国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

水體中微界面對(duì)PhACs環(huán)境行為影響的研究進(jìn)展

2018-03-28 07:31:02但孝香劉建超陸光華
水資源保護(hù) 2018年2期
關(guān)鍵詞:膠體沉積物顆粒物

但孝香, 劉建超, 陸光華

(1. 河海大學(xué)淺水湖泊綜合治理與資源開發(fā)教育部重點(diǎn)實(shí)驗(yàn)室,江蘇 南京 210098;2. 河海大學(xué)環(huán)境學(xué)院,江蘇 南京 210098)

藥物活性化合物(pharmaceuticals, PhACs)作為一種新型環(huán)境污染物,主要包括抗生素、抗菌藥、消炎止痛藥、抗抑郁藥、激素等。我國(guó)每年有超過200萬(wàn)t 4 000多種PhACs被用于農(nóng)業(yè)、水產(chǎn)養(yǎng)殖業(yè)、畜牧業(yè)和人類健康維護(hù)等方面[1]。大部分PhACs使用后并未完全代謝,而是以母體及其代謝產(chǎn)物的形式排出體外,而后直接排入水環(huán)境或者進(jìn)入市政污水處理廠或者農(nóng)業(yè)污水處理設(shè)施[1-5]。然而傳統(tǒng)的污水處理工藝對(duì)大部分藥物并不能完全去除,隨同污水處理廠尾水進(jìn)入水環(huán)境。因此污水處理廠尾水被認(rèn)為是PhACs進(jìn)入自然水體環(huán)境的主要來(lái)源[2-3]。除此之外,養(yǎng)殖廢水、制藥廢水、過期藥品處理不當(dāng)也是天然水體PhACs的主要來(lái)源[4]。為了準(zhǔn)確評(píng)估環(huán)境中PhACs可能產(chǎn)生的生態(tài)風(fēng)險(xiǎn),須建立準(zhǔn)確高效的PhACs檢測(cè)方法。表1對(duì)比了不同國(guó)家對(duì)PhACs的前處理和檢測(cè)方法。從表1看出,目前PhACs的分析檢測(cè)手段主要依賴于高效液相色譜-質(zhì)譜聯(lián)用(HPLC-MS)和氣相色譜-質(zhì)譜聯(lián)用技術(shù)(GC-MS)。

表1 國(guó)內(nèi)外PhACs的前處理和檢測(cè)方法

注:LOQ:定量限; LOD:檢測(cè)限; ASE:加速溶劑萃取; SPE:固相萃取; PLE:加壓流體萃取。

對(duì)于極性強(qiáng)、不易揮發(fā)的物質(zhì)(如雙氯芬酸、大環(huán)內(nèi)酯類抗生素、阿司匹林等)一般采用HPLC-MS檢測(cè)。

表2 國(guó)內(nèi)外不同環(huán)境介質(zhì)中檢測(cè)到的PhACs種類及濃度

注:ND表示未檢出。

近年來(lái),PhACs先后在污水、地表水、地下水、甚至自來(lái)水中都有檢出。表2對(duì)比了國(guó)內(nèi)外不同環(huán)境介質(zhì)中檢測(cè)到的PhACs種類及濃度。十幾個(gè)國(guó)家的地表水中累計(jì)檢測(cè)出80多種PhACs,濃度最高達(dá)到μg/L水平[13-14]。對(duì)我國(guó)河流、湖泊水體中158種藥物及個(gè)人護(hù)理品進(jìn)行的調(diào)查研究結(jié)果表明,檢出頻率較高的前10種污染物都是抗生素類PhACs[15]??傮w而言,磺胺類檢出率高,濃度達(dá)到1 390 ng/L;而氟喹諾酮類、大環(huán)內(nèi)酯類、四環(huán)素類和β內(nèi)酰胺類抗生素在中國(guó)地表水中最高質(zhì)量濃度分別達(dá)到了6 800 ng/L[16]、3 700 ng/L[17]、1 000 ng/L[18]和4 500 ng/L[19]。目前PhACs監(jiān)測(cè)方法標(biāo)準(zhǔn)沒有統(tǒng)一,瞬時(shí)采樣不能反映真實(shí)的連續(xù)情況,PhACs污染水平在各類水體中呈現(xiàn)出較大的空間和時(shí)間上的差異性。雖然 PhACs 的半衰期不長(zhǎng),但由于頻繁地使用并進(jìn)入水環(huán)境,導(dǎo)致其形成“假持續(xù)”現(xiàn)象。此外PhACs是針對(duì)生物疾病而設(shè)計(jì),具有特殊的藥理、生理功能,短期內(nèi)并不一定會(huì)凸顯其危害性,但這些污染物往往以復(fù)雜的混合物形式存在,易產(chǎn)生協(xié)同作用,長(zhǎng)期暴露可能對(duì)非靶生物的新陳代謝產(chǎn)生明顯影響,從而影響非靶生物體正常的生理生化功能,對(duì)生態(tài)系統(tǒng)安全和人類健康構(gòu)成潛在威脅。我國(guó)對(duì)PhACs類污染物的排放沒有制定相應(yīng)的法規(guī),目前歐盟也只對(duì)雌二醇、炔雌醇和雙氯芬酸制定了相應(yīng)的排放閾值(分別為0.4 ng/L、0.035 ng/L和100 ng/L)。

近年來(lái),我國(guó)對(duì)水環(huán)境中PhACs的殘留、環(huán)境行為和歸宿進(jìn)行了初步研究。但水環(huán)境中 PhACs 并不是單獨(dú)存在的,它們?cè)谒w中的環(huán)境行為不僅與其他有機(jī)污染物直接相關(guān),還受到水體納米顆粒物、膠體、懸浮顆粒物等環(huán)境介質(zhì)的影響與控制。這些不同性質(zhì)和不同尺寸的顆粒物構(gòu)成的水/顆粒物微界面體系是污染物進(jìn)行物理、化學(xué)和生物轉(zhuǎn)化的重要載體和場(chǎng)所,決定著污染物的環(huán)境行為與生態(tài)效應(yīng)。現(xiàn)有研究顯示,目前大部分PhACs的分析都集中在液相中,缺少沉積物、懸浮物,尤其是膠體等固相中的濃度分析。本文分別從水環(huán)境界面污染特征、影響因素、環(huán)境風(fēng)險(xiǎn)及PhACs管理方法4個(gè)方面對(duì)現(xiàn)有研究進(jìn)行了總結(jié),討論了現(xiàn)有研究存在的問題,并對(duì)今后的研究進(jìn)行了展望。

