国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

水稻W(wǎng)RKY轉(zhuǎn)錄調(diào)控因子研究進展

2018-04-09 03:37:26鄭超鄭二松王栩鳴李冬月楊勇余初浪周潔嚴成其陳劍平
生物技術通訊 2018年2期
關鍵詞:葉枯病稻瘟病結(jié)構(gòu)域

鄭超,鄭二松,王栩鳴,李冬月,楊勇,余初浪,周潔,嚴成其,陳劍平

1.浙江師范大學 化學與生命科學學院,浙江 金華 321004;2.浙江省農(nóng)業(yè)科學院 病毒學與生物技術研究所,浙江省有害生物防控國家重點實驗室培育基地,農(nóng)業(yè)部植保生物技術重點實驗室,浙江省植物病毒重點實驗室,浙江 杭州 310021

水稻(Oryza sativaL.)是世界上最重要的糧食作物之一,是全世界半數(shù)以上(50%~80%)人口的主糧[1]。在人類幾千年的育種過程中,高產(chǎn)一直是水稻品種選育的主要目標,也是農(nóng)業(yè)生產(chǎn)追求的主要目標。在糧食生產(chǎn)過程中,生物或非生物脅迫往往會嚴重影響水稻的產(chǎn)量。由于水稻種植方式單一,在栽培過程中很容易受到外界多種病原菌的侵害,干旱和鹽漬等非生物脅迫也是影響水稻產(chǎn)量的主要因素。近年來,大量研究表明WRKY轉(zhuǎn)錄因子家族在水稻抗病耐逆中發(fā)揮重要作用。因此,深入了解這些基因在水稻抗病耐逆中的作用,探索相關的信號調(diào)控途徑及代謝過程,理解相應的分子調(diào)控機理,對我們進一步發(fā)展抗病耐逆材料,創(chuàng)制水稻新品種具有重要的現(xiàn)實意義。

1 WRKY轉(zhuǎn)錄調(diào)控因子

轉(zhuǎn)錄調(diào)控因子是一類在生物中調(diào)節(jié)基因表達的蛋白。真核生物中的轉(zhuǎn)錄調(diào)控因子又稱反式作用因子,是一類與靶基因啟動子區(qū)域順式作用元件特異性結(jié)合的DNA結(jié)合蛋白,結(jié)合后使得靶基因在轉(zhuǎn)錄水平發(fā)生顯著變化,激活或抑制靶基因的表達[2]。這種結(jié)合的特異性反映在轉(zhuǎn)錄調(diào)控因子特殊的空間結(jié)構(gòu)和順式作用元件基本對應的核酸序列上。轉(zhuǎn)錄調(diào)控因子在調(diào)控基因表達上具有重要作用,據(jù)報道在擬南芥和水稻中分別鑒定到2100和2300個轉(zhuǎn)錄調(diào)控因子[3]。在水稻基因組中有許多參與編碼轉(zhuǎn)錄調(diào)控因子的基因,而且有的轉(zhuǎn)錄調(diào)控因子家族擁有上百個基因,比如bZIP家族、MYC家族、MYB家族、WRKY家族、AP2/EREBP家族和NAM家族[4],這些轉(zhuǎn)錄調(diào)控因子參與水稻生長、發(fā)育和抗病耐逆,具有極其重要的生物學功能。

1.1 WRKY轉(zhuǎn)錄調(diào)控因子的發(fā)現(xiàn)

WRKY轉(zhuǎn)錄調(diào)控因子家族是植物中研究最廣泛的轉(zhuǎn)錄因子之一,屬于高等植物10大轉(zhuǎn)錄因子家族[5]。20多年前,Ishiguro等從甘薯(Ipomoea batatas)中鑒定得到一個新的DNA結(jié)合蛋白,命名為SWEET POTATO FACTOR 1(SPF1),這是發(fā)現(xiàn)的第一個WRKY轉(zhuǎn)錄調(diào)控因子[6],其后許多WRKY家族的基因在不同植物種類中也被確認。雖然在一些非植物種類的基因組(單細胞真核生物Giardia lamblia[7]和黏菌Dictyostelium dis?coideum[8])中也鑒定得到WRKY轉(zhuǎn)錄調(diào)控因子,但目前并沒有在動物基因組中鑒定到WRKY轉(zhuǎn)錄因子,有研究報道WRKY轉(zhuǎn)錄調(diào)控因子起源于單細胞真核生物,在植物中得到發(fā)展且普遍存在于植物中[8]。隨著越來越多的植物基因組測序完成,WRKY轉(zhuǎn)錄調(diào)控因子的全基因組鑒定及其功能分析也已完成[9-11]。在擬南芥(Arabidopsis thali?ana)中有74個WRKY基因[12],大豆(Glycine max)中有197個[13],番茄(Solanum lycopersicum)中有81個[14-15],黃瓜(Cucumis sativus)中有55個[16],玉米(Zea mays)中有119個[17],水稻中有109個[18]。

