国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

二氫黃酮醇-4-還原酶在花青素合成中的功能及調(diào)控研究進展

2018-04-08 01:53李亞麗李瑞玲楊華麗湯浩茹
西北植物學(xué)報 2018年1期
關(guān)鍵詞:矮牽牛黃酮醇花青素

李亞麗,李 欣,肖 婕,李瑞玲,楊華麗,孫 勃,湯浩茹

(四川農(nóng)業(yè)大學(xué) 園藝學(xué)院,成都 611130)

植物色素主要有三大類:花青素、類胡蘿卜素和生物堿類色素,其中花青素是一種天然的水溶性色素,它可使植物組織和器官呈現(xiàn)出不同的顏色,成為衡量果樹果實品質(zhì)和觀賞植物觀賞價值的重要指標(biāo)之一。同時,花青素不僅可以幫助植物抵御生物脅迫和非生物脅迫,包括保護植物免受病原菌侵染、抗紫外輻射和清除體內(nèi)多余的活性氧[1],而且還具有良好的藥理作用,可以抗氧化、抗衰老、防止癌癥和心血管疾病等。植物中主要存在6種花青素,分別是天竺葵素(pelargonidin)、矢車菊素 (cyanidin)、飛燕草素(delphindin)、芍藥素(peonidin)、矮牽牛素(petunidin)及錦葵素(malvidin)。花青素是類黃酮途徑的重要代謝產(chǎn)物,經(jīng)苯丙氨酸裂解酶(PAL)、肉桂酸-4-羥化酶(C4H)、4香豆酰輔酶A連接酶(4CL)、查爾酮合成酶(CHS)、查爾酮異構(gòu)酶(CHI)、黃烷酮-3-羥化酶(F3H)、類黃酮3′ 羥化酶(F3′H)、類黃酮3′5′ 羥化酶(F3′5′H)、DFR、花青素合成酶(ANS)等一系列酶催化合成[2](圖1),其中CHS、CHI和F3H三種酶均處于類黃酮途徑的上游,對于花青素和黃酮醇的合成都十分關(guān)鍵,因而研究較多且功能已相對明確。有研究發(fā)現(xiàn),位于該途徑中下游的DFR蛋白對花青素的合成也至關(guān)重要,它不僅能引導(dǎo)類黃酮途徑流向花青素合成方向[4],而且更重要的是它在一定程度上決定著花青素的種類與含量。DFR可催化二氫山柰酚(dihydrokaempferol,DHK)、二氫槲皮素(dihydroquercetin,DHQ)、二氫楊梅素(dihydromyricetin,DHM)、柚皮素(naringenin)和圣草酚(eriodictyol)生成不同的花青素前體,再經(jīng)ANS催化生成不同的花青素使植物組織或器官所呈現(xiàn)出不同的顏色,有研究指出麝香蘭(Muscari)中的DFR以催化DHM為主,使花表現(xiàn)為藍(lán)色[5],而草莓(Fragaria×ananassa)果實中的DFR主要催化DHK,使其果實表現(xiàn)為紅色[6]。此外,DFR的功能喪失會使植物的組織或器官顏色變淡或呈無色[7-9]。因而,大多數(shù)改變植物器官顏色的基因工程主要圍繞DFR進行[10]。

1 DFR的生物學(xué)功能

1.1 DFR的特征

DFR一般以單基因或小基因家族的形式出現(xiàn)在植物中,擬南芥(Arabidopsis)、葡萄(Vitisvinifera)和番茄(Solanumlycopersicum)等植物基因組中僅有1個DFR基因[11],而矮牽牛(Petunia)、玉米(Zeamays)、非洲菊(Gerbera)、草莓和蕪菁(Brassicarapa)等植物中存在2個甚至多個DFR基因[6, 12-15]。一些雙子葉植物如擬南芥、矮牽牛和蕪菁的DFR基因均含有6個外顯子和5個內(nèi)含子,且它們內(nèi)含子的位置相同[11]。部分具有DFR小基因家族的植物如矮牽牛和百脈根(Lotuscorniculatus)分別有3和5個串聯(lián)的DFR基因[16-17],而玉米中存在2個非串聯(lián)的DFR基因[11]。大部分植物DFR編碼300~400個氨基酸的蛋白,但也有少數(shù)編碼的氨基酸數(shù)量不在此范圍內(nèi),如銅綠微囊藻DFR僅有72個氨基酸,而龍須藻DFR擁有634個氨基酸。DFR編碼的蛋白存在至少2個典型的結(jié)構(gòu)域,其中1個是能與NADPH結(jié)合的結(jié)構(gòu)域,該結(jié)構(gòu)域具有1個高度保守的NADP結(jié)合模體TGXXGXX(X代表任意氨基酸殘基)。另一個是在DFR編碼蛋白的132~157位氨基酸附近有1個由26個氨基酸組成的底物結(jié)合區(qū)。軟件預(yù)測的DFR具有短鏈脫氫酶(short-chain dehydrogenase/reductase,SDR)超家族的所有幾何特征,包括保守的YXXXK模體,略有差異的NADP結(jié)合模體和1個具有催化活性的絲氨酸。通過在大腸桿菌中異源表達(dá)葡萄VvDFR發(fā)現(xiàn)該晶體含有15個α螺旋,2個短310螺旋和12個β折疊[18]。