1 PhACs在微界面結(jié)合特性及賦存狀態(tài)

水體微界面是水環(huán)境中普遍存在的實(shí)體,如自然水體中的懸浮顆粒物(suspended particulate matter, SPM)、腐殖質(zhì)、礦物微粒、細(xì)菌、病毒、無(wú)機(jī)和有機(jī)膠體,人工生態(tài)系統(tǒng)的濾料、吸附劑、活性污泥等。這些具有一定粒度的顆粒物對(duì)河流中碳和營(yíng)養(yǎng)物的遷移扮演著重要的角色[26]。微界面的活性反應(yīng)基團(tuán)與周圍水溶液可以發(fā)生幾乎所有的物理、化學(xué)反應(yīng),如絡(luò)合、氧化等。除此之外,天然水體中顆粒物間的聚集、絮凝、溶膠,人工設(shè)施中活性污泥的生物氧化、膜與纖維過濾、濾料層等也都涉及微界面反應(yīng)過程。目前,PhACs在水體中的分布研究主要集中在水/懸浮顆粒物、水/沉積物等二維構(gòu)相中,忽略了納米顆粒物、膠體等典型環(huán)境微界面的存在,不能反映水體PhACs污染的真實(shí)風(fēng)險(xiǎn)水平[27]。

1.1 沉積物對(duì)PhACs的吸附

沉積物是非常復(fù)雜的體系,包括金屬氧化物、黏土礦物和有機(jī)質(zhì)等,對(duì)環(huán)境中的PhACs、無(wú)機(jī)陽(yáng)離子和重金屬都具有很強(qiáng)的吸附能力,因此是很多PhACs的最終歸宿[28]。國(guó)內(nèi)外不同地區(qū)的水體沉積物中都有不同濃度PhACs的檢出,其質(zhì)量比一般在幾十μg/kg左右[29]。不同沉積物組分對(duì)PhACs的吸附機(jī)理不同,如鐵鋁硅氧化物類沉積物與水接觸后形成大量的表面羥基,易與抗生素類PhACs中羧基、氨基和酮基官能團(tuán)發(fā)生相互作用,從而被氧化物吸附。黏土類沉積物與PhACs相互作用的主要機(jī)制是離子交換作用和氫鍵作用等[30]。而類固醇類PhACs吸附特性受沉積物粒徑的顯著影響,低質(zhì)量濃度(1 ng/L)固醇類PhACs優(yōu)先吸附于黏土類沉積物中,直徑介于0.87 ~1.43 μm,高質(zhì)量濃度(500 μg/L)PhACs主要吸附于泥沙類沉積物,直徑介于8.1 ~17.7 μm。此外,沉積物與陽(yáng)離子吸附強(qiáng)度明顯高于陰離子,且陰離子吸附大都是可逆的,而中性離子的吸附則忽略不計(jì)[31]。

1.2 SPM對(duì)PhACs的吸附

SPM指顆粒直徑在0.45 μm以上,以懸浮態(tài)存在于水體中的顆粒物,含有較高比例的微生物和藻類等活性有機(jī)組分[32]。SPM在國(guó)內(nèi)外河流平均質(zhì)量濃度范圍為29.8 ~100 mg/L[33-34],其在水體中廣泛存在,并對(duì)水體PhACs的吸附起著重要作用[35]。世界各大水體中都有SPM吸附PhACs的研究報(bào)告,總體結(jié)果顯示SPM吸附PhACs水平低于水體溶解水平,質(zhì)量比范圍為6.4~149 ng/g[35-37]。SPM的微觀形狀不規(guī)則,各個(gè)單體可以聚集成絮狀、鏈狀、分枝狀等,其表面凹凸不平且具有孔隙結(jié)構(gòu),使SPM能夠充分地與PhACs接觸,并且能夠大量吸附PhACs,進(jìn)而影響PhACs的環(huán)境歸趨[38]。同時(shí),SPM對(duì)PhACs吸附與PhACs辛醇-水分配系數(shù)Kow密切相關(guān),隨Kow值增加,PhACs疏水性增強(qiáng),因而在SPM上吸附量增加[37]。

1.3 膠體對(duì)PhACs的吸附

天然水體中膠體物質(zhì)通常是粒徑介于1 nm~1 μm 的無(wú)機(jī)和有機(jī)非均相顆?;旌衔铮溲趸F、鋁硅酸鹽、表面活性劑等;此外,工程納米材料、微塑料等納米顆粒物不斷進(jìn)入水環(huán)境,使膠體微界面表面效應(yīng)更加復(fù)雜[39]。膠體的物質(zhì)組成決定了其具有體積小、比表面大、表面點(diǎn)位密集、吸附位點(diǎn)多、成分復(fù)雜等特點(diǎn),可通過共價(jià)鍵合、靜電吸附、表面絡(luò)合等作用對(duì)N/P循環(huán)、絡(luò)合沉降及污染物的分布、轉(zhuǎn)化等環(huán)境行為產(chǎn)生重要影響[40-41]。

膠體是水環(huán)境中多種污染物重要的“匯”,其對(duì)PhACs的貢獻(xiàn)率可達(dá)30%~40%[3, 42],而對(duì)激素類PhACs的貢獻(xiàn)率達(dá)到60%以上,遠(yuǎn)高于SPM對(duì)激素類PhACs 30%的吸附貢獻(xiàn)率;而且膠體與PhACs的標(biāo)準(zhǔn)化吸附系數(shù)Kcoc比沉積物要高1~2個(gè)數(shù)量級(jí)[43]。我國(guó)不同水體膠體對(duì)PhACs的吸附結(jié)果顯示,長(zhǎng)江下游水體膠體中PhACs的總質(zhì)量濃度范圍為2 419~5 065 ng/L[44],珠江流域抗生素類PhACs在膠體中平均質(zhì)量濃度范圍分別為23.2~108 ng/L[45]。而內(nèi)陸湖泊白洋淀中抗生素類PhACs在膠體中平均質(zhì)量比1 381 ng/g(干重)[46],與上述自然水體相比,污水處理廠尾水膠體中PhACs質(zhì)量濃度較低,為0.03~147.5 ng/L[47],占比在36%以下[42]。相較于市政污水,自然水體是多種PhACs的重要?dú)w宿[48]。