1.2 WRKY轉(zhuǎn)錄調(diào)控因子的結(jié)構(gòu)特征及分類

WRKY轉(zhuǎn)錄調(diào)控因子的命名是因其N端氨基酸序列中有保守的WRKY序列[19]。所有WRKY轉(zhuǎn)錄調(diào)控因子的一個共同特點是至少包含1個約由60個氨基酸殘基組成的高度保守的WRKY結(jié)構(gòu)域,每個WRKY結(jié)構(gòu)域包含1個位于C端的鋅指結(jié)構(gòu)模型(C2H2或C2-HC)和位于N端的嚴格保守的七肽序列WRKYGQK[20-21]。雖然WRKYGQK序列是高度保守的,但也有1或2個殘基被替換的9個突變體在19個結(jié)構(gòu)域中被發(fā)現(xiàn),幾個WRKY突變體模式存在于水稻W(wǎng)RKY蛋白中,大多屬于第Ⅱc亞組和第Ⅲ組[8],例如WRKYGKK[20]和WRKYGEK[22]。WRKY轉(zhuǎn)錄調(diào)控因子通過與靶基因啟動子區(qū)域的DNA序列(T)TGAC(C/T)(W盒)特異性結(jié)合來調(diào)節(jié)目的基因的表達[23]。一些含有TGAC核心結(jié)構(gòu)的類似W盒也被提議作為WRKY轉(zhuǎn)錄調(diào)控因子的順式作用元件,并且鄰近TGAC核心結(jié)構(gòu)的序列也決定了WRKY轉(zhuǎn)錄調(diào)控因子結(jié)合位點的優(yōu)先權[24]。根據(jù)WRKY轉(zhuǎn)錄調(diào)控因子所含的WRKY結(jié)構(gòu)域的個數(shù)和鋅指型結(jié)構(gòu)的特征,一般將WRKY轉(zhuǎn)錄調(diào)控因子分為3組[25]:第Ⅰ組含有2個WRKY結(jié)構(gòu)域,且其鋅指型結(jié)構(gòu)的類型為C2H2(CX4-5-C-X22-23-H-X1-H)型,根據(jù)WRKY結(jié)構(gòu)域位于轉(zhuǎn)錄因子的N端和C端分別被命名為N端WRKY結(jié)構(gòu)域(NTWD)和C端WRKY結(jié)構(gòu)域(CTWD)[25],如OsWRKY24和Os?WRKY53屬于第Ⅰ組[26];第Ⅱ組WRKY轉(zhuǎn)錄調(diào)控因子含有1個WRKY結(jié)構(gòu)域,其鋅指型結(jié)構(gòu)為C2H2(CX4-5-C-X22-23-H-X1-H)型,分為Ⅱa、Ⅱb、Ⅱc和Ⅱd等4個亞組,如OsWRKY62和OsWRKY76屬于WRKY第Ⅱa亞組[27];第Ⅲ組WRKY轉(zhuǎn)錄調(diào)控因子也只含有1個WRKY結(jié)構(gòu)域,但其鋅指型結(jié)構(gòu)為C2-HC(C-X7-C-X23-HX)型[5],水稻中有28個OsWRKY基因?qū)儆诘冖蠼M,其中OsWRKY90編碼最大的蛋白(633個氨基酸殘基),OsWRKY55編碼最小的蛋白(210個氨基酸殘基)[28]。