1.2 DFR的功能

DFR的底物比較寬泛,它可分別催化DHK、DHQ和DHM分別生成無色天竺葵素(leucopelargonidin)、無色矢車菊素(leucocyanidin)和無色飛燕草素(leucodelphinidin),隨后經(jīng)ANS催化生成天竺葵素、矢車菊素和飛燕草素(圖1)。一些DFR可以同時催化DHK、DHQ和DHM,但對3種底物的催化效率不同[19]。有的DFR只能催化某種特定的二氫黃酮醇,如草莓中DFR1只能催化DHK,而DFR2可催化DHM和DHQ[6]。因DFR催化的底物不同使植物出現(xiàn)不同的顏色,如矮牽牛中的DFR可催化DHQ和DHM,使其花出現(xiàn)藍(lán)色,因不能催化DHK,而使矮牽牛不能產(chǎn)生磚紅色的花[20-21],但Meyer等[22]將玉米DFR轉(zhuǎn)入突變?yōu)榘谆ǖ陌珷颗V袇s產(chǎn)生了磚紅色矮牽牛花。因此,DFR對底物的選擇是決定著植物中花色苷的種類的重要因素并在很大程度上決定花色苷的比例。而使植物最終呈不同的顏色。此外,有研究發(fā)現(xiàn)DFR還可作為黃烷酮4-還原酶(flavanone 4-reductase,F(xiàn)NR),催化柚皮素和圣草酚生成黃烷-4-醇(flavan-4-ols),進而在其他酶的作用下形成3-脫氧花青素(3-deoxyanthocyanidin),這不僅使植物呈現(xiàn)出橙紅色(圖1),而且3-脫氧花青素及其中間代謝產(chǎn)物五羥基黃酮(luteoforol)還可作為防御物質(zhì)抵御真菌和細(xì)菌侵害[23-25]。

PAL. 苯丙氨酸裂解酶;C4H. 肉桂酸-4-羥化酶;4CL. 4-香豆酰輔酶A連接酶; F3′H. 類黃酮-3′-羥化酶;F3′5′H. 類黃酮-3′5′-羥化酶;FLS. 黃酮醇合成酶;ANS. 花青素合成酶;UFGT. 類黃酮葡萄糖苷轉(zhuǎn)移酶; OMT. O-甲基轉(zhuǎn)移酶圖1 花青素的生物合成途徑(改自Casanal A[3])PAL. Phenylalanine ammonia lyase;C4H. Cinnamate-4-hydroxylase;4CL. 4-coumaroyl:CoA-ligase;F3′H. Flavanone 3′ hydrolase;F3′5′H. Flavonoid 3′, 5′-hydroxylase;FLS. Flavonol synthase;ANS. Anthocyanidin synthase;UFGT. UDPGlucose-flavoniod glucosytransterase; OMT. O-methyl transferaseFig.1 Anthocyanins biosynthetic pathway(modified from Casanal A[3])

1.3 DFR的作用機制

目前,以葡萄DFR的作用機制最為清楚,而其他植物的DFR作用機制研究相對較少,葡萄VvDFR的結(jié)構(gòu)顯示其催化機制與SDR家族蛋白高度一致:NADP+與DFR通過氫鍵和靜電相互作用結(jié)合,第163位絡(luò)氨酸具有催化作用,第128位絲氨酸穩(wěn)定底物,第167位賴氨酸通過與煙酰胺核糖形成氫鍵來降低第163位絡(luò)氨酸的酸度系數(shù)而促進質(zhì)子間的轉(zhuǎn)運[18]。DHK、DHM和DHQ在B-環(huán)分別有1、2、3個羥基,其羥基化模式是DFR底物選擇性的基礎(chǔ)。Johnson等[10]通過對非洲菊的研究首次提出了DFR的底物結(jié)合區(qū),并發(fā)現(xiàn)其中的第134位氨基酸種類是決定所催化底物的關(guān)鍵。有研究發(fā)現(xiàn)葡萄VvDFR的底物結(jié)合區(qū)有一個結(jié)合二氫黃酮醇B-環(huán)的口袋,其第133位天冬酰胺(與非洲菊第134位氨基酸對應(yīng))與底物B-環(huán)3′、4′ 位置的羥基形成氫鍵[18],進一步證實了DFR第133位氨基酸對其底物選擇的重要作用。有研究指出矮牽牛PhDFR第133位氨基酸為天冬氨酸,可催化DHQ和DHM,但不能有效催化DHK[10]。如果將該位點同為天冬氨酸的舞春花(Calibrachoa×hybrida)CaDFR轉(zhuǎn)入矮牽牛后,即可催化DHK產(chǎn)生天竺葵素[26],這可能是由于其他氨基酸產(chǎn)生的位阻效應(yīng)阻礙了矮牽牛PhDFR與DHK結(jié)合所致。同樣,天使花(Angeloniasalicariifolia)AngDFR的第12位絲氨酸和第26位甘氨酸以及大豆GmDFR2的第39位精氨酸突變后它們的花色均變淺[27-28],這也可能是突變后的氨基酸產(chǎn)生的位阻效應(yīng)造成的。此外,雖然DFR的第133位氨基酸為天冬酰胺時可催化DHK和DHQ[29-30],但其催化效率只有50%和66%,如果將DFR第133位天冬酰胺突變?yōu)樘於彼幔M管它對DHK和DHQ的催化效率都有所降低,但仍然偏向于催化DHQ,這可能是第133位氨基酸不能單獨決定DFR的底物選擇性[18]。

