国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

On k-trees with Extremal Signless Laplacian Estrada Index and Estrada Index

2018-04-09 10:56,,
關(guān)鍵詞:定理證明結(jié)構(gòu)

, ,

(College of Mathematics and Statistics, South-Central University for Nationalities, Wuhan 430074, China)

All graphs considered in this paper are finite, undirected and simple. LetG=(V,E) be a connected graph, letNG(v)={u|uv∈E},NG[v]=NG(v)∪{v}. DenotedG(v)=|NG(v)| by the degree of the vertexvofG. IfW?V, letNG(W)=∪v∈WNG(v)W,NG[W] be the set of vertices within distance at most 1 fromW,G-Wbe the subgraph ofGobtained by deleting the vertices ofWand the edges incident with them. IfE0?E(G), we denote byG-E0the subgraph ofGobtained by deleting the edges inE0. IfE1is the subset of the edge set of the complement ofG,G+Edenotes the graph obtained fromGby adding the edges inE1: IfE={xy} andW={v}, we writeG-xyandG-vinstead ofG-{xy} andG-{v}, respectively. The joinG1∨G2of two edge-disjoint graphsG1andG2is obtained by adding an edge from each vertex inG1to each vertex inG2. For other undefined notations we refer to Bollobás[1].

LetD=D(G)=diag(d(v1),…,d(vn)) be a diagonal matrix with degrees of the corresponding vertices ofGon the main diagonal and zero elsewhere, whered(vi) is the degree ofvi. The matrixQ=D(G)+A(G) is called the signless Laplacian ofG. SinceQis real symmetric and positive semi-definite matrix, its eigenvalues are real numbers. Letq1≥q2≥…≥qn≥0 are the signless Laplacian eigenvalues ofG. The multiplicity of 0 as an eigenvalue ofQis equal to the number of bipartite connected components ofG. The set of all eigenvalues ofQis the signless Laplacian spectrum ofG.

1 Preliminaries

In this section, we give some definitions and structure properties ofk-trees which will be used in the proof of our main results.

Lemma1[11]

LetGandHbe two graphs withu1,v1∈V(G) andu2,v2∈V(H). IfMk(G;u1,v1)≤Mk(H;u2,v2) for all positive integersk, then we write (G;u1,v1)?M(H;u2,v2). If (G;u1,v1)?M(H;u2,v2) and there is at least one positive integerk0such thatMk0(G;u1,v1)

Fig.1 The k-trees Sk,n-k and 圖1 k-樹 Sk,n-k 和

Lemma3Letu,v∈V(G) andNG(v)?NG[u]. Then

(i) (G;v)?M(G;u),and (G;w,v)?M(G;w,u) for eachw∈V(G) . Moreover, ifdG(v)

(ii) (G;v)?T(G;u), and (G;w,v)?T(G;w,u) for eachw∈V(G)[12]. Moreover, ifdG(v)

ProofWe only need to prove (i).

Firstly, we prove (G;v)?M(G;u).

LetWbe a walk inWk(G;v). Ifuis not inW, note thatNG(v)?NG[u], letf(W)=W′, whereW′ is the walk that is obtained by replacing the vertexvbyu, obviously,W′∈Wk(G;u) . Ifuis inW, we can also lookWas a walk which is starting and ending at vertexu, letf(W)=W.

Obviously,fis an injection fromWk(G;v) toWk(G;u). Hence (G;v)?M(G;u). IfdG(v)

(i) If (G;v)T(G;u), and (G;wi,v)?M(G;wi,u) for eachi=1,2,…,r,thenEE(Gv)

(ii) If (G;v)T(G;u), and (G;wi,v)?T(G;wi,u) for eachi=1,2,…,r, thenSLEE(Gv)

Lemma 4 is an excellent tool to deal with the extremal problems on Estrada index and signless Laplacian Estrada index, but it has many conditions which have to be provided when we want to use it.The lemma 3 enables us to discover a special case that provides such conditions.

2 Main results

In this section, we will give a unified method to characterize thek-trees with the largest and second largest Estrada index and signless Laplacian Estrada index, respectively, which is simpler than the method provided in Ref[10].

Lemma5LetGbe a graph withvu,uw∈E(G) andvw?E(G). LetG′=G-vu+vw. IfNG(v)?NG[u], thenEE(G)

ProofLetH=G-vu. ThenG=H+vu;G′=H+vwandNH(v)?NH[u]. Note thatw?NG[v], we havedH(v)

Repeated by Lemma 5, we can obtain the following result.

Lemma6LetGbe a graph andX={x1,x2,…,xt} be an independent set of equivalent vertices such thatxiu,uw∈E(G) andxiw?E(G) for 1≤i≤t. LetG′=G-{xiu,1≤i≤t}+{xiw,1≤i≤t}. IfNG(v)?NG[u], thenEE(G)

ProofSince there exists a vertexv∈S1(G-S1(G)), letNG-S1(G)(v)={v1,v2,…,vk},UG(v)=NG(v)-NG-S1(G)(v). Then the vertices inNG-S1(G)(v) induce a complete graphKk; and the vertices inUG(v) which are all simplicial verices, induce an empty graph.

