, Weintraub M N, Grandy A S, et al. Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies [J]. Soil Biology and Biochemistry, 2011,43:1387-1397.
[88] Sinsabaugh R L, Lauber C L, Weintraub M N, et al. Stoichiometry of soil enzyme activity at global scale [J]. Ecology Letters, 2008,11(11):1252-1264.
[89] Veres Z, Kotroczó Z, Fekete I, et al. Soil extracellular enzyme activities are sensitive indicators of detrital inputs and carbon availability [J]. Applied Soil Ecology, 2015,92:18-23.
[90] Gavrichkova O, Moscatelli M C, Kuzyakov Y, et al. Influence of defoliation on CO2efflux from soil and microbial activity in a Mediterranean grassland [J]. Agriculture, Ecosystems and Environment, 2010,136(1/2):87-96.
Effects of exogenous carbon and nitrogen addition on the key process of carbon cycle in grassland ecosystem: a review.
HE Yun-long1,2, QI Yu-chun1, PENG Qin1, DONG Yun-she1*, YAN Zhong-qing1,2, Li Zhao-lin1,2
(1.Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China;2.Graduate University of Chinese Academy of Sciences, Beijing 100049, China)., 2018,38(3):1133~1141
Human activities result in a large amount of active nitrogen (N) depositing from atmosphere to biosphere. Then N deposition has inconsistently influenced in the key process of carbon (C) cycle in the grassland ecosystem. In this paper, we review the processes of C cycle (plant photosynthesis, aboveground and belowground biomass, soil respiration, litter decomposition and soil organic carbon content) responding to different N-addition levels and years in the grassland ecosystem, and analyze possible the causes of various in these processes. Simultaneously, we analysis that these processes respond to exogenous C addition. Furthermore, we analysis the mechanisms of microbes driving these processes under exogenous C and N addition. C availability is one of most controllers in the key processes of C cycle in grassland ecosystems. This paper throughout the above these works strongly emphasizes that conducting the related research will play important roles in scientific managing resources and increasing soil C sink in China.
nitrogen deposition;exogenous carbon;C cycle;soil microbes;soil C sink
X171.1, Q948.1
A
1000-6923(2018)03-1133-09
賀云龍(1988-),男,吉林梅河口人,在讀博士研究生,主要從事外源碳和氮輸入對草地生態(tài)系統(tǒng)碳循環(huán)過程影響的研究.發(fā)表論文12篇.
2017-08-25
國家自然科學(xué)基金資助項目(41330528,41673086, 41573131,41203054)
* 責(zé)任作者, 研究員, dongys@igsnrr.ac.cn