1.4 DFR的系統(tǒng)進化

基因重復(fù)是蛋白進化出新功能的源泉。目前被大眾熟知的進化機制有2種,分別是NEO-F(neofunctionalization )模型和EAC模型(escape from adaptive conflict)。NEO-F模型指基因復(fù)制后其中1個拷貝產(chǎn)生了新的功能,EAC則指基因復(fù)制后的2個拷貝都產(chǎn)生了新的功能且其原始功能依然存在[31]。Des Marais和Rausher[32]認(rèn)為DFR基因重復(fù)的適應(yīng)性變化為EAC模型,并根據(jù)此模型推測DFR最初可催化二氫黃酮醇、柚皮素和圣草酚,且其催化二氫黃酮醇的功能受到限制,在進化過程中,催化柚皮素和圣草酚的功能逐漸退化,而催化二氫黃酮醇的功能被釋放出來。不同DFR拷貝在進化過程中功能出現(xiàn)差異,黃芩(Scutellaria)中存在2個DFR拷貝,通過分析其遺傳進化,發(fā)現(xiàn)不平衡的正選擇壓力導(dǎo)致其不同拷貝的進化速度不同,致使其調(diào)控元件的數(shù)量、密碼子偏好性和氨基酸等不同以致于DFR功能出現(xiàn)差異[33]。我們通過在NCBI搜集不同物種的DFR蛋白序列,利用MEGA4構(gòu)建系統(tǒng)發(fā)育樹(圖2),該發(fā)育樹可分為A、B、C3個分枝,A分枝物種均為單子葉植物,而B、C分枝為雙子葉植物,與其他DFR進化樹結(jié)果一致[11],說明DFR的趨異可能發(fā)生在單子葉與雙子葉的趨異之后。我們的研究發(fā)現(xiàn),在紅藍(lán)光下差異表達(dá)的草莓FaDFR3與草莓FaDFR1、FaDFR2的遺傳距離相差甚遠(yuǎn),F(xiàn)aDFR3在圖2中C分枝上,該分枝上的DFR少有研究,功能尚不明確,但該枝上梨(Pyruspyrafolia)的DFR基因響應(yīng)UV-B光[34],這些基因是否與非生物脅迫相關(guān)有待證實。

2 DFR的調(diào)控

2.1 環(huán)境和激素對DFR的調(diào)控

2.1.1環(huán)境因子對DFR的調(diào)控許多植物在非生物脅迫下會合成花青素以保護機體免受損傷,這個過程往往伴隨著DFR表達(dá)量的升高。光可以從不同層面來影響花青素的含量,包括光質(zhì)(紅藍(lán)光、紫外光)、光量、光周期、光的方向[35]。近年來光對花青素含量影響的研究層出不窮,強光、藍(lán)光、紫外光均能誘導(dǎo)DFR表達(dá)以增加花青素的含量[36-39]。植物體內(nèi)至少存在4種光受體:光敏色素,感受紅光和遠(yuǎn)紅光;隱花色素,感受藍(lán)光和近紫外光;向光素,感受藍(lán)光;UV-B受體,感受較短波長的紫外光[40]。這些受體接收光信號后將其傳遞給下游信號傳導(dǎo)組分,如COP1,COP1可直接或間接調(diào)控MYB類轉(zhuǎn)錄因子,而MYB可以調(diào)節(jié)花青素合成結(jié)構(gòu)基因(DFR等)的表達(dá)從而影響花青素的含量[41]。溫度是影響花青素合成的又一關(guān)鍵因素,研究表明低溫誘導(dǎo)花青素合成,而高溫抑制花青素合成[42]。低溫環(huán)境下MdMYB10、MdbHLH3/33、SlAH(bHLH)等轉(zhuǎn)錄因子表達(dá)增多,可促進DFR等結(jié)構(gòu)基因的表達(dá)以提高花青素的含量[43-44]。然而也存在一些DFR受低溫誘導(dǎo)但與花青素合成關(guān)系不大,蕪菁中克隆得到的12個BrDFR中,BrDFR2、4、8、9受低溫誘導(dǎo)并與花青素積累相關(guān),而BrDFR1、3、5、6、10均受低溫和凍害誘導(dǎo)且與花青素的積累量無關(guān)[12]。此外,土壤微生物、干旱、鹽度和一定濃度的氮、磷與鈣等也可以誘導(dǎo)花青素合成基因DFR的表達(dá)[45-50]。

A~C代表3個不同的進化枝:A.單子葉植物;B和C.雙子葉植物圖2 DFR的系統(tǒng)進化樹A-C are three different clades: A. monocotyledonous; B and C. dicotyledonousFig.2 The phylogenetic tree of DFR

2.1.2激素對DFR的調(diào)控激素對花青素的合成具有重要的作用。有研究發(fā)現(xiàn),去掉草莓綠果期的瘦果可以促進DFR的表達(dá),而對去瘦果的草莓果實噴施NAA后DFR的表達(dá)受到抑制[51]。草莓、葡萄、甜櫻桃經(jīng)ABA處理后花青素含量增多[52-54],而紅肉蘋果組培苗經(jīng)ABA處理后花青素含量降低[55],與花青素合成相關(guān)的基因如DFR、MYB10等表達(dá)量減少,這種差異可能是由于蘋果是呼吸躍變型果實,草莓、葡萄和櫻桃(Prunusavium)屬于非呼吸躍變型果實,而ABA在非呼吸躍變型果實的成熟中發(fā)揮著重要的作用,同時可以促進成熟相關(guān)的花青素合成。大部分文獻表明脫落酸(ABA)、茉莉酸甲酯(JA)、細(xì)胞分裂素(CK)、油菜素內(nèi)酯(BR)對花青素的合成有促進作用,且BR可以促進JA和CK誘導(dǎo)的花青素合成,而赤霉素(GA)和乙烯則抑制花青素的合成[56-59]。激素對花青素的調(diào)控主要是通過調(diào)控各種轉(zhuǎn)錄因子的活性,再由轉(zhuǎn)錄因子調(diào)控花青素合成后期結(jié)構(gòu)基因(DFR等)的表達(dá)從而實現(xiàn)對花青素的調(diào)控[55,58]。