2 環(huán)境因素對(duì)微界面作用的影響

2.1 離子強(qiáng)度

2.2 溶解有機(jī)物

溶解有機(jī)物(dissolved organic matter, DOM)是指水中能通過0.45 μm濾膜的有機(jī)物組分,主要成分為腐殖質(zhì),是以醌和多元酚為芳香核心的多聚物,其芳香核心主要有羧基、羰基、多肽等,并通過—O—、=CH-等鍵相連,其在水體中普遍存在[55]。河流及湖泊自然水體中含有大量的DOM,其含量約占總有機(jī)物的25%[56],而城市污水中DOM含量更高,約占到總有機(jī)物的40%[57]。膠體態(tài)顆粒物中有機(jī)質(zhì)含量達(dá)49%~71%,膠體分子量越小,有機(jī)質(zhì)C/N值增加,有機(jī)質(zhì)活性越高[58]。在土壤中,PhACs的吸附分配系數(shù)與DOM的濃度呈正相關(guān)關(guān)系,高濃度DOM能促進(jìn)有機(jī)物的吸附,減弱其在土壤中的遷移能力[59]。而在水體膠體中,增加DOM可以減緩膠體中卡巴呋喃、雄烯二酮和睪酮的光解速率,增加它們?cè)诃h(huán)境中的持久性[60-61]。此外,DOM還具有一定的光化學(xué)活性,不僅可以在吸收光子后將能量傳遞給PhACs[62],還可以在光的照射下產(chǎn)生·OH等活性中間體,然后活性中間體與PhACs發(fā)生反應(yīng),影響PhACs環(huán)境行為[63]。

2.3 表面活性劑

表面活性劑是一大類有機(jī)化合物,具有很強(qiáng)的表面活性,能使液體的表面張力顯著下降,作為乳化劑、洗滌劑、滲透劑、分散劑、表面改性劑等數(shù)十種功能產(chǎn)品而應(yīng)用于日常生活和工農(nóng)業(yè)生產(chǎn)領(lǐng)域。表面活性劑進(jìn)入環(huán)境介質(zhì)后,通過降低沉積物/水之間的界面張力,增加疏水性有機(jī)物(hydrophobic organic contaminants, HOCs)在水相中的溶解度,同時(shí)促進(jìn)HOCs從沉積物上的解吸并再次吸附在表面活性劑的單體上,進(jìn)而影響HOCs的生物可利用性[64]。非離子表面活性劑能夠吸附在水體膠體表面,產(chǎn)生位阻效應(yīng);而陰離子表面活性劑可提高膠體的Zeta電位絕對(duì)值,使膠體靜電效應(yīng)和位阻效應(yīng)同時(shí)增強(qiáng)[65]。對(duì)于疏水性PhACs來(lái)說(shuō),表面活性劑能降低其界面張力,增加PhACs的水溶解度和生物有效性,從而影響其在水環(huán)境中的遷移轉(zhuǎn)化過程及環(huán)境行為[66-67]。

2.4 水動(dòng)力作用

水動(dòng)力作用是影響PhACs在水體微界面分配的重要因素。流速、水流紊動(dòng)強(qiáng)度、水力停留時(shí)間(hydraulic retention time, HRT)等水動(dòng)力因素會(huì)通過改變水體微界面運(yùn)動(dòng)狀態(tài)及水體理化性質(zhì)對(duì)PhACs的遷移轉(zhuǎn)化過程產(chǎn)生影響[68]。研究發(fā)現(xiàn),當(dāng)HRT為45.9 h時(shí),雌醇(E1)、雌二醇(E2)、炔雌醇(E3)的降解速率分別為46.2%、44.6%、0.0%,當(dāng)水力停留時(shí)間為137.5 h時(shí),其降解速率分別為84.3%、59.2%、40.0%。當(dāng)HRT增大時(shí),水體中膠體濃度增加,膠體對(duì)PhACs吸附量變大,從而抑制PhACs降解速率[69]。此外,流速的增大會(huì)減小邊界層厚度,增大水體溶解氧含量、氧化還原電位等參數(shù),使PhACs在水體里的擴(kuò)散由分子擴(kuò)散轉(zhuǎn)為紊動(dòng)擴(kuò)散,從而增強(qiáng)PhACs在水/SPM界面的交換量,對(duì)PhACs在水/SPM兩相間的分配產(chǎn)生影響[30]。

3 PhACs微界面結(jié)合體風(fēng)險(xiǎn)評(píng)價(jià)

根據(jù)當(dāng)前水體污染水平及實(shí)驗(yàn)室生態(tài)風(fēng)險(xiǎn)評(píng)估數(shù)據(jù),雖然PhACs引起水生生物急性毒性風(fēng)險(xiǎn)概率較低,但慢性毒性風(fēng)險(xiǎn)不容忽視,將威脅生態(tài)環(huán)境及人體健康[1]。尤其是PhACs長(zhǎng)期暴露對(duì)高等水生生物的慢性毒性風(fēng)險(xiǎn)有待深入研究[70]。PhACs長(zhǎng)期暴露可以干擾生物體內(nèi)分泌物的合成、代謝、結(jié)合等過程,影響其生長(zhǎng)、發(fā)育等行為,還可能引起水生生物免疫功能抑制和癌癥等病變的發(fā)生[71-72]。PhACs在水生生物代謝、抗氧化、神經(jīng)、生殖等系統(tǒng)產(chǎn)生毒害作用已經(jīng)被證實(shí),但大多集中于實(shí)驗(yàn)室模擬水體PhACs暴露研究,而對(duì)天然水體中膠體等微界面存在對(duì)此類PhACs生態(tài)風(fēng)險(xiǎn)評(píng)價(jià)的研究鮮有報(bào)道[73]。