2 水稻W(wǎng)RKY轉(zhuǎn)錄調(diào)控因子的生物學功能

轉(zhuǎn)錄調(diào)控是通過細胞或生物有機體來控制其基因表達的重要機制[8]。脅迫誘導引起相關目的基因的轉(zhuǎn)錄調(diào)控,在植物生長發(fā)育和抗病耐逆性上具有重要作用,這些調(diào)節(jié)主要依賴于轉(zhuǎn)錄調(diào)控因子在時間和空間上的功能,脅迫分為生物脅迫和非生物脅迫[29]。WRKY轉(zhuǎn)錄調(diào)控因子家族作為植物中最大的轉(zhuǎn)錄家族之一,在調(diào)控植物應對生物脅迫和非生物脅迫的響應中起重要作用[30]。迄今,在經(jīng)過全面基因組序列分析之后,已在栽培稻日本晴中預測到至少103個WRKY基因[31],已有研究顯示其大量成員參與了植物對病毒[32]、細菌和真菌[33]等多種病原的防衛(wèi)反應及水楊酸(SA)和茉莉酸(JA)相關的抗病信號轉(zhuǎn)導途徑。如過表達OsWRKY12(OsWRKY03)[34]、OsWRKY13[35]、OsWRKY53[36]和OsWRKY71[37]等基因后,水稻內(nèi)源的抗病相關基因OsNPR1、OsNH1、病程相關(patho?genesis-related,PR)基因OsPR1等的表達量顯著增強,進而表現(xiàn)出對白葉枯病或(和)稻瘟病的抗性。此外,除參與生物逆境的應答反應外,一些WRKY基因還參與非生物逆境的調(diào)控,如內(nèi)源性增強表達OsWRKY45除了能提高水稻對稻瘟病和白葉枯病的抗性外,在冷、干旱和鹽脅迫中也起重要作用[38],有研究報道外源性增強OsWRKY45基因在擬南芥中的表達,可提高轉(zhuǎn)基因植株對干旱脅迫的耐性[39],表明OsWRKY45基因在植物對非生物脅迫的應答反應中也有重要作用。大量研究表明WRKY轉(zhuǎn)錄調(diào)控因子不僅參與植物對生物和非生物脅迫的響應,同時也參與調(diào)控植物的生長發(fā)育、各種生理過程和形態(tài)學建成[19,40],其功能具有多樣性和復雜性。我們對已報道的水稻W(wǎng)RKY轉(zhuǎn)錄因子基因的生物學功能進行了歸類與整合(表1),期望為水稻W(wǎng)RKY基因家族的研究工作提供參考和幫助。

表1 本文涉及的水稻W(wǎng)RKY轉(zhuǎn)錄因子的功能

2.1 WRKY在水稻生物脅迫中的調(diào)控作用

許多研究表明WRKY轉(zhuǎn)錄調(diào)控因子家族中的大多數(shù)成員在水稻防御病原菌的侵害中起重要作用,是植物免疫反應的重要因子[41-42]。WRKY轉(zhuǎn)錄調(diào)控因子通過與靶基因的W盒、類似W盒的順式作用元件和其他順式作用元件特異性結(jié)合,特異調(diào)節(jié)靶基因的表達,在植物與病原菌的互作中起重要作用。有研究報道OsWRKY6基因的表達量在受白葉枯病菌誘導后迅速提高,表明其可能參與了水稻對病原菌的防御反應,在過表達OsWRKY6的轉(zhuǎn)基因水稻中發(fā)現(xiàn)葉片上出現(xiàn)病斑,引起了細胞的程序性死亡,以阻止病原菌在植株中的繼續(xù)擴散,從而提高水稻對白葉枯病菌的抗性,而在OsWRKY6RNA干擾的轉(zhuǎn)基因水稻中發(fā)現(xiàn)病程相關基因的表達量降低,表現(xiàn)出對白葉枯病菌的易感性,實驗證明OsWRKY6是水稻病程相關基因10a(PR10a)的正向調(diào)控因子,可直接與OsPR10a啟動子的WLE1結(jié)合并調(diào)控OsPR10a的表達,從而提高水稻對白葉枯病菌的抗性[43]。由稻瘟病菌造成的稻瘟病是水稻最具毀滅性的疾病之一,對感染稻瘟病的水稻的OsWRKY基因的表達進行了系統(tǒng)性分析,通過RT-PCR的初篩發(fā)現(xiàn)測試的45個OsWRKY基因中有15個被稻瘟病菌誘導[33],之后研究證實至少有11個水稻W(wǎng)RKY轉(zhuǎn)錄因子參與調(diào)控水稻對稻瘟病菌的應答反應,如OsWRKY13[44]、OsWRKY22[45]、OsWRKY30[46]、Os?WRKY45[47-48]、OsWRKY104(OsWRKY89)[49]等正調(diào)控水稻對稻瘟病菌的應答反應,OsWRKY28[50]和Os?WRKY76[51]負調(diào)控水稻對稻瘟病菌的應答反應。研究報道等位基因OsWRKY45-1和OsWRKY45-2編碼的蛋白有10個氨基酸殘基的差異,它們在水稻抵抗細菌性病原菌中起相反的作用,Os?WRKY45-1超表達植株對水稻細菌性條斑病菌(Xoc)和水稻白葉枯病菌(Xoo)表現(xiàn)易感癥狀,而OsWRKY45-2超表達植株對Xoc和Xoo卻表現(xiàn)極強的抗性,但它們在水稻抵抗稻瘟病菌中起相同的作用,OsWRKY45-1和OsWRKY45-2超表達植株均對稻瘟病菌表現(xiàn)出極強的抗性[48]。OsWRKY53也是一個稻瘟菌的正調(diào)控因子,它的過量表達和磷酸化突變體都能增強對稻瘟菌的抗性,它受到絲裂原活化蛋白激酶基因OsMPK3/OsMPK6的正向調(diào)控,同時又反過來抑制了它們的活性,從而減少食草動物侵害植物誘導的防衛(wèi)反應,增加了二化螟的侵害[52]。也有一些WRKY基因在防御病原菌中起負調(diào)控作用,例如同屬于Ⅱa亞組的Os?WRKY62和OsWRKY76基因,最新研究發(fā)現(xiàn)它們都有組成型和誘導性可變剪切OsWRKY62.1、Os?WRKY62.2和OsWRKY76.1、OsWRKY76.2,過表達OsWRKY62.1和OsWRKY76.1抑制相關防御基因的激活,增強水稻對稻瘟病菌和白葉枯病菌的易感性;而其RNA干擾和敲除材料中,由于防御相關基因的表達和植物抗毒素的積累增加,則表現(xiàn)出水稻對稻瘟病菌和白葉枯病菌的抗性[27]。