2.2 轉(zhuǎn)錄因子對DFR的調(diào)控

轉(zhuǎn)錄因子又稱反式作用因子,是一類可直接或間接與目的基因啟動子區(qū)域的順式作用元件發(fā)生特異性結(jié)合,并對基因的轉(zhuǎn)錄起調(diào)節(jié)作用的蛋白。研究發(fā)現(xiàn)MYB、bHLH與WD40這3類轉(zhuǎn)錄因子形成的三元復(fù)合體MBW與黃酮類物質(zhì)的合成密切相關(guān)[60]。MBW可活化花青素合成結(jié)構(gòu)基因的啟動子,從而促進花青素的合成。近年來,一些研究通過遺傳、生物化學(xué)和分子手段證明了DFR是MBW復(fù)合體的靶基因之一[61]。MYB類轉(zhuǎn)錄因子對花青素的調(diào)控研究較多,苦蕎FtMYB1和FtMYB2以及葡萄VvMYBA2等MYB可以促進DFR的表達(dá),抑制FLS的表達(dá)[62-63],而草莓FaMYB5、淫羊藿(Epimediumsagittatum)EsMYBF1則抑制DFR的表達(dá)[64-65],箭葉淫羊藿EsMYBA1、甜櫻桃PacMYBA、百合(Liliumspp.)LhMYB12已通過雙熒光素酶檢測分析發(fā)現(xiàn)其可活化DFR的啟動子[66-68]。擬南芥中的光敏色素互作因子PIF4與PIF5(bHLH)可以抑制DFR的啟動子活性從而負(fù)調(diào)控花青素的合成[69],而蘋果(Malusdomestica)MdbHLH3可與DFR的啟動子結(jié)合并促進它的表達(dá)[70]。紫羅蘭(Matthiolaincana)TTG(WD40)的一個核苷酸發(fā)生替換導(dǎo)致氨基酸改變后,其DFR不表達(dá),且花表現(xiàn)為白色[71]。此外,SPL9和NAC家族的ANAC0329等轉(zhuǎn)錄因子也可調(diào)控DFR的表達(dá),且最近發(fā)現(xiàn)的miR156-SPL9-DFR通路還可以幫助植物抵御非生物脅迫[72-73]。

2.3 部分結(jié)構(gòu)基因?qū)FR的影響

2.3.1F3′H和F3′5′H影響DFR功能的發(fā)揮F3′H可將DHK轉(zhuǎn)化為DHQ,而F3′5′H可將DHK轉(zhuǎn)化為DHM或?qū)HQ轉(zhuǎn)化為DHM[74],從而限制DFR功能的發(fā)揮[75]??的塑?Dianthuscaryophyllus)、君子蘭(Cliviaminiata)和玫瑰(Rosarugosa)均無藍(lán)紫色花是因為它們?nèi)狈3′5′H活性而無法生成DHM所致[76];相反,藍(lán)色三色堇(Violatricolor)花瓣中藍(lán)色正是由于F3′5′H、DFR和ANS這3個基因的高表達(dá)的結(jié)果[77]。野生草莓(Fragariavesca)果實全紅時期矢車菊素與天竺葵素的比值達(dá)0.51,遠(yuǎn)高于栽培草莓果實全紅時期的比值(0.05),這是因為野草莓中F3′H的表達(dá)量比栽培草莓中的F3′H高,催化DHK生成了更多的DHQ,使矢車菊素所占的比例升高[6]。當(dāng)缺少F3′H和F3′5′H活性的淡紅色矮牽牛轉(zhuǎn)入玫瑰DFR后,其花瓣和花藥都變成粉橙色,因為F3′H和F3′5′H酶活缺失,導(dǎo)致DHQ和DHM無法產(chǎn)生,所以DFR只能催化DHK產(chǎn)生橙色的天竺葵素衍生物[78]。非洲菊‘passion’可產(chǎn)生矢車菊素和天竺葵素這2類花青素,當(dāng)施用抑制F3′H活性的四環(huán)唑后,DHQ的濃度降低,天竺葵素衍生物含量增多[79],這已成為生產(chǎn)上改變非洲菊花色的重要手段。近年來有學(xué)者發(fā)現(xiàn)F3′H和F3′5′H不僅可以轉(zhuǎn)化不同的二氫黃酮醇,還能轉(zhuǎn)化不同的無色花色素,從而成為花青素合成新途徑[80](圖1)。

2.3.2FLS與DFR競爭底物FLS和DFR作用的底物相同,F(xiàn)LS可催化DHK, DHQ和DHM生成黃酮醇類物質(zhì)山柰酚、槲皮素和楊梅素(圖1)。研究表明,在白色矮牽?;ㄖ羞^表達(dá)DFR,花變粉紅色,而引入FLS的反義鏈抑制FLS活性后白色矮牽牛花也變?yōu)榉奂t色[81]。近年來,DFR和FLS的平衡關(guān)系影響花青素和黃酮醇的含量在多種植物中得到了驗證。Luo等[82]選取了7個不同花色的植物(玫瑰、桃花、矮牽牛花)探討其呈現(xiàn)出紅花和白花的原因,最終發(fā)現(xiàn)DFR和FLS的不平衡表達(dá)導(dǎo)致了這樣的花色差異。同樣對白花麝香蘭和藍(lán)花麝香蘭的轉(zhuǎn)錄組數(shù)據(jù)進行分析,發(fā)現(xiàn)白花麝香蘭中DFR表達(dá)很低,而楊梅素和山柰酚含量顯著升高,所以白花麝香蘭藍(lán)色缺失的主要原因是DFR表達(dá)降低導(dǎo)致黃酮醇類物質(zhì)增多[5]。這樣競爭底物的關(guān)系在蔬菜和果樹中同樣存在,將大豆GmMYB12B2轉(zhuǎn)入擬南芥中,DFR表達(dá)水平降低,而FLS表達(dá)明顯升高,黃酮醇類物質(zhì)含量增多[83],而沉默紫色土豆(IpomoeabatatasLam.)的IbDFR后黃酮醇也大量增加[83]。蘋果(Malusspp.)的果實和葉片中過表達(dá)McDFR和沉默McFLS都能使其花青素含量升高,紅色加深,且過表達(dá)McFLS和沉默McDFR均能使果實和葉片紅色變淺[84]。DFR和FLS對底物的競爭已成為調(diào)控許多植物呈色的關(guān)鍵方法。