大部分PhACs具有潛在的基因毒性,這意味著它們可以直接破壞DNA或者產(chǎn)生活性物質(zhì)(如親電基團(tuán)或自由基)破壞DNA。實(shí)驗(yàn)表明,黑頭呆魚(Pimephalespromelas)分別在黃體酮(P4)-粉粒顆粒物(1.36 m2/g)、P4-黏粒顆粒物(19.9 m2/g)水生體系中暴露7 d后,黃體酮(P4)-粉粒顆粒物體系顯著降低了黑頭呆魚卵黃蛋白原和雄激素受體的基因表達(dá)[74]。Duong等[73]的研究同樣表明而雌激素(E1、E2、BPA)-SPM體系對(duì)雄性青鳉魚具有同樣的誘導(dǎo)效應(yīng),可顯著增加雄性青鳉魚的卵黃蛋白原水平。從環(huán)境介質(zhì)粒徑來(lái)看,粒徑越小,介質(zhì)對(duì)激素類PhACs吸附能力越強(qiáng)[26],從而加強(qiáng)PhACs在水生生物體內(nèi)的累積和內(nèi)分泌干擾效應(yīng)[73],且尺寸效應(yīng)在高等水生生物魚體內(nèi)表現(xiàn)得更為明顯[75]。水體中碳納米管、富勒烯等納米級(jí)微界面能夠改變水生生物(如:搖蚊幼蟲)對(duì)PhACs的吸收途徑,通過體外吸附和體內(nèi)解吸過程增加PhACs在生物體內(nèi)的生物累積風(fēng)險(xiǎn)[76-77]。同時(shí),膠體微界面的存在還能增強(qiáng)菲、芘等污染物在大型蚤體內(nèi)的被動(dòng)擴(kuò)散過程,從而增加其細(xì)胞毒性[78]。因此,需開展和運(yùn)用多種可靠的模型進(jìn)行環(huán)境暴露預(yù)測(cè),加強(qiáng)PhACs對(duì)人體暴露和生物累積的研究,建立基于人體健康和生態(tài)環(huán)境安全的PhACs風(fēng)險(xiǎn)評(píng)價(jià)基準(zhǔn)[79-80]。

4 PhACs管理方法

針對(duì)當(dāng)前PhACs管理過程中存在的問題,需要加強(qiáng)環(huán)境管理和控制技術(shù)開發(fā),結(jié)合我國(guó)PhACs生產(chǎn)和使用特點(diǎn),開展生態(tài)環(huán)境中PhACs的分布和遷移轉(zhuǎn)化規(guī)律研究,識(shí)別高風(fēng)險(xiǎn)PhACs母體及其降解產(chǎn)物,判斷其引起健康風(fēng)險(xiǎn)的主要途徑,進(jìn)而開發(fā)新型的控制技術(shù)。對(duì)于醫(yī)院的藥物管理,應(yīng)做到以下幾點(diǎn):①加強(qiáng)基層醫(yī)院藥庫(kù)管理,②建立藥物網(wǎng)絡(luò)管理平臺(tái),③提升藥物管理人員素質(zhì)[81]。對(duì)于養(yǎng)殖業(yè)獸藥管理,則應(yīng)做到:①?gòu)V泛宣傳畜禽健康養(yǎng)殖知識(shí)和藥物殘留對(duì)人類健康的危害,②加強(qiáng)獸藥生產(chǎn)經(jīng)營(yíng)管理,③加強(qiáng)飼料生產(chǎn)管理,④加強(qiáng)獸藥殘留監(jiān)控[82]。另外,要積極開展科普宣傳,提高全民對(duì)此類污染物的認(rèn)知,減少不必要的藥物使用,科學(xué)處置廢棄藥品和生活護(hù)理品,同時(shí)加強(qiáng)對(duì)過期PhACs的收集處理,降低PhACs進(jìn)入環(huán)境的可能性。

5 展 望

a. 我國(guó)對(duì)水環(huán)境中PhACs污染特征的監(jiān)測(cè)數(shù)據(jù)積累較少,并且缺乏統(tǒng)一的監(jiān)測(cè)和檢測(cè)標(biāo)準(zhǔn),數(shù)據(jù)可比性差,有必要進(jìn)一步推進(jìn)PhACs相關(guān)監(jiān)測(cè)和檢測(cè)標(biāo)準(zhǔn)體系建設(shè),為此類污染物的監(jiān)測(cè)和控制提供基礎(chǔ)技術(shù)和規(guī)范依據(jù)。

b. 目前大部分有關(guān)PhACs污染研究只涉及水溶液,缺乏一個(gè)整體性的環(huán)境監(jiān)測(cè)分析體系。應(yīng)將PhACs在水環(huán)境中沉積物、懸浮物和膠體中的含量分析納入在內(nèi),更加準(zhǔn)確地了解PhACs的去向和環(huán)境影響。

c. 大部分PhACs呈現(xiàn)低濃度下的慢性作用,多種污染物及介質(zhì)共存的復(fù)合毒性作用更是不可忽視,因此基于PhACs低濃度、復(fù)合污染的特征,研究PhACs及其代謝產(chǎn)物的毒性效應(yīng)和作用機(jī)制,是正確認(rèn)識(shí)其健康風(fēng)險(xiǎn)和修訂水質(zhì)標(biāo)準(zhǔn)的基礎(chǔ)。

d. PhACs在不同水環(huán)境中的污染特征和人口數(shù)量、生活水平、用藥習(xí)慣、畜牧養(yǎng)殖密集程度等因素息息相關(guān),并存在較大差異。這些因素一定程度上決定了PhACs區(qū)域污染水平,因此必須有針對(duì)性地加強(qiáng)重要流域水環(huán)境中持續(xù)性PhACs的監(jiān)測(cè)研究,并通過建立信息網(wǎng)絡(luò)實(shí)現(xiàn)主要污染物的動(dòng)態(tài)監(jiān)測(cè)和風(fēng)險(xiǎn)預(yù)警,更加直觀地反應(yīng)水體中PhACs的污染狀況。

[1]LIU J L,WONG M H.Pharmaceuticals and personal care products (PPCPs):a review on environmental contamination in China [J].Environment International,2013,59:208-224.

