楊肖娥, 賴春宇
浙江大學(xué), 污染環(huán)境修復(fù)與生態(tài)健康教育部重點(diǎn)實(shí)驗(yàn)室, 杭州 310058
1817年,瑞典科學(xué)家J?ns Jakob Berzelius在硫酸生產(chǎn)過程中首次發(fā)現(xiàn)了硒。硒是生物體內(nèi)一種非常重要的類金屬元素,在地殼中的含量為0.05~0.5 mg/kg[1]。近幾十年來,硒的重要性日益凸顯,在環(huán)境、醫(yī)學(xué)和材料領(lǐng)域都有重要的研究和應(yīng)用價(jià)值。然而,硒是一把雙刃劍,微量的硒對(duì)人體健康有極大的益處,但是過量的硒會(huì)對(duì)人體產(chǎn)生毒性[2]。人體每天攝取量超過400 μg就會(huì)造成硒中毒。硒中毒癥狀包括頭發(fā)及指甲脫落、神經(jīng)系統(tǒng)紊亂和心血管疾病等[3]。此外,過量硒造成的環(huán)境污染對(duì)生物多樣性構(gòu)成嚴(yán)重的威脅,硒污染曾造成美國加利福尼亞Kesterson國家野生動(dòng)物園內(nèi)水禽和魚類大量死亡。并且,硒具有很強(qiáng)的遷移性,可以通過食物鏈在植物和水生生物中積累,進(jìn)而對(duì)周邊環(huán)境造成嚴(yán)重影響[4]。深入了解植物和微生物對(duì)土壤和水體中的硒污染修復(fù)能力,有助于理解硒污染控制的重要性,并為開發(fā)有效的硒污染處理技術(shù)提供理論依據(jù)。當(dāng)今的硒污染處理技術(shù)中,硒污染的土壤主要通過植物吸收和提取進(jìn)行修復(fù),而硒污染水體主要通過微生物的還原作用進(jìn)行修復(fù)。
土壤中的硒污染主要來源于礦石(如磷礦、錳礦)、母質(zhì)等。在我國,湖北恩施、陜西紫陽土壤中的硒超標(biāo),對(duì)當(dāng)?shù)鼐用竦慕】翟斐赏{。1963年,恩施爆發(fā)了嚴(yán)重的人群硒中毒事件[7]。
硒從巖石、底泥、土壤和水體中相互遷移,并通過食物鏈進(jìn)入植物、動(dòng)物和人體中。隨后,硒被微生物降解,回歸到底泥和巖石沉積物中。因此,硒在環(huán)境中的分布受物理、化學(xué)、生物等多方面因素的影響。
硒在土壤中的平均濃度為0.4 mg/kg,而在美國、加拿大、英國和中國的部分土壤中硒的濃度可以達(dá)到1 200 mg/kg[9]。硒在土壤中的移動(dòng)性很強(qiáng),能夠通過植物根際土壤動(dòng)物進(jìn)行食物鏈積累,如積累過量就會(huì)對(duì)環(huán)境造成嚴(yán)重負(fù)面影響。富硒土壤如用于植物栽培,硒就會(huì)積累在植物體內(nèi),如果積累過量就會(huì)直接或間接地對(duì)人體和動(dòng)物的健康產(chǎn)生威脅[10]。
土壤中的硒污染生物修復(fù)方式包括植物提取揮發(fā)和根際土壤微生物作用,且以植物提取揮發(fā)為主(圖1,彩圖見圖版一)。
圖1 土壤硒污染植物提取與揮發(fā)修復(fù)過程Fig.1 Process of phytoextraction and phytovolatilization of soil selenium. (彩圖見圖版一)
3.1.1植物修復(fù)的機(jī)理 植物將土壤中的硒吸收、積累到地上部,隨后以甲基硒的形式,如硒化氫(H2Se)、甲基硒(CH3SeH)、二甲基硒(CH3SeSCH3)、硫化二甲基硒(CH3SeSCH3)和二甲基二硒(CH3SeSeCH3)等,被釋放至大氣中。對(duì)多種作物如水稻、卷心菜和洋蔥的研究表明,植物對(duì)硒的積累能力和揮發(fā)能力成正相關(guān)[11]。
植物硒揮發(fā)是個(gè)復(fù)雜的生物學(xué)過程。事實(shí)上,多種物理、化學(xué)、生物因素會(huì)影響植物和微生物的硒揮發(fā)過程,如土壤濕度、溫度和硫酸鹽濃度等[12,13]。Wu和Huang[14]的研究表明,鹽草能夠以65 mg/kg土壤·d的速率將硒揮發(fā)。當(dāng)土壤中含硫酸鹽時(shí),硒的揮發(fā)速率減少至25 mg Se/kg土壤·d。Zawislanski等[15]的研究表明,灌溉并且栽種蔬菜的土壤比無作物的土壤具有更強(qiáng)的硒揮發(fā)能力。植物利用根部吸收硒后,可將其轉(zhuǎn)移至地上部(如葉片),從而利于硒的揮發(fā)[16]。