3 展 望

近年來,隨著分子生物學(xué)技術(shù)的發(fā)展以及花青素代謝途徑研究的深入,DFR的結(jié)構(gòu)與功能得到了進一步闡釋,然而仍有許多問題尚不明確。首先,一些植物存在DFR基因家族,其家族不同成員的組織特異性不同,對各種脅迫的響應(yīng)也不相同,表明其不同成員的功能存在差異,如高粱(Sorghumbicolor)中SbDFR1調(diào)控花青素的積累,而SbDFR3則控制3-脫氧花青素的生成[25],因而DFR基因家族的植物其不同成員的功能以及它們之間的關(guān)系需要進一步研究。其次,盡管已經(jīng)證實一些轉(zhuǎn)錄因子可以活化DFR的啟動子,但其順式作用元件并不清楚,而當(dāng)今ChIP等技術(shù)的高速發(fā)展為此研究提供了可能,且不同轉(zhuǎn)錄因子對DFR的調(diào)控不同,研究特定轉(zhuǎn)錄因子與DFR的關(guān)系可為今后改變植物組織或器官的顏色提供新的思路。此外, DFR蛋白的3D結(jié)構(gòu)研究甚少,因而其對DFR底物選擇性的機理仍不清楚,這可能是今后研究的一個方向。

參考文獻:

[1]CHEN Q, YU H, TANG H,etal. Identification and expression analysis of genes involved in anthocyanin and proanthocyanidin biosynthesis in the fruit of blackberry[J].ScientiaHorticulturae, 2012, 141:61-68.

[2]JAAKOLA L. New insights into the regulation of anthocyanin biosynthesis in fruits[J].TrendsinPlantScience, 2013,18(9):477-483.

[3]CASANAL A, ZANDER U, MUNOZ C,etal. The strawberry pathogenesis-related 10 (PR-10) Fra a proteins control flavonoid biosynthesis by binding to metabolic intermediates[J].TheJournalofBiologicalChemistry, 2013,288(49):35 322-35 332.

[4]LIM S H, YOU M K, KIM D-H,etal. RNAi-mediated suppression of dihydroflavonol 4-reductase in tobacco allows fine-tuning of flower color and flux through the flavonoid biosynthetic pathway[J].PlantPhysiologyandBiochemistry, 2016, 109:482-490.

[5]LOU Q, LIU Y, QI Y,etal. Transcriptome sequencing and metabolite analysis reveals the role of delphinidin metabolism in flower colour in grape hyacinth[J].JournalofExperimentalBotany, 2014,65(12):3 157-3 164.

[6]MIOSIC S, THILL J, MILOSEVIC M,etal. Dihydroflavonol 4-reductase genes encode enzymes with contrasting substrate specificity and show divergent gene expression profiles inFragariaspecies[J].PLoSOne, 2014,9(11):e112707.

[7]KIM S, PARK J Y, YANG T J. Characterization of three active transposable elements recently inserted in three independent DFR-A alleles and one high-copy DNA transposon isolated from the Pink allele of the ANS gene in onion (AlliumcepaL.)[J].MolecularGeneticsandGenomics, 2015,290(3):1 027-1 037.

[8]ZHANG J, WENDELL D L, VAZIRI A,etal. The gene encoding dihydroflavonol 4-Reductase is a candidate for the anthocyaninless locus of rapid cyclingBrassicarapa(fast plants type)[J].PloSOne, 2016,11(8):e0161394.

[9]BAUMBACH J, PUDAKE R N, JOHNSON C,etal. Transposon Tagging of a Male-Sterility, female-sterility gene, St8, revealed that the meiotic MER3 DNA helicase activity Is essential for fertility in soybean[J].PLoSOne, 2016,11(3):e0150482.

[10]JOHNSON E T, RYU S, YI H,etal. Alteration of a single amino acid changes the substrate specificity of dihydroflavonol 4-reductase[J].ThePlantJournal, 2001,25(3):325-333.

[11]INAGAKI Y, JOHZUKA-HISATOMI Y, MORI T,etal. Genomic organization of the genes encoding dihydroflavonol 4-reductase for flower pigmentation in the Japanese and common morning glories[J].Gene, 1999,226(2):181-188.

[12]AHMED N U, PARK J I, JUNG H J,etal. Characterization of dihydroflavonol 4-reductase (DFR) genes and their association with cold and freezing stress inBrassicarapa[J].Gene, 2014,550(1):46-55.

[13]HUITS H S, GERATS A G, KREIKE M M,etal. Genetic control of dihydroflavonol 4-reductase gene expression inPetuniahybrida[J].ThePlantJournal, 1994,6(3):295-310.

[14]SCHWARZ-SOMMER Z, SHEPHERD N, TACKE E,etal. Influence of transposable elements on the structure and function of the A1 gene ofZeamays[J].TheEMBOjournal, 1987,6(2):287.

[15]HELARIUTTA Y, ELOMAA P, KOTILAINEN M,etal. Cloning of cDNA coding for dihydroflavonol-4-reductase (DFR) and characterization of dfr expression in the corollas ofGerberahybridavar. Regina (Compositae)[J].PlantMolecularBiology, 1993,22(2):183-193.

[16]YOSHIDA K, IWASAKA R, SHIMADA N,etal. Transcriptional control of the dihydroflavonol 4-reductase multigene family inLotusjaponicus[J].JournalofPlantResearch, 2010,123(6):801-805.

[17]CHEN M, SANMIGUEL P, BENNETZEN J L Sequence organization and conservation in sh2/a1-homologous regions of sorghum and rice[J].Genetics, 1998,148(1):435-443.

[18]PETIT P, GRANIER T, D’ESTAINTOT B L,etal. Crystal structure of grape dihydroflavonol-4-reductase, a key enzyme in flavonoid biosynthesis[J].JournalofMolecularBiology, 2007,368(5):1 345-1 357.