[2]RIVERA U J,SANCHEZ P M,FERRO M A,et al.Pharmaceuticals as emerging contaminants and their removal from water:a review [J].Chemosphere,2013,93 (7):1268-1287.

[3]YANG Y,FU J,PENG H,et al.Occurrence and phase distribution of selected pharmaceuticals in the Yangtze Estuary and its coastal zone [J].Journal of Hazardous Materials,2011,190 (1/2/3):588-596.

[4]PENG X,OU W,WANG C,et al.Occurrence and ecological potential of pharmaceuticals and personal care products in groundwater and reservoirs in the vicinity of municipal landfills in China [J].The Science of the Total Environment,2014,490:889-898.

[5]BOGGS A S,BOWDEN J A,GALLIGAN T M,et al.Development of a multi-class steroid hormone screening method using Liquid Chromatography/Tandem Mass Spectrometry (LC-MS/MS) [J].Analytical and Bioanalytical Chemistry,2016,408 (15):4179-4190.

[6]NIETO A,BORRULL F,POCURULL E,et al.Determination of natural and synthetic estrogens and their conjugates in sewage sludge by pressurized liquid extraction and liquid chromatography-tandem mass spectrometry [J].Journal of Chromatography A,2008,1213 (2):224-230.

[7]FLORES A M,HILL E M.Methodology for profiling the steroid metabolome in animal tissues using ultraperformance liquid chromatography-electrospray-time-of-flight mass spectrometry [J].Analytical Chemistry,2008,80 (22):8771-8779.

[8]VERGEYNST L,HAECK A,DE W P,et al.Multi-residue analysis of pharmaceuticals in wastewater by liquid chromatography-magnetic sector mass spectrometry:method quality assessment and application in a Belgian case study [J].Chemosphere,2015,119:S2-S8.

[9]AGUNBIADE F O,MOODLEY B.Pharmaceuticals as emerging organic contaminants in U mgeni River water system,KwaZulu-Natal,South Africa [J].Environmental Monitoring and Assessment,2014,186 (11):7273-7291.

[10]TLILI I,CARIA G,OUDDANE B,et al.Simultaneous detection of antibiotics and other drug residues in the dissolved and particulate phases of water by an off-line SPE combined with on-line SPE-LC-MS/MS:method development and application [J].The Science of the Total Environment,2016,563/564:424-433.

[11]KIM H Y,LEE I S,OH J E.Human and veterinary pharmaceuticals in the marine environment including fish farms in Korea [J].The Science of the Total Environment,2017,579:940-949.

[12]HUERTA B,JAKIMSKA A,LORCA M,et al.Development of an extraction and purification method for the determination of multi-class pharmaceuticals and endocrine disruptors in freshwater invertebrates [J].Talanta,2015,132:373-381.

[13]DA B F,JELIC A,LOPEZ S R,et al.Occurrence and distribution of pharmaceuticals in surface water,suspended solids and sediments of the Ebro river basin,Spain [J].Chemosphere,2011,85 (8):1331-1340.

[14]LAURENSON J P,BLOOM R A,PAGE S,et al.Ethinyl estradiol and other human pharmaceutical estrogens in the aquatic environment:a review of recent risk assessment data [J].Aaps Journal,2014,16 (2):299-310.

[15]WANG D,SUI Q,ZHAO W,et al.Pharmaceutical and personal care products in the surface water of China:a review [J].Chinese Science Bulletin (Chinese Version),2014,59 (9):743-751.

[16]ZOU S,XU W,ZHANG R,et al.Occurrence and distribution of antibiotics in coastal water of the Bohai Bay,China:impacts of river discharge and aquaculture activities [J].Environmental Pollution,2011,159 (10):2913-2920.

[17]LUO Y,XU L,RYSZ M,et al.Occurrence and transport of tetracycline,sulfonamide,quinolone,and macrolide antibiotics in the Haihe River Basin,China [J].Environmental Science & Technology,2011,45 (5):1827-1833.

[18]ZHANG D D,LIN L F,LUO Z X,et al.Occurrence of selected antibiotics in Jiulongjiang River in various seasons,South China [J].Journal of Environmental Monitoring,2011,13 (7):1953-1960.

[19]CHEN H,LI X,ZHU S.Occurrence and distribution of selected pharmaceuticals and personal care products in aquatic environments:a comparative study of regions in China with different urbanization levels [J].Environmental Science and Pollution Research International,2012,19 (6):2381-2389.

[20]BU Q,WANG B,HUANG J,et al.Pharmaceuticals and personal care products in the aquatic environment in China:a review [J].Journal of Hazardous Materials,2013,262:189-211.

[21]SIMAZAKI D,KUBOTA R,SUZUKI T,et al.Occurrence of selected pharmaceuticals at drinking water purification plants in Japan and implications for human health [J].Water Research,2015,76:187-200.

[22]QIN L,TONG L,LIU H,et al.Biodegradation of sulfonamides and the pollution characteristics of sulfonamide resistance genes in the environment [J].Environmental Chemistry,2016,35 (5):875-883.

[23]JURADO A,VAZQUEZ S E,Carrera J,et al.Emerging organic contaminants in groundwater in Spain:a review of sources,recent occurrence and fate in a European context [J].Science of the Total Environment,2012,440:82-94.

[24]CHENG D,LIU X,ZHAO S,et al.Influence of the natural colloids on the multi-phase distributions of antibiotics in the surface water from the largest lake in North China [J].Science of the Total Environment,2017,578:649-659.

[25]HUBER S,REMBERGER M,KAJ L,et al.A first screening and risk assessment of pharmaceuticals and additives in personal care products in waste water,sludge,recipient water and sediment from Faroe Islands,Iceland and Greenland [J].Science of the Total Environment,2016,562:13-25.

[26]SANGSTER J L,OKE H,ZHANG Y,et al.The effect of particle size on sorption of estrogens,androgens and progestagens in aquatic sediment [J].Journal of Hazardous Materials,2015,299:112-121.