超積累植物之所以對(duì)硒的耐受性較強(qiáng),是因?yàn)槲腚装彼岬募谆柚沽宋臐B入,緩解了硒超積累植物受硒的毒害作用[23]。非超積累植物主要將硒儲(chǔ)存在葉片維管組織中[24],而超積累植物主要將硒儲(chǔ)存在葉上皮及再生組織中,如花粉、種子[20],因此它們的區(qū)隔作用與解毒機(jī)制不同。一些硒超積累植物可以產(chǎn)生類似硫化合物的硒化合物,包括組織中的半胱氨酸、氨酸甲酯[24]。并且,硒超積累植物吸收硒并不依賴于硫酸鹽,表明超積累植物可能有一種硒特異性的轉(zhuǎn)運(yùn)系統(tǒng)。我國對(duì)鎘、鋅、砷等元素超積累作用機(jī)理研究較多,而對(duì)植物硒超積累機(jī)理研究相對(duì)較少。
有些硒超積累植物是很好的藥食同源植物,如黃芪等。利用硒超積累植物修復(fù)高硒(硒污染)土壤,同時(shí)硒超積累植物還可以開發(fā)為富硒產(chǎn)品,從而實(shí)現(xiàn)對(duì)硒污染土壤的高值化利用。然而,植物對(duì)硒超積累/富集的機(jī)理研究尚處于初級(jí)階段,需要進(jìn)一步的深入研究,為生產(chǎn)實(shí)踐提供理論依據(jù)。
植物修復(fù)硒污染土壤的同時(shí)往往會(huì)伴隨著和微生物的聯(lián)合作用。如當(dāng)植物體死亡后,掉落后的枯枝落葉是土壤微生物的重要碳源和電子供體,從而驅(qū)動(dòng)微生物對(duì)土壤硒鹽進(jìn)行生物還原,消減土壤中的硒污染[26]。Zawislanksi等[27]的研究表明,未種植作物的土壤硒含量是種植作物土壤的兩倍多,表明作物在土壤硒污染控制中發(fā)揮重要的作用。根際周邊土壤中的微生物也能夠?qū)⒎菗]發(fā)性的硒鹽轉(zhuǎn)化為揮發(fā)性強(qiáng)的甲基態(tài)硒從而有效將硒從土壤中移除。并且,甲基態(tài)硒的毒性遠(yuǎn)小于無機(jī)硒[28]。
圖2 氫氣/甲烷基質(zhì)MBfR還原硒酸鹽反應(yīng)器過程[35,36]Fig.2 Reduction process of selenate reactors by MBfR matrix of hydrogen/methan[35,36]. (彩圖見圖版一)
圖3 甲烷基質(zhì)MBfR還原的機(jī)理[35]Fig.3 The mechanisms of Se reduction in MBfR matrix of methane[35]. (彩圖見圖版二)
近幾十年來,科學(xué)家們致力于納米硒的表征、合成和修飾研究。納米態(tài)的硒有極好的光導(dǎo)特性和半導(dǎo)體特性,廣泛應(yīng)用于整流器、太陽能電池、身影曝光表、靜電復(fù)印機(jī)等的生產(chǎn)[37]。人們通過物理化學(xué)方法,開發(fā)出了多種形態(tài)的納米硒的制備技術(shù)[38]。而生物還原法獲得的納米硒與通過物理化學(xué)方法制備納米硒的差異很大,具有成本低廉、環(huán)境友好等優(yōu)勢(shì),有大規(guī)模產(chǎn)業(yè)化的潛力。生物納米硒的特殊性可能是由于蛋白質(zhì)在制造和穩(wěn)定納米硒的過程中發(fā)揮了特殊的作用[33]。因此,科學(xué)家們正在致力于研究硒酸鹽還原菌制備硒納米材料的工藝。
納米硒有多種分子排列方式,包括螺旋形的長鏈、六聚體或者九聚體[39]。由于微生物合成的納米硒遵循奧斯特瓦爾德成熟規(guī)律,納米硒在長期的微生物培養(yǎng)過程中,直徑會(huì)增大[40]。此外,生物體內(nèi)的多種代謝過程會(huì)影響合成的納米硒的結(jié)晶、生長及穩(wěn)定性[41]。有研究表明,去除生物納米硒表面的有機(jī)層可以改變硒的晶型結(jié)構(gòu)[42]。
微生物合成的納米硒直徑在100~200 nm的范圍內(nèi)。在生物合成納米硒的過程中,可以添加一些穩(wěn)定劑,如谷胱甘肽、金屬氯化物等,來控制納米硒的粒徑大小[41]。體外實(shí)驗(yàn)表明,生物蛋白質(zhì)和胞外聚合物(EPS)可以穩(wěn)定生物納米硒的晶型結(jié)構(gòu)[43,44]。
[1] Lemly A D. Aquatic selenium pollution is a global environmental safety issue [J]. Ecotoxicol. Environ. Safe, 2004, 59: 44-56.