[19]MARTENS S, TEERI T, FORKMANN G. Heterologous expression of dihydroflavonol-4-reductases from various plants[J].FEBSletters, 2002,531(3):453-458.

[20]FORKMANN G, RUHNAU B. Distinct substrate specificity of dihydroflavonol-4-reductase from flowers ofPetuniahybrida[J].ZeitschriftfürNaturforschungC, 1987,42(9-10):1 146-1 148.

[21]JOHNSON E T, YI H, SHIN B,etal. Cymbidium hybrida dihydroflavonol-4-reductase does not efficiently reduce dihydrokaempferol to produce orange pelargonidin-type anthocyanins[J].ThePlantJournal, 1999,19(1):81-85.

[22]MEYER P, HEIDMANN I, FORKMANN G,etal. A new petunia flower colour generated by transformation of a mutant with a maize gene[J].Nature, 1987,330(6 149): 677-678.

[23]LI H, QIU J, CHEN F,etal. Molecular characterization and expression analysis of dihydroflavonol 4-reductase (DFR) gene inSaussureamedusa[J].MolecularBiologyReports, 2012,39(3):2 991-2 999.

[24]FLACHOWSKY H, HALBWIRTH H, TREUTTER D,etal. Silencing of flavanone-3-hydroxylase in apple (MalusxdomesticaBorkh.) leads to accumulation of flavanones, but not to reduced fire blight susceptibility[J].PlantPhysiologyBiochemistry, 2012, 51:18-25.

[25]LIU H, DU Y, CHU H,etal. Molecular dissection of the pathogen-inducible 3-deoxyanthocyanidin biosynthesis pathway in sorghum[J].PlantandCellPhysiology, 2010,51(7):1 173-1 185.

[26]CHU Y X, CHEN H R, WU A Z,etal. Expression analysis of dihydroflavonol 4-reductase genes inPetuniahybrida[J].GeneticsandMolecularResearch, 2015,14(2):5 010-5 021.

[27]YAN F, DI S, RODAS F R,etal. Allelic variation of soybean flower color gene W4 encoding dihydroflavonol 4-reductase 2[J].BMCPlantBiology, 2014,14(1):58.

[28]GOSCH C, NAGESH K M, THILL J,etal. Isolation of dihydroflavonol 4-reductase cDNA clones fromAngeloniaxangustifoliaand heterologous expression as GST fusion protein inEscherichiacoli[J].PloSone, 2014,9(9):e107755.

[29]SHIMADA N, SASAKI R, SATO S,etal. A comprehensive analysis of six dihydroflavonol 4-reductases encoded by a gene cluster of theLotusjaponicusgenome[J].JournalofExperimentalBotany, 2005.56(419):2 573-2 585.

[30]XIE D Y, JACKSON L A, COOPER J D,etal. Molecular and biochemical analysis of two cDNA clones encoding dihydroflavonol-4-reductase fromMedicagotruncatula[J].PlantPhysiology, 2004,134(3):979-994.

[31]STORZ J F. Genome evolution: gene duplication and the resolution of adaptive conflict[J].Heredity(Edinb), 2009,102(2):99-100.

[32]DES MARAIS D L,RAUSHER M D. Escape from adaptive conflict after duplication in an anthocyanin pathway gene[J].Nature, 2008,454(1 205):762-765.

[33]HUANG B H, CHEN Y W, HUANG C L,etal. Imbalanced positive selection maintains the functional divergence of duplicated dihydrokaempferol-4-reductase genes[J].ScientificReports, 2016, 6:39031.

[34]QIAN M, YU B, LI X,etal. Isolation and expression analysis of anthocyanin biosynthesis genes from the red Chinese sand pear,PyruspyrifoliaNakai cv. Mantianhong, in response to methyl jasmonate treatment and UV-B/VIS conditions[J].PlantMolecularBiologyReporter, 2014,32(2):428-437.

[35]JIAO Y, LAU O S, DENG X W. Light-regulated transcriptional networks in higher plants[J].NatureReviewsGenetics, 2007,8(3):217-230.

[36]ZHANG K M, WANG J W, GUO M L,etal. Short-day signals are crucial for the induction of anthocyanin biosynthesis inBegoniasemperflorensunder low temperature condition[J].JournalofPlantPhysiology, 2016, 204:1-7.

[37]ALONSO R, BERLI F J, FONTANA A,etal. Malbec grape (VitisviniferaL.) responses to the environment: Berry phenolics as influenced by solar UV-B, water deficit and sprayed abscisic acid[J].PlantPhysiologyandBiochemistry, 2016, 109:84-90.

[38]JIANG M, REN L, LIAN H,etal. Novel insight into the mechanism underlying light-controlled anthocyanin accumulation in eggplant (SolanummelongenaL.)[J].PlantScience, 2016, 249:46-58.

[39]HONG Y, TANG X, HUANG H,etal. Transcriptomic analyses reveal species-specific light-induced anthocyanin biosynthesis in chrysanthemum[J].BMCGenomics, 2015, 16:202.

[40]ZORATTI L, SARALA M, CARVALHO E,etal. Monochromatic light increases anthocyanin content during fruit development in bilberry[J].BMCPlantBiology, 2014, 14:377.

[41]MAIER A, SCHRADER A, KOKKELINK L,etal. Light and the E3 ubiquitin ligase COP1/SPA control the protein stability of the MYB transcription factors PAP1 and PAP2 involved in anthocyanin accumulation inArabidopsis[J].ThePlantJournal, 2013,74(4):638-651.

[42]FERNANDES DE OLIVEIRA A, MERCENARO L, DEL CARO A,etal. Distinctive anthocyanin accumulation responses to temperature and natural UV radiation of two field-grownVitisviniferaL. cultivars[J].Molecules, 2015,20(2):2 061-2 080.