[27]LIU J C,LU G H,XIE Z X,et al.Occurrence,bioaccumulation and risk assessment of lipophilic pharmaceutically active compounds in the downstream rivers of sewage treatment plants [J].Science of the Total Environment,2015,511:54-62.

[28]PERUCHI L M,FOSTIER A H,RATH S.Sorption of norfloxacin in soils:analytical method,kinetics and Freundlich isotherms [J].Chemosphere,2015,119:310-317.

[29]GOTTSCHALL N,TOPP E,METCALFE C,et al.Pharmaceutical and personal care products in groundwater,subsurface drainage,soil,and wheat grain,following a high single application of municipal biosolids to a field [J].Chemosphere,2012,87 (2):194-203.

[30]李娟,王沛芳,紀(jì)靚靚,等.抗生素在沉積物中的吸附機(jī)制及其影響因素 [J].四川環(huán)境,2013,32 (2):87-95.(LI Juan,WANG Peifang,JI Liangliang,et al.Mechanisms and influencing factors for sorption of antibiotics in sediments [J].Sichuan Environment,2013,32 (2):87-95.(in Chinese))

[31]MARTINEZ H V,MEFFE R,HERRERA S,et al.Sorption/desorption of non-hydrophobic and ionisable pharmaceutical and personal care products from reclaimed water onto/from a natural sediment [J].Science of the Total Environment,2014,472:273-281.

[32]郭志勇,花修藝,梁大鵬,等.自然水體生物膜、懸浮顆粒物和表層沉積物的輕、重組分對(duì)有機(jī)氯農(nóng)藥的吸附特征 [J].高等學(xué)校化學(xué)學(xué)報(bào),2010,31 (5):919-926.(GUO Zhiyong,HUA Xiuyi,LIANG Dapeng,et al.Sorption characteristic of organoch lorine pesticides onto the lighter and heavier components of biofilms,suspended particles and surface sediments in natural water [J].Chemical Journal of Chinese Universities,2010,31 (5):919-926.(in Chinese))

[33]GONG J,RAN Y,CHEN D,et al.Association of endocrine-disrupting chemicals with total organic carbon in riverine water and suspended particulate matter from the Pearl River,China [J].Environmental Toxicology and Chemistry,2012,31 (11):2456-2464.

[34]PATROLECCO L,CAPRI S,ANGELIS S D,et al.Partition of nonylphenol and related compounds among different aquatic compartments in Tiber River (Central Italy) [J].Water,Air,and Soil Pollution,2006,172 (1/2/3/4):151-166.

[35]NIE M,YAN C,DONG W,et al.Occurrence,distribution and risk assessment of estrogens in surface water,suspended particulate matter,and sediments of the Yangtze Estuary [J].Chemosphere,2015,127:109-116.

[36]AHERNES L,TANIYASU S,YEUNG W Y,et al.Distribution of polyfluoroalkyl compounds in water,suspended particulate matter and sediment from Tokyo Bay,Japan [J].Chemosphere,2010,79 (3):266-272.

[37]DARWANO H,DUY S V,SAUVE S.A new protocol for the analysis of pharmaceuticals,pesticides,and hormones in sediments and suspended particulate matter from rivers and municipal wastewaters [J].Archives of Environmental Contamination and Toxicology,2014,66 (4):582-593.

[38]朱齊齊,趙鵬,張宏偉,等.天然水體中顆粒物吸附抗生素特征分析 [J].環(huán)境科學(xué)學(xué)報(bào),2014,34 (5):1150-1156.(ZHU Qiqi,ZHAO Peng,ZHANG Hongwei,et al.Adsorption of antibiotics on the surface of aquatic particles [J].Acta Scientiae Circumstantiae,2014,34 (5):1150-1156.(in Chinese))

[39]BERGMAN A,HEINDEL J J,KASTEN T,et al.The impact of endocrine disruption:a consensus statement on the state of the science [J].Environmental Health Perspectives,2013,121 (4):A104-A106.

[40]BACKHAUS T,KARLSSON M.Screening level mixture risk assessment of pharmaceuticals in STP effluents [J].Water Research,2014,49:157-165.

[41]YAN C X,YANG Y,ZHOU J,et al.Selected emerging organic contaminants in the Yangtze Estuary,China:a comprehensive treatment of their association with aquatic colloids [J].Journal of Hazardous Materials,2015,283:14-23.

[42]DUAN Y P,MENG X Z,WEN Z H,et al.Multi-phase partitioning,ecological risk and fate of acidic pharmaceuticals in a wastewater receiving river:the role of colloids [J].The Science of the Total Environment,2013,447:267-273.

[43]LIU R X,WILDING A,HI A,et al.Partition of endocrine-disrupting chemicals between colloids and dissolved phase as determined by cross-flow ultrafiltration [J].Environmental Science & Technology,2005,39 (8):2753-2761.

[44]YAN C X,NIE M,YANG Y.Effect of colloids on the occurrence,distribution and photolysis of emerging organic contaminants in wastewaters [J].Journal of Hazardous Materials,2015,299 (15):241-248.

[45]龔劍,冉勇,黃文,等.內(nèi)分泌干擾物在珠三角河水多相中的分配及風(fēng)險(xiǎn) [J].生態(tài)毒理學(xué)報(bào),2016,2:518-523.(GONG Jian,RAN Yong,HUANG Wen,et al.Partitioning and risk of endocrine-disrupting chemicals in multiphases of the rivers from the Pearl River Delta,China [J].Asian Journal of Ecotoxicology,2016,2:518-523.(in Chinese))

[46]CHENG D,LIU X,ZHAO S,et al.Influence of the natural colloids on the multi-phase distributions of antibiotics in the surface water from the largest lake in North China [J].Science of the Total Environment,2016,578:649-659.

[47]YAN C X,NIE M,YANG Y,et al.Effect of colloids on the occurrence,distribution and photolysis of emerging organic contaminants in wastewaters [J].Journal of Hazardous Materials,2015,299:241-248.