For a vertexx∈UG(v), it is adjacent to all but one vertex inNG-S1(G)(v). LetUibe the set of vertices inUG(v) whose neighbour set isPG(v)=|{1≤i≤k,Ui≠?}|, where 1≤i≤k. For a vertexv∈S1(G-S1(G)), letv∈S1(G-S1(G)) andp(G)=min|{PG(v),v∈S1(G-S1(G))}|.Without loss of generality, letpG(u)=p(G),NG-S1(G)(v)={v1,v2,…,vk} andUG(u)=U1∪…∪Up(G)(as shown in Fig.2). Obviously, we haveNG[Ui]?NG[u] for 1≤i≤k. LetG′=G-{ux:x∈U1}+{v1x:x∈U1}.

Fig.2 The structure of NG-S1(G)(v) and UG(u)圖2  NG-S1(G)(v)和UG(u)的結(jié)構(gòu)

Note thatv1x?E(G). By Lemma 6, we haveEE(G)

Fig.3 The structure of the graph G* in the proof in Theorem 9圖3 定理9證明中圖G* 的結(jié)構(gòu)

LetV(G*)S1(G*)={v1,v2,…,vk+1} and |S1(G*-S1(G*))|={vk+1}. Further, letUG(vk+1)=NG(vk+1)-{v1,v2,…,vk};Uibe the set of vertices inUG(vk+1) whose neighbour set is {v1,…,vi-1,vi+1,…,vk,vk+1} for 1≤i≤k, andp=|{1≤i≤k,Ui≠?}| (as shown in Fig.3).

Case3p=1 andS1(G*)-UG(vk+1)=?.

This completes the proof.

Fig.4 The graphs Sn and 圖4 圖Sn和

[1]Bollobás B. Modern graph theory[M]. Berlin, New York: Springer-Verlag, 1998.

[2]Estrada E. Characterization of 3D molecular structure[J]. Chemical Physics Letters, 2000, 319: 713-718.

[4]Ayyaswamy S K, Balachandran S, Venkatakrishnan Y B, et al. Signless Laplacian Estrada index[J]. MATCH - Communications in Mathematical and in Computer Chemistry, 2011, 66: 785-794.

[5]Harary F, Palmer E M. On acyclic simplicial complexes[J]. Mathematika, 1968,15: 115-122.

[6]Beineke L W, Pippert R E. The number of labeledk-dimensional trees[J]. Journal of Combinatorial Theory, 1969, 6(2): 200-205.

[7]Estes J, Wei B. Sharp bounds of the Zagreb indices ofk-trees[J]. Journal of Combinatorial Optimization, 2014, 27: 271-291.

[8]Wang S, Wei B. Multiplicative Zagreb indices ofk-trees[J]. Discrete Applied Mathematics, 2015, 180: 168-175.

[9]Wang X X, Zhai M Q, Shu J L. Upper bounds on the spectral radius ofk-trees[J]. Applied Mathematics- Journal of Chinese Universities Series a, 2011, 26(2): 209-214.

[10]Huang F, Wang S. On maximum Estrada indices ofk-trees[J]. Linear Algebra and Its Applications, 2015, 487: 316-327.

[11]Song L, Staton W, Wei B. Independence polynomials ofk-tree related graphs[J]. Discrete Applied Mathematics, 2010, 158: 943-950.

[12]Nasiri R, Elahi H R, Fath-Tabar G H, et al. The signless Laplacian Estrada index of tricyclic graphs [EB/OL]. [2013-11-30].http://arxiv.org/abs/1412.2280v2.

[13]Du Z, Liu Z. On the Estrada and Laplacian Estrada indices of graphs[J]. Linear Algebra and Its Applications, 2011,435: 2065-2076.

[14]Ellahi H, Nasiri R, Fath-Tabar G, et al. On maximum signless Laplacian Estrada indices of graphs with given parameters[EB/OL]. [2013-11-30]. http:// arXiv:1406.2004v1.

猜你喜歡
定理證明結(jié)構(gòu)
J. Liouville定理
聚焦二項式定理創(chuàng)新題
獲獎證明
《形而上學》△卷的結(jié)構(gòu)和位置
判斷或證明等差數(shù)列、等比數(shù)列
論結(jié)構(gòu)
A Study on English listening status of students in vocational school
論《日出》的結(jié)構(gòu)
證明我們的存在
創(chuàng)新治理結(jié)構(gòu)促進中小企業(yè)持續(xù)成長
京山县| 屏边| 仙居县| 会昌县| 湖北省| 东阿县| 顺平县| 安龙县| 原阳县| 托克逊县| 南康市| 中西区| 吉首市| 秦安县| 榆社县| 贵定县| 安吉县| 阳春市| 苗栗市| 阿拉善右旗| 冷水江市| 新龙县| 盐亭县| 新安县| 青冈县| 嘉禾县| 大冶市| 台湾省| 都匀市| 沭阳县| 探索| 淮滨县| 东乌珠穆沁旗| 台湾省| 建宁县| 平山县| 呈贡县| 新干县| 凭祥市| 左贡县| 乐东|