2.2 WRKY在水稻非生物脅迫中的調(diào)控作用

WRKY轉(zhuǎn)錄調(diào)控因子不僅在植物抵抗病原菌、蟲害等生物脅迫中起重要作用,而且在植物應對干旱、冷害、鹽害等非生物脅迫中發(fā)揮重要的調(diào)控功能。在篩選水稻受非生物逆境誘導的WRKY轉(zhuǎn)錄因子的研究中發(fā)現(xiàn),OsWRKY11[53]、Os?WRKY30[54]和OsWRKY45[39]等在高溫、干旱、高鹽、低溫等逆境脅迫中不同程度地被誘導。Os?WRKY11在水稻幼苗中受高溫和干旱脅迫的誘導,用熱激蛋白HSP101基因啟動子驅(qū)動Os?WRKY11表達時,轉(zhuǎn)基因植株對高溫和干旱的抗性顯著增加[53],因此OsWRKY11在水稻應對高溫和干旱非生物脅迫的響應中起重要作用。Os?WRKY30可被OsMAPK3、OsMAPK7和OsMAPK14磷酸化,從而激活自身的轉(zhuǎn)錄活性以行使功能,在其過表達的轉(zhuǎn)基因株系中OsWRKY30可被MAPK激活,提高了水稻對高溫逆境的抗性,在水稻應對非生物脅迫中起正向調(diào)控作用[54]。OsWRKY71在水稻受到冷害脅迫后誘導表達,而且在其轉(zhuǎn)基因株系中發(fā)現(xiàn)有2個冷害應答基因OsTGFR和WSI76的表達是上調(diào)的,因此OsWRKY71可能是通過調(diào)節(jié)下游目的基因的表達,在水稻應對冷害脅迫中起正調(diào)控作用[55]。研究表明水稻OsWRKY45的表達在脫落酸(ABA)、NaCl、PEG和甘露醇等脅迫處理時顯著增加,外源性高表達OsWRKY45能增強轉(zhuǎn)基因擬南芥對干旱脅迫的耐受性[39]。進一步研究發(fā)現(xiàn),OsWRKY45的 2個等位基因Os?WRKY45-1和OsWRKY45-2在脫落酸信號途徑及非生物脅迫過程中所起的作用并不完全相同,Os?WRKY45-1負調(diào)控而OsWRKY45-2正調(diào)控脫落酸信號途徑,OsWRKY45-2而非OsWRKY45-1負調(diào)控對鹽脅迫的應答,但在低溫和干旱脅迫應答中兩者的表現(xiàn)相似[38]。也有WRKY轉(zhuǎn)錄調(diào)控因子在水稻應對非生物脅迫應答反應中起負調(diào)控作用,如OsWRKY13可以與SNAC1和WRKY45-1啟動子區(qū)域的WBOX1(TTGACT)和WBOXa(TTGAC)特異結(jié)合,抑制SNAC1和WRKY45-1的表達,負調(diào)控水稻的抗干旱過程[44]。OsWRKY74主要在水稻根部和葉片中表達,并受磷酸鹽饑餓的誘導,參與調(diào)控水稻對缺磷脅迫的耐受性,其超表達植株對缺磷環(huán)境的耐受性顯著增強,在缺磷條件下種植時,超表達植株根和地上部的生物量以及磷含量均比野生型增加。并且在缺磷條件下,OsWRKY74超表達水稻還表現(xiàn)出鐵元素的積累和低溫應答基因的上調(diào),這些發(fā)現(xiàn)揭示了OsWRKY74在水稻調(diào)控植物體內(nèi)磷素平衡、缺磷與缺鐵之間潛在的關系以及寒冷脅迫中的重要作用[56]。OsWRKY104(OsWRKY89)受紫外線B輻射強烈誘導,過表達植株增強了水稻對紫外線B輻射的抗性[49]。