[3] Li S H, Xiao T F, Zheng, B S,etal.. Medical geology of arsenic, Se and thallium in China [J]. Sci. Total. Environ., 2012, (3):421-422.
[4] Staicu L C, van Hullebusch E D, Lens P N L. Production, recovery and reuse of biogenic elemental selenium [J]. Environ. Chem. Lett., 2015,13: 89-96.
[5] Vesper D J, Roy M, Rhoads C J. Selenium distribution and mode of occurrence in the Kanawha Formation, southern West Virginia [J]. US. Int. J. Coal Geol., 2008, 73: 237-249.
[6] Pyrzynska K. Determination of selenium species in environmental samples [J]. Microchim. Acta., 2002, 140: 55-62.
[7] 朱建明, 左維, 秦海波,等.恩施硒中毒區(qū)土壤高硒的成因:自然硒的證據(jù)[J]. 礦物學(xué)報(bào), 2008,28(4):397-400.
[8] Lenz M, Lens P N L. The essential toxin: the changing perception of selenium in environmental sciences [J]. Sci. Total. Environ., 2009, 407: 3620-3633.
[9] Fordyce F M, Johnson U R, Navaratna J D,etal.. Selenium and iodine in soil, rice and drinking water in relation to endemic goitre in Sri Lanka [J]. Sci. Total. Environ., 2000, 263: 127-141.
[10] Terry N, Zayed A M, Souza M P D,etal.. Selenium in higher plants[J]. Ann. Rev. Plant Physiol. Plant Mol. Biol., 2000, 51: 401-432.
[11] Terry N, Carlson C, Raab T K,etal.. Rates of selenium volatilization among crop species [J]. J. Environ. Qual., 1992, 21: 341-344.
[12] Biggar J W, Jayaweera G R. Measurement of selenium volatilization in the field [J]. Soil. Sci., 1993, 155: 31-36.
[13] Frankenberger J, Karlson W T U. Soil management factors affecting volatilization of selenium from dewatered sediments [J]. Geomicrobiol. J., 1994, 12: 265-278.
[14] Wu L, Huang Z Z. Selenium accumulation and selenium tolerance of saltgrass from soils with elevated concentrations of Se and salinity [J]. Ecotoxicol. Environ. SafE., 1991, 22: 267-282.
[15] Zawislanski P T, Jayaweera G R, Frankenberger J,etal.. The Pond 2 selenium volatilization study: A synthesis of five years of experimental results, 1990-1995 [R]. Office of Scientific & Technical Information Technical Reports,1996.
[16] Wu L, Guo X, Banuelos G S,etal.. Accumulation of seleno-amino acids in legume and grass plant species in selenium soils [J]. Environ. Toxicol. Chem., 1997, 16: 491-497.
[17] Feist L J, Parker D R. Ecotypic variation in selenium accumulation among populations ofStanleyapinnata[J]. New. Phytol., 2001, 149: 61-69.
[18] Beath O A, Gilbert C S, Eppson H F. The use of indicator plants in locating seleniferous soils in the Western United States. I. General[J]. Am. J. Bot., 1939, 26: 257-269.
[19] de Souza M P, Pilon-Smits E A H, Lytle C M,etal.. Rate-limiting steps in selenium assimilation and volatilization by Indian mustard [J]. Plant Physiol., 1998, 117: 1487-1494.
[20] Freeman J L, Quinn C F, Marcus M A,etal.. Selenium tolerant diamondback moth disarms hyperaccumulator plant defense [J]. Curr. Biol., 2006, 16: 2181-2192.
[21] Trelease S F, Somma A A, Jacobs A L,etal.. Seleno-amino acid found inAstragalusbisulcatus[J]. Science, 1960, 132: 618.
[22] Pickering I J, Prince R C, Salt D E,etal.. Quantitative, chemically specific imaging of selenium transformation in plants [J]. Proc. Natl. Acad. Sci. USA, 2000, 97: 10717-10722.
[23] Wang Y, Bock A, Neuhier I,etal.. Acquisition of selenium tolerance by a selenium non-accumulatingAstragalusspecies via selection [J]. Biofactors, 1999, 9: 3-10.
[24] Quinn C F, Prins C N, Freeman J L,etal.. Selenium accumulation in flowers and its effects on pollination [J]. New. Phytol., 2011, 192: 727-737.