[43]QIU Z, WANG X, GAO J,etal. The tomato Hoffman’s anthocyaninless gene encodes a bHLH transcription factor involved in anthocyanin biosynthesis that Is developmentally regulated and induced by low temperatures[J].PloSOne, 2016,11(3):e0151067.

[44]WANG N, ZHANG Z, JIANG S,etal. Synergistic effects of light and temperature on anthocyanin biosynthesis in callus cultures of red-fleshed apple (Malussieversiif. niedzwetzkyana)[J].PlantCell,TissueandOrganCulture(PCTOC), 2016,127(1):217-227.

[45]HILBERT G, SOYER J, MOLOT C,etal. Effects of nitrogen supply on must quality and anthocyanin accumulation in berries of cv. Merlot[J].Vitis-JournalofGrapevineResearch, 2015,42(2):69.

[47]XU W, PENG H, YANG T,etal. Effect of calcium on strawberry fruit flavonoid pathway gene expression and anthocyanin accumulation[J].PlantPhysiologyandBiochemistry, 2014, 82:289-298.

[48]IUCHI S, YAMAGUCHI-SHINOZAKI K, URAO T,etal. Novel drought-inducible genes in the highly drought-tolerant cowpea: cloning of cDNAs and analysis of the expression of the corresponding genes[J].PlantandCellPhysiology, 1996,37(8):1 073-1 082.

[49]ALI M B,MCNEAR D H. Induced transcriptional profiling of phenylpropanoid pathway genes increased flavonoid and lignin content inArabidopsisleaves in response to microbial products[J].BMCPlantBiology, 2014,14(1):84.

[50]KIM J, LEE W J, VU T T,etal. High accumulation of anthocyanins via the ectopic expression of AtDFR confers significant salt stress tolerance inBrassicanapusL[J].PlantCellReports, 2017,36(8):1 215-1 224.

[51]MOYANO E, PORTERO-ROBLES I, MEDINA-ESCOBAR N,etal. A fruit-specific putative dihydroflavonol 4-reductase gene is differentially expressed in strawberry during the ripening process[J].PlantPhysiology, 1998,117(2):711-716.

[52]SHEN X, ZHAO K, LIU L,etal. A role for PacMYBA in ABA-regulated anthocyanin biosynthesis in red-colored sweet cherry cv. Hong Deng (PrunusaviumL.)[J].PlantandCellPhysiology, 2014,55(5):862-880.

[53]BAN T, ISHIMARU M, KOBAYASHI S,etal. Abscisic acid and 2, 4-dichlorophenoxyacetic acid affect the expression of anthocyanin biosynthetic pathway genes in ‘Kyoho’grape berries[J].TheJournalofHorticulturalScienceandBiotechnology, 2003,78(4):586-589.

[54]LI D, LUO Z, MOU W,etal. ABA and UV-C effects on quality, antioxidant capacity and anthocyanin contents of strawberry fruit (FragariaananassaDuch.)[J].PostharvestBiologyandTechnology, 2014, 90:56-62.

[55]SUN J, WANG Y, CHEN X,etal. Effects of methyl jasmonate and abscisic acid on anthocyanin biosynthesis in callus cultures of red-fleshed apple (Malussieversiif. niedzwetzkyana)[J].PlantCell,TissueandOrganCulture(PCTOC), 2017,130(2):227-237.

[56]XU W, DUBOS C, LEPINIEC L. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes[J].TrendsinPlantScience, 2015,20(3):176-185.

[57]ZHANG N, SUN Q, LI H,etal. Melatonin improved anthocyanin accumulation by regulating gene expressions and resulted in high reactive oxygen species scavenging capacity in cabbage[J].FrontiersinPlantScience, 2016, 7:197.

[58]PENG Z, HAN C, YUAN L,etal. Brassinosteroid enhances jasmonate-induced anthocyanin accumulation inArabidopsisseedlings[J].JournalofIntegrativePlantBiology, 2011,53(8):632-640.

[59]YUAN L B, PENG Z H, ZHI T T,etal. Brassinosteroid enhances cytokinin-induced anthocyanin biosynthesis inArabidopsisseedlings[J].BiologiaPlantarum, 2014,59(1):99-105.

[60]VALLARINO J G, OSORIO S, BOMBARELY A,etal. Central role of FaGAMYB in the transition of the strawberry receptacle from development to ripening[J].NewPhytologist, 2015,208(2):482-496.

[61]XU W, GRAIN D, BOBET S,etal. Complexity and robustness of the flavonoid transcriptional regulatory network revealed by comprehensive analyses of MYB-bHLH-WDR complexes and their targets inArabidopsisseed[J].NewPhytologist, 2014,202(1):132-144.

[62]BAI Y C, LI C L, ZHANG J W,etal. Characterization of two tartary buckwheat R2R3-MYB transcription factors and their regulation of proanthocyanidin biosynthesis[J].PhysiologiaPlantarum, 2014,152(3):431-440.

[63]NIU T, GAO Z, ZHANG P,etal. MYBA2 gene involved in anthocyanin and flavonol biosynthesis pathways in grapevine[J].GeneticsandMolecularResearch, 2016,15(4):8 922.

[64]王玲, 湯浩茹, 王小蓉,etal. 利用 VIGS 技術(shù)研究草莓 FaMYB5 的功能[J]. 園藝學(xué)報, 2017,44(1):33-42.

WANG L, TANG H R, WANG X R,etal. Virs-induced gene silencing as a tool for FaMYB5 gene functional studies in strawberry[J].ActaHorticulturaeSinica, 2017,44(1):33-42.

[65]HUANG W, KHALDUN A B M, CHEN J,etal. A R2R3-MYB transcription factor regulates the flavonol biosynthetic pathway in a traditional Chinese Medicinal plant,Epimediumsagittatum[J].FrontiersinPlantScience, 2016, 7: e70778.