2.3 WRKY在水稻生長發(fā)育中的調(diào)節(jié)作用

WRKY轉(zhuǎn)錄調(diào)控因子不僅參與生物脅迫和非生物脅迫,而且還在植物生長發(fā)育、種子發(fā)育及衰老等一系列生命活動起重要的調(diào)節(jié)作用。有研究發(fā)現(xiàn)OsWRKY78的表達量在伸長莖中最為豐富,其過表達植株的株型與野生型一樣,而其RNAi植株可能由于細胞長度的縮減而表現(xiàn)為半矮稈,且谷粒變小,在對其進行谷粒品質(zhì)分析時發(fā)現(xiàn)胚乳淀粉晶體結(jié)構(gòu)發(fā)生輕微變化但米質(zhì)并沒有明顯的變化,說明OsWRKY78在水稻莖的伸長和種子發(fā)育中起重要作用[57]。也有研究發(fā)現(xiàn)在水稻種子萌發(fā)階段中,赤霉素(GA)可從胚中分泌到糊粉層細胞中,促進水解酶(α-淀粉酶)的表達,利于種子的萌發(fā)和種子萌發(fā)后的生長,而ABA則會抑制相關酶的表達,從而影響種子的正常萌發(fā),OsWRKY51和OsWRKY71是2個在胚和糊粉層細胞中受ABA誘導GA抑制的水稻W(wǎng)RKY基因,過表達這2個基因會特異并協(xié)同抑制α-淀粉酶的表達,說明它們可能參與了種子的休眠與萌發(fā)[58]。研究發(fā)現(xiàn)在模式植物擬南芥中存在與衰老相關的WRKY轉(zhuǎn)錄調(diào)控因子基因AtWRKY6[59]、At?WRKY53[60]和AtWRKY70[61]。AtWRKY6在幼葉和成熟葉片中幾乎不表達,但在衰老葉片中表達很高,而且還發(fā)現(xiàn)AtWRKY6不僅能調(diào)節(jié)相關防御基因(ELI3、PR1和PR5)的表達,而且還能調(diào)節(jié)衰老相關基因(SAG12和SAG13)的表達[59]。在水稻中也發(fā)現(xiàn)了與植物衰老相關的WRKY轉(zhuǎn)錄調(diào)控因子,例如水稻OsWRKY23在擬南芥中過量表達會加速黑暗誘導的葉片衰老,同時改變了衰老相關基因SAG12和SEN1的表達[62]。OsWRKY42通過抑制活性氧清除基因OsMT1d的表達,從而誘導水稻葉片的衰老[63]。OsWRKY80轉(zhuǎn)錄調(diào)控因子在鐵過量處理的水稻葉片、莖干和根中表達上調(diào),而且這種上調(diào)表達在暗誘導的衰老和干旱脅迫過程中也能被檢測到,說明OsWRKY80可能調(diào)控水稻營養(yǎng)脅迫誘導的衰老過程[64]。

2.4 WRKY參與水稻的形態(tài)建成

有研究表明WRKY轉(zhuǎn)錄調(diào)控因子還參與植物的形態(tài)建成。擬南芥中AtWRKY44轉(zhuǎn)錄調(diào)控因子基因可以通過與其他基因相互作用,調(diào)控毛狀體的發(fā)生、毛狀體的數(shù)目及其分叉情況,表明At?WRKY44參與擬南芥葉毛的形態(tài)建成[65],進一步研究發(fā)現(xiàn)AtWRKY44還參與調(diào)控擬南芥根毛細胞的分化[66]。目前在水稻中也發(fā)現(xiàn)了形態(tài)建成相關的WRKY轉(zhuǎn)錄調(diào)控因子,OsWRKY31受稻瘟菌和生長素誘導表達,提高了水稻的抗病性,但會影響水稻根的生長,研究發(fā)現(xiàn)OsWRKY31的過表達轉(zhuǎn)基因植株的苗期側(cè)根減少并且變短,抽穗期株高較野生型矮且根數(shù)目減少,說明OsWRKY31會抑制水稻不定根的形成,進而影響水稻根的形態(tài)建成,同時還發(fā)現(xiàn)這種影響伴隨著對生長素響應反應的干預[67]。最新研究表明,OsWRKY53正調(diào)控油菜素內(nèi)酯的信號途徑,從而調(diào)控了水稻葉片角度及種子的大小,其過表達植株的葉角增加,種子變大。說明OsWRKY53轉(zhuǎn)錄調(diào)控因子通過與植物激素的互作參與調(diào)控水稻株型的形態(tài)建成[68]。