[25] Benevenga N J, Case G L, Steele R D. Occurrence and metabolism of S-methyl-L-cysteine and S-methyl-L-cysteine sulfoxide in plants and their toxicity and metabolismin animals[A]. In: Cheeke P R. Toxicants of Plant Origin[M]. CRC Press,1989, 202-228.
[26] Banuelos G S, Mead R, Wu L,etal.. Differential selenium accumulation among forage plant species grown in soils amended with selenium-enriched plant tissue [J]. J. Soil. Water. Conser. 1992, 47: 338-342.
[27] Zawislanksi P T, Tokunaga T K, Benson S,etal.. Hydrological and geochemical investigations of selenium behavior at Kesterson Reservoir [R]. Office of Scientific & Technical Information Technical Reports,1995.
[28] Dungan R S, Frankenberger W T. Microbial transformations of selenium and the bioremediation of seleniferous environments [J]. Biorem. J., 1999, 3: 171-188.
[29] Forchhammer K, Bock A. Selenocysteine synthase fromEscherichiacolianalysis of the reaction sequence [J]. J. Biol. Chem., 1991, 266: 6324-6328.
[30] Astratinei V, Lens P N L, Van Hullebusch E D. Bioconversion of selenate in methanogenic anaerobic granular sludge [J]. J. Environ. Qual., 2006, 35: 1873-1883.
[31] Zhang Y, Okeke B C, Frankenberger W T,etal.. Bacterial reduction of selenate to elemental selenium utilizing molasses as a carbon source [J]. Bioresour. Technol., 2008, 99: 1267-1273.
[32] Macy J M, Lawson S, DeMoll-Decker H. Bioremediation of selenium oxyanions in San Joaquin drainage water usingThaueraselenatisin a biological reactor system [J]. Appl. Microbiol. Biotechnol., 1993, 40: 588-594.
[33] Debieux C M, Dridge E J, Mueller C M,etal.. A bacterial process for selenium nanosphere assembly [J]. Proc. Natl. Acad. Sci. USA, 2011,108: 13480-13485.
[34] Turner R J, Weiner J H, Taylor D E,etal.. Selenium metabolism inEscherichiacoli[J]. Biometals, 1998, 11: 223-237.
[35] Lai C Y, Yang X, Tang Y,etal.. Nitrate shaped the selenate-reducing microbial community in a hydrogen-based biofilm reactor [J]. Environ. Sci. Technol., 2014, 48: 3395-3402.
[36] Lai C Y, Wen L L, Shi L D,etal.. Selenate and nitrate bioreductions using methane as the electron donor in a membrane biofilm reactor [J]. Environ. Sci. Technol., 2016, 50: 10179-10186.
[37] Qin D, Zhou J, Luo C,etal.. Surfactant-assisted synthesis of size-controlled trigonal Se/Te allow nanowires [J]. Nanotechnology, 2006, 17: 674.
[38] Kumar A, Sevonkaev I, Goia D. Synthesis of selenium particles with various morphologies [J]. J. Colloid. Interface. Sci., 2014, 416: 119-123.
[39] Oremland R S, Herbe M J, Blum J S,etal.. Structural and spectral features of selenium nanospheres produced by Se-respiring bacteria [J]. Appl. Environ. Microbiol., 2004, 70: 52-60.
[40] Lampis S. Delayed formation of zero-valent selenium nanoparticles byBacillusmycoidesSelTE01 as a consequence of selenite reduction under aerobic conditions [J]. Microb. Cell. Fact., 2014, 13: 35.
[41] Pearce C I, Coker V S, Charnock J M,etal.. Microbial manufacture of chalcogenide-based nanoparticles via the reduction of selenite usingVeillonellaatypica: An in situ EXAFS study [J]. Nanotechnology, 2008, 19: 155-603.
[42] Ho C T.Shewanella-mediated synthesis of selenium nanowires and nanoribbons [J]. J. Mater. Chem., 2010, 20: 5899-5905.
[43] Dobias J. Role of proteins in controlling selenium nanoparticle size [J]. Nanotechnology, 2011, 22: 195-205.
[44] Jain R. Extracellular polymeric substances govern the surface charge of biogenic elemental selenium nanoparticles [J]. Environ. Sci. Technol., 2015, 49: 1713-1720.
[45] Gao S, Tanji K K, Lin Z Q,etal.. Selenium removal and mass balance in a constructed flow-through wetland system [J]. J. Environ. Qual., 2003, 32: 1557-1570.
[46] Huang J C, Suárez M C, Yang S I,etal.. Development of a constructed wetland water treatment system for selenium removal: Incorporation of an algal treatment component[J]. Environ. Sci. Technol.,2013, 47: 10518-10525.