[66]HUANG W, SUN W, LV H,etal. A R2R3-MYB transcription factor fromEpimediumsagittatumregulates the flavonoid biosynthetic pathway[J].PLoSOne, 2013,8(8):e70778.

[67]RAVAGLIA D, ESPLEY R V, HENRY-KIRK R A,etal. Transcriptional regulation of flavonoid biosynthesis in nectarine (Prunuspersica) by a set of R2R3 MYB transcription factors[J].BMCPlantBiology, 2013,13(1):1.

[68]LAI Y-S, SHIMOYAMADA Y, NAKAYAMA M,etal. Pigment accumulation and transcription of LhMYB12 and anthocyanin biosynthesis genes during flower development in the Asiatic hybrid lily (Liliumspp.)[J].PlantScience, 2012, 193:136-147.

[69]LIU Z, ZHANG Y, WANG J,etal. Phytochrome-interacting factors PIF4 and PIF5 negatively regulate anthocyanin biosynthesis under red light inArabidopsisseedlings[J].PlantScience, 2015, 238:64-72.

[70]XIE X B, LI S, ZHANG R F,etal. The bHLH transcription factor MdbHLH3 promotes anthocyanin accumulation and fruit colouration in response to low temperature in apples[J].Plant,Cell&Environment, 2012,35(11):1 884-1 897.

[71]DRESSEL A,HEMLEBEN V. Transparent Testa Glabra 1 (TTG1) and TTG1-like genes inMatthiolaincanaR. Br. and related Brassicaceae and mutation in the WD-40 motif[J].PlantBiology, 2009,11(2):204-212.

[72]CUI L-G, SHAN J-X, SHI M,etal. ThemiR156-SPL9-DFR pathway coordinates the relationship between development and abiotic stress tolerance in plants[J].ThePlantJournal, 2014,80(6):1 108-1 117.

[73]MAHMOOD K, XU Z, EL-KEREAMY A,etal. TheArabidopsistranscription factor ANAC032 represses anthocyanin biosynthesis in response to high sucrose and oxidative and abiotic stresses[J].FrontierinPlantScience, 2016, 7:1 548.

[74]BRUGLIERA F, BARRI‐REWELL G, HOLTON T A,etal. Isolation and characterization of a flavonoid 3′-hydroxylase cDNA clone corresponding to the Ht1 locus ofPetuniahybrida[J].ThePlantJournal, 1999,19(4):441-451.

[75]CASTELLARIN S D, DI GASPERO G, MARCONI R,etal. Colour variation in red grapevines (VitisviniferaL.): genomic organisation, expression of flavonoid 3′-hydroxylase, flavonoid 3′, 5′-hydroxylase genes and related metabolite profiling of red cyanidin-/blue delphinidin-based anthocyanins in berry skin[J].BMCGenomics, 2006,7(1):12.

[76]TANAKA Y, TSUDA S, KUSUMI T. Metabolic engineering to modify flower color[J].PlantandCellPhysiology, 1998,39(11):1 119-1 126.

[77]LI Q, WANG J, SUN H-Y,etal. Flower color patterning in pansy (Viola×wittrockianaGams.) is caused by the differential expression of three genes from the anthocyanin pathway in acyanic and cyanic flower areas[J].PlantPhysiologyandBiochemistry, 2014, 84:134-141.

[78]TANAKA Y, FUKUI Y, FUKUCHI-MIZUTANI M,etal. Molecular cloning and characterization ofRosahybridadihydroflavonol 4-reductase gene[J].PlantandCellPhysiology, 1995,36(6):1 023-1 031.

[79]BASHANDY H, PIETIAINEN M, CARVALHO E,etal. Anthocyanin biosynthesis ingerberacultivar ‘Estelle’ and its acyanic sport ‘Ivory’[J].Planta, 2015,242(3):601-611.

[80]SCHWINN K, MIOSIC S, DAVIES K,etal. The B-ring hydroxylation pattern of anthocyanins can be determined through activity of the flavonoid 3′-hydroxylase on leucoanthocyanidins[J].Planta, 2014,240(5):1 003-1 010.

[81]DAVIES K M, SCHWINN K E, DEROLES S C,etal. Enhancing anthocyanin production by altering competition for substrate between flavonol synthase and dihydroflavonol 4-reductase[J].Euphytica, 2003,131(3):259-268.

[82]LUO P, NING G, WANG Z,etal. Disequilibrium of flavonol synthase and dihydroflavonol-4-reductase expression associated tightly to white vs. red color flower formation in plants[J].FrontierinPlantScience, 2015, 6:1257.

[83]WANG H, FAN W, LI H,etal. Functional characterization of dihydroflavonol-4-reductase in anthocyanin biosynthesis of purple sweet potato underlies the direct evidence of anthocyanins function against abiotic stresses[J].PLoSOne, 2013,8(11):e78484.

[84]TIAN J, HAN Z Y, ZHANG J,etal. The balance of expression of dihydroflavonol 4-reductase and flavonol synthase regulates flavonoid biosynthesis and red foliage coloration in crabapples[J].ScientificReports, 2015, 5:12 228.

猜你喜歡
矮牽牛黃酮醇花青素
44個矮牽牛品種在北京不同地區(qū)的適應(yīng)性研究
黃酮醇在果樹中的功能的研究進展
我眼中的矮牽牛
花園中重要的裝飾植物
——矮牽牛
原花青素B2通過Akt/FoxO4通路拮抗內(nèi)皮細(xì)胞衰老的實驗研究
芍藥黃色花瓣中黃酮醇及其糖苷類化合物組成分析
UPLC法同時測定香椿芽中8種黃酮醇苷
花青素對非小細(xì)胞肺癌組織細(xì)胞GST-π表達(dá)的影響
矮牽牛栽培管理技術(shù)
山楸梅漿果中花青素提取方法的優(yōu)化和測定