2.5 WRKY與激素信號途徑的相互作用

植物在應對不同病原菌的長期侵害過程中進化出一套自己獨特的防御反應體系,這個防御反應體系有很多信號分子參與,如SA、JA、GA和乙烯(ET)等。OsWRKY6是受SA誘導并在SA介導的防御信號途徑中起重要作用的正調(diào)控因子,水稻在受病原菌侵害后可迅速激活SA信號途徑,并引起OsWRKY6基因的表達,OsWRKY6不僅可與異分支酸合成酶1(OsICS1)啟動子區(qū)域的W盒直接結(jié)合,調(diào)控OsICS1基因的表達以增加體內(nèi)SA的濃度,最終激活SA介導的信號途徑,還可以直接調(diào)控防御相關基因如OsPR10a和OsNPR1的表達,從而增強ROS和NPR1介導的防御反應,抵御病原菌的侵害[43]。OsWRKY4可被立枯絲核菌、外源JA和ET誘導表達,是水稻依賴JA/ET防御信號途徑中的正向調(diào)控因子,在水稻對抗紋枯病的防御反應中起重要作用[69]。也有WRKY轉(zhuǎn)錄因子在激素信號途徑中起負調(diào)控作用,OsWRKY24是水稻GA和ABA途徑中的負調(diào)控因子,這2種激素調(diào)控了種子成熟、休眠及萌發(fā)的過程,在糊粉層細胞中瞬時過表達OsWRKY24基因能夠抑制受GA誘導的Amy32b基因和受ABA誘導的HVA22基因的表達,因此OsWRKY24基因可能參與了水稻調(diào)控種子的萌發(fā)和萌發(fā)后生長過程[70]。大量研究顯示激素信號途徑在植物體內(nèi)并不是單獨起作用的,它們之間存在互作。OsWRKY13基因在SA和JA的互作中起重要作用,過表達OsWRKY13基因可激活SA合成相關基因和SA響應相關基因的表達,但會抑制JA合成相關基因和JA響應相關基因的表達,說明OsWRKY13基因是SA信號途徑的激活子、JA信號途徑的抑制子,通過直接或間接調(diào)控SA和JA上下游基因的表達,進而調(diào)控病程相關基因的表達,在水稻對白葉枯病菌和稻瘟病菌的防御反應中起正調(diào)控作用[35]。

3 結(jié)語

WRKY轉(zhuǎn)錄因子在植物對生物和非生物脅迫的反應中起關鍵作用。以上綜述了WRKY在生物和非生物脅迫中的功能以及它們的下游基因和信號通路方面的主要研究。這些研究,不僅有助于我們發(fā)現(xiàn)WRKY基因在抗病抗逆方面的重要作用,還能幫助我們發(fā)展新的抗病抗逆材料,以用于水稻的育種工作。WRKY轉(zhuǎn)錄因子自我調(diào)控模式和它們之間的信號傳導途徑及相互作用機制目前尚不清晰。相信隨著基因組學和轉(zhuǎn)錄組學研究的進展,相關信息越來越多時,WRKY轉(zhuǎn)錄因子在植物脅迫反應中的作用模式將會越來越明確。鑒于WRKY轉(zhuǎn)錄因子在水稻抗病信號調(diào)控途徑中起非常重要的作用,新的研究必然會幫助我們進一步了解水稻抗病抗逆的機理,同時也會為將來水稻遺傳改良提供重要幫助。

[1] Sasaki T,Burr B.International rice genome sequenc?ing project:the effort to completely sequence the rice genome[J].Curr Opin Plant Biol,2000,3(2):138-142.

[2] Riechmann J L.Transcription factors of Arabidopsis and rice:a genomic perspective[M]//Grasser K D.An?nual plant reviews volume 29:Regulation of transcrip?tion in plants.Blackwell Publishing Ltd,2007.

[3] Perez-Rodriguez P,Riano-Pachon D M,Correa L G, et al.PlnTFDB:updated content and new features of the plant transcription factor database[J].Nucleic Ac?ids Res,2010,38:D822-D827.