[48]YAN C X,NIE M,LEAD J R,et al.Application of a multi-method approach in characterization of natural aquatic colloids from different sources along Huangpu River in Shanghai,China [J].Science of the Total Environment,2016,554:228-236.

[49]張瑞昌,章海波,涂晨,等.pH,離子強(qiáng)度及電解質(zhì)種類對(duì)納米氧化鋅聚集和溶解的影響 [J].環(huán)境化學(xué),2014,33 (11):1821-1827.(ZHANG Ruichang,ZHANG Haibo,TU Chen, et al.Influence of pH,ionic strength,and electrolyte type on the aggregation and dissolution of zinc oxides nanoparticles [J].Environmental Chemistry,2014,33 (11):1821-1827.(in Chinese))

[50]劉為清,王慧云,李明遠(yuǎn),等.離子強(qiáng)度對(duì)孤東4~#原油油滴表面ζ電位的影響 [J].西安石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2006,2(16):61-64.(LIU Weiqing,WANG Huiyun,LI Mingyuan,et,al.Effect of ion strength on the ζ potential on the surface of the droplets of the crude oil from Gudong Oilfield [J].Journal of Xi’an Shiyou University(Natural Science Edition),2006,2(16):61-64.(in Chinese))

[51]王東升,張婷,晁宇.離子強(qiáng)度和離子類型對(duì)土霉素在草甸土中被吸附的影響 [J].生態(tài)環(huán)境學(xué)報(bào),2014,23 (5):870-875.(WANG Dongshen,ZHANG Ting,CHAO Yu.Influence of different strength and species of cation on adsorption of oxytetracycline in meadow soils [J].Ecology and Environmental Sciences,2014,23 (5):870-875.(in Chinese))

[52]RAN Y,FU J M,SHENG G Y,et al.Fractionation and composition of colloidal and suspended particulate materials in rivers [J].Chemosphere,2000,41 (1/2):33-43.

[53]SAIERS J E,HOMBERGER G M.The influence of ionic strength on the facilitated transport of cesium by kaolinite colloids [J].Water Research,1999,35 (6):1713-1727.

[54]張勁強(qiáng),董元華.陽(yáng)離子強(qiáng)度和陽(yáng)離子類型對(duì)諾氟沙星土壤吸附的影響 [J].環(huán)境科學(xué),2007,28(10):2383-2388.(ZHANG Jinqiang,DONG Yuanhua.Influence of strength and species of cation on adsorption of norfloxacin in typical soils of China [J].Environment Science,2007,28 (10):2383-2388.(in Chinese))

[55]薛童,陳華,張依然,等.腐殖質(zhì)化學(xué)的光譜研究新進(jìn)展 [J].安徽農(nóng)業(yè)科學(xué),2012,40 (6):3833-3836.(XUE Tong,CHEN Hua,ZHANG Yiran,et al.Spectroscopy research progress of humus chemistry [J].Journal of Anhui Agricultural Sciences,2012,40 (6):3833-3836.(in Chinese))

[56]MANNINO A,HARVEY H R.Lipid composition in particulate and dissolved organic matter in the Delaware Estuary:sources and diagenetic patterns [J].Geochimica et Cosmochimica Acta,1999,63 (15):2219-2235.

[57]MAIE N,SCULLY N M,PISANI O,et al.Composition of a protein-like fluorophore of dissolved organic matter in coastal wetland and estuarine ecosystems [J].Water Research,2007,41 (3):563-70.

[58]WILDING A,LIU R X,ZHOU J L.Dynamic behaviour of river colloidal and dissolved organic matter through cross-flow ultrafiltration system [J].Journal of Colloid and Interface Science,2005,287 (1):152-158.

[59]凌婉婷,徐建民,高彥征,等.溶解性有機(jī)質(zhì)對(duì)土壤中有機(jī)污染物環(huán)境行為的影響 [J].應(yīng)用生態(tài)學(xué)報(bào),2004,15 (2):326-330.(LING Wanting,XU Jianmin,GAO Yanzheng,et al.Influence of dissolved organic matter(DOM) on environmental behaviors of organic pollutants in soils [J].Chinese Journal of Applied Ecology,2004,15 (2):326-330.(in Chinese))

[60]BACHMAN J,PATTERSON H H.Photodecomposition of the carbamate pesticide carbofuran:kinetics and the influence of dissolved organic matter [J].Environmental Science & Technology,1999,33 (6):874-881.

[61]YOUNG R B,LATCH D E,MAWHINNEY D B,et al.Direct photodegradation of androstenedione and testosterone in natural sunlight:inhibition by dissolved organic matter and reduction of endocrine disrupting potential [J].Environmental Science & Technology,2013,47 (15):8416-8424.

[62]CHIN Y P,MILLER P L,ZENG L,et al.Photosensitized degradation of bisphenol a by dissolved organic matter [J].Environmental Science & Technology,2004,38 (22):5888-5894.

[63]WANG L,XU H M,COPPER W J,et al.Photochemical fate of beta-blockers in NOM enriched waters [J].Science of the Total Environment,2012,426:289-295.

[64]MCPHEDRAN K N,SETH R,DROUILLARD K G.Investigation of hydrophobic organic carbon (HOC) partitioning to 1 kDa fractionated municipal wastewater colloids [J].Environmental Science & Technology,2013,47 (6):2548-2553.

[65]許珂敬,楊新春,許煜汾.表面活性劑在膠體制備過程中的作用 [J].中國(guó)有色金屬學(xué)報(bào),1998,8 (2):560-564.(XU Kejing,YANG Xinchun,XU Yufen.The role of surfactant in the preparation of colloid [J].The Chinese Journal of Nonferrous Metals,1998,8 (2):560-564.(in Chinese))

[66]GARON D,KRIVOBOK S,WOUESSIDJEWE D,et al.Influence of surfactants on solubilization and fungal degradation of fluorene [J].Chemosphere,2002,47 (3):303-309.