[4] Alves M,Dadalto S,Gon?alves A,et al.Transcription factor functional protein-protein interactions in plant defense responses[J].Proteomes,2014,2(1):85-106.

[5] Llorca C M,Potschin M,ZentgrafU.bZIPsand WRKYs:two large transcription factor families execut?ing two different functional strategies[J].Front Plant Sci,2014,5:169.

[6] Ishiguro S,Nakamura K.Characterization of a cDNA encoding anovelDNA-bindingprotein,SPF1,that recognizes SP8 sequences in the 5'upstream regions ofgenescoding forsporamin and β-amylasefrom sweet potato[J].Mol Gen Genet,1994,244(6):563-571.

[7] Ulker B,Somssich I E.WRKY transcription factors: from DNA binding towards biological function[J].Curr Opin Plant Biol,2004,7(5):491-498.

[8] Zhang Y,Wang L.The WRKY transcription factor su?perfamily:its origin in eukaryotes and expansion in plants[J].BMC Evol Biol,2005,5:1.

[9] Jiang Y,Duan Y,Yin J,et al.Genome-wide identifi?cation and characterization of the Populus WRKY tran?scription factor family and analysis of their expression in response to biotic and abiotic stresses[J].J Exp Bot,2014,65(22):6629-6644.

[10]Ding M,Chen J,Jiang Y,et al.Genome-wide investi?gation and transcriptome analysis of the WRKY gene family in Gossypium[J].Mol Genet Genomics,2015, 290(1):151-171.

[11]Ma J,Lu J,Xu J,et al.Genome-wide identification of WRKY genes in the desert poplar populus euphrati?ca and adaptive evolution of the genes in response to salt stress[J].Evol Bioinform Online,2015,11(Suppl 1): 47-55.

[12]Eulgem T,Somssich I E.Networks of WRKY tran?scription factors in defense signaling[J].CurrOpin Plant Biol,2007,10(4):366-371.

[13]Zhou Q Y,Tian A G,Zou H F,et al.Soybean WRKY-type transcription factor genes,GmWRKY13, GmWRKY21,and GmWRKY54,confer differential tol?erance to abiotic stressesin transgenic Arabidopsis plants[J].Plant Biotechnol J,2008,6(5):486-503.

[14]Hofmann M G,Sinha A K,Proels R K,et al.Clon?ing and characterization of a novel LpWRKY1 tran?scription factorin tomato[J].PlantPhysiolBiochem, 2008,46(5-6):533-540.

[15]Huang S,Gao Y,Liu J,et al.Genome-wide analysis of WRKY transcription factors in Solanum lycopersi?cum[J].Mol Genet Genomics,2012,287(6):495-513.

[16]Ling J,Jiang W,Zhang Y,et al.Genome-wide analy?sis ofWRKY gene family in Cucumis sativus[J]. BMC Genomics,2011,12:471.

[17]Wei K,Chen J,Chen Y,et al.Multiple-strategy anal?yses of ZmWRKY subgroups and functional explora?tion of ZmWRKY genes in pathogen responses[J].Mol BioSystems,2012,8(7):1940-1949.

[18]Ross C A,Liu Y,Shen Q J.The WRKY gene family in rice(Oryza sativa)[J].J Integr Plant Biol,2007,49(6): 827-842.

[19]Jiang W,Wu J,Zhang Y,etal.Isolation ofa WRKY30 gene from Muscadinia rotundifolia(Michx) and validation of its function under biotic and abiotic stresses[J].Protoplasma,2015,252(5):1361-1374.

[20]Eulgem T,Rushton P J,Robatzek S,etal.The WRKY superfamily ofplanttranscription factors[J]. Trends Plant Sci,2000,5:199-206.

[21]Rushton D L,Tripathi P,Rabara R C,et al.WRKY transcription factors:key components in abscisic acid signalling[J].Plant Biotechnol J,2012,10(1):2-11.

[22]Qiu Y,Jing S,Jian F U,et al.Cloning and analysis of expression profile of 13 WRKY genes in rice[J]. Chin Sci Bull,2004,49(20):2159-2168.

[23]Maleck K,Levine A,Eulgem T,et al.The transcrip?tome of Arabidopsis thaliana during systemic acquired resistance[J].Nat Genet,2000,26(4):403-410.

[24]Ciolkowski I,Wanke D,Birkenbihl R P,et al.Stud?ies on DNA-binding selectivity of WRKY transcrip? tion factors lend structural clues into WRKY-domain function[J].Plant Mol Biol,2008,68(1-2):81-92.