[67]楊建剛,劉翔,余剛,等.非離子表面活性劑溶液中多環(huán)芳烴的溶解特性 [J].環(huán)境科學(xué),2003,24 (6):79-82.(YANG Jiangang,LIU Xiang,YU Gang,et al.Characterization of polycyclic aromatic hydrocarbons dissolved in nonionic surfactants [J].Environment Science,2003,24 (6):79-82.(in Chinese))

[68]肖洋,成浩科,唐洪武,等.水動(dòng)力作用對(duì)污染物在河流水沙兩相中分配的影響研究進(jìn)展 [J].河海大學(xué)學(xué)報(bào)(自然科學(xué)版),2015,43 (5):480-488.(XIAO Yang,CHENG Haoke,TANG Hongwu,et al.Review of influence of hydrodynamic action on distribution of pollutants in water and sediment in river [J].Journal of Hohai University (Natural Sciences),2015,43 (5):480-488.(in Chinese))

[69]CHEN T C,YEH K J,KUO W C,et al.Estrogen degradation and sorption onto colloids in a constructed wetland with different hydraulic retention times [J].Journal of Hazardous Materials,2014,277:62-68.

[70]SUN W,ZHOU K.Adsorption of 17β-estradiol by multi-walled carbon nanotubes in natural waters with or without aquatic colloids [J].Chemical Engineering Journal,2014,258:185-193.

[71]ZHOU J L,LIU R,WILDING A,et al.Sorption of selected endocrine disrupting chemicals to different aquatic colloids [J].Environmental Science & Technology,2007,41 (1):206-213.

[72]BRODIN T,FICK J,JONSSON M,et al.Dilute concentrations of a psychiatric drug alter behavior of fish from natural populations [J].Science,2013,339 (6121):814-815.

[73]DUONG C N,SCHLENK D,CHANG N I,et al.The effect of particle size on the bioavailability of estrogenic chemicals from sediments [J].Chemosphere,2009,76 (3):395-401.

[74]SANGSTER J L,ALI J M,SNOW D D,et al.Bioavailability and fate of sediment-associated progesterone in aquatic systems [J].Environmental Science & Technology,2016,50 (7):4027-4036.

[75]GERALD S.SCHUYTEMA F K,WILLIAM L.Comparative uptake of hexachlorobenzene by fathead minnows,amphipods and oligochaete worms from water and sediment [J].Environmenral Toxicology and Chemistry,1988,7 (12):1035-1045.

[76]SU Y,YAN X,PU Y,et al.Risks of single-walled carbon nanotubes acting as contaminants-carriers:potential release of phenanthrene in Japanese medaka (Oryzias latipes) [J].Environmental Science & Technology,2013,47 (9):4704-4710.

[77]ZHAI Y W,XIA X H,ZHAO X L,et al.Role of ingestion route in the perfluoroalkyl substance bioaccumulation by Chironomus plumosus larvae in sediments amended with carbonaceous materials [J].Journal of Hazardous Materials,2016,302:404-414.

[78]ZHANG X,XIA X,LI H,et al.Bioavailability of pyrene associated with suspended sediment of different grain sizes to daphnia magna as investigated by passive dosing devices [J].Environmental Science & Technology,2015,49 (16):10127-10135.

[79]胡冠九,陳素蘭,穆肅,等.江蘇省某市典型飲用水水源中抗生素質(zhì)量濃度特征 [J].水資源保護(hù),2016,32 (3):84-88.(HU Guanjiu,CHEN Sulan,MU Su,et al.Characteristics of concentrations of antibiotics in typical drinking water sources in a city in Jiangsu Province [J].Water Resources Protection,2016,32 (3):84-88.(in Chinese))

[80]姚晶晶,吳東海,陸光華,等.水環(huán)境中PPCPS檢測(cè)技術(shù)及風(fēng)險(xiǎn)評(píng)價(jià)研究進(jìn)展 [J].水資源保護(hù),2017,33(6):76-81.(YAO Jingjing,WU Donghai,LU Guanghua,et al.Advances in aquatic PPCPs analysis technology and risk assessment [J].Water Resources Protection,2017,33(6):76-81.(in Chinese))

[81]楊勇.藥物管理的現(xiàn)狀及應(yīng)對(duì)措施 [J].生物技術(shù)世界,2016,43:193-194.(YANG Yong.Present situation and countermeasures of drug management [J].A World of Biotechnology,2016,43:193-194.(in Chinese))

[82]王明明,許娜,唐云,等.食品中硝基呋喃類藥物殘留檢測(cè)方法的研究進(jìn)展 [J].中國(guó)畜牧獸醫(yī),2016,43 (8):2202-2207.(WANG Mingming,XU Na,TANG Yun,et al.Advance on detection methods for residues of nitrofurans in food [J].China Animal Husbandry and Veterinary Medicine,2016,43 (8):2202-2207.(in Chinese))

猜你喜歡
膠體沉積物顆粒物
晚更新世以來(lái)南黃海陸架沉積物源分析
微納橡膠瀝青的膠體結(jié)構(gòu)分析
石油瀝青(2022年2期)2022-05-23 13:02:36
渤海油田某FPSO污水艙沉積物的分散處理
海洋石油(2021年3期)2021-11-05 07:43:12
水體表層沉積物對(duì)磷的吸收及釋放研究進(jìn)展
黃河水是膠體嗎
南平市細(xì)顆粒物潛在來(lái)源分析
錯(cuò)流旋轉(zhuǎn)填料床脫除細(xì)顆粒物研究
討論用ICP-AES測(cè)定土壤和沉積物時(shí)鈦對(duì)鈷的干擾
多層介質(zhì)阻擋放電處理柴油機(jī)尾氣顆粒物
康惠爾水膠體敷料固定靜脈留置針對(duì)靜脈炎的預(yù)防效果
枞阳县| 观塘区| 星子县| 辛集市| 蒙阴县| 德兴市| 胶南市| 邯郸市| 伽师县| 平昌县| 龙口市| 连南| 华容县| 武宁县| 深泽县| 临沭县| 革吉县| 慈溪市| 赤水市| 巴彦县| 扶沟县| 平果县| 城固县| 连南| 岚皋县| 永仁县| 织金县| 金阳县| 广元市| 阳原县| 深水埗区| 车险| 元江| 泗水县| 娱乐| 衡阳县| 广德县| 黄龙县| 济阳县| 清丰县| 南乐县|