[25]Wu K L,Guo Z J,Wang H H,et al.The WRKY family of transcription factors in rice and Arabidopsis and their origins[J].DNA Res,2005,12(1):9-26.

[26]Zhang L,Gu L,Ringler P,et al.Three WRKY tran?scription factors additively repress abscisic acid and gibberellin signaling in aleurone cells[J].PlantSci, 2015,236:214-222.

[27]Liu J,Chen X,Liang X,et al.Alternative splicing of rice WRKY62 and WRKY76 transcription factor genes in pathogen defense[J].Plant Physiol,2016,171 (2):1427-1442.

[28]Wang Y,Feng L,Zhu Y,et al.Comparative genomic analysis of the WRKY III gene family in populus, grape,arabidopsisand rice[J].BiolDirect,2015,10: 48.

[29]Roychoudhury A,Gupta B,Sengupta D N.Trans-act?ing factor designated OSBZ8 interacts with both typi?cal abscisic acid responsive elements as well as ab?scisic acid responsive element-like sequences in the vegetative tissues of indica rice cultivars[J].Plant Cell Rep,2008,27(4):779-794.

[30]Tripathi P,Rabara R C,Choudhary M K,et al.The interactome of soybean GmWRKY53 using yeast 2-hy?brid library screening to saturation[J].Plant Signal Be?hav,2015,10(7):e1028705.

[31]Ramamoorthy R,Jiang S Y,Kumar N,et al.A com?prehensive transcriptional profiling of the WRKY gene family in rice under various abiotic and phytohormone treatments[J].Plant Cell Physiol,2008,49(6):865-879.

[32]Shimizu T,Satoh K,Kikuchi S,et al.The repression of cell wall-and plastid-related genes and the induc?tion of defense-related genes in rice plants infected with Rice dwarf virus[J].Mol Plant Microbe Interact, 2007,20(3):247-254.

[33]Ryu H S,Han M,Lee S K,et al.A comprehensive expression analysis of the WRKY gene superfamily in rice plants during defense response[J].PlantCell Rep,2006,25(8):836-847.

[34]Liu X Q,Bai X Q,Qian Q,et al.OsWRKY03,a rice transcriptional activator that functions in defense signaling pathway upstream of OsNPR1[J].Cell Res, 2005,15(8):593-603.

[35]Qiu D,Xiao J,Ding X,et al.OsWRKY13 mediates rice disease resistance by regulating defense-related genes in salicylate-and jasmonate-dependent signaling [J].Mol Plant Microbe Interact,2007,20(5):492.

[36]Chujo T,Takai R,Akimoto-Tomiyama C,et al.In?volvement of the elicitor-induced gene OsWRKY53 in the expression of defense-related genes in rice[J].Bio?chim Biophys Acta,2007,1769(7):497-505.

[37]Liu X,Bai X,Wang X,et al.OsWRKY71,a rice transcription factor,isinvolved in rice defense re?sponse[J].J Plant Physiol,2007,164(8):969-979.

[38]Tao Z,Kou Y,Liu H,et al.OsWRKY45 alleles play differentroles in abscisic acid signalling and salt stress tolerance but similar roles in drought and cold tolerance in rice[J].J Exp Bot,2011,62(14):4863-4874. [39]Qiu Y,Yu D.Over-expression of the stress-induced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis[J].Environ Exp Bot,2009,65 (1):35-47.

[40]Rushton P J,Somssich I E,Ringler P,et al.WRKY transcription factors[J].TrendsPlantSci,2010,15(5): 247-258.

[41]Ren X,Chen Z,Liu Y,et al.ABO3,a WRKY tran?scription factor,mediates plant responses to abscisic acid and drought tolerance in Arabidopsis[J].Plant J, 2010,63(3):417-429.

[42]Pandey S P,Somssich I E.The role of WRKY tran?scription factors in plant immunity[J].Plant Physiol, 2009,150(4):1648-1655.

[43]Choi C,Hwang S H,Fang I R,et al.Molecular char?acterization of Oryza sativa WRKY6,which binds to W-box-like element 1 of the Oryza sativa pathogene?sis-related(PR)10a promoter and confers reduced sus?ceptibility to pathogens[J].New Phytol,2015,208(3): 846-859.

[44]Xiao J,Cheng H,Li X,et al.Rice WRKY13 regu?lates cross talk between abiotic and biotic stress sig?naling pathways by selective binding to different ciselements[J].Plant Physiol,2013,163(4):1868-1882.

[45]Abbruscato P,Nepusz T,Mizzi L,et al.OsWRKY22, a monocot WRKY gene,plays a role in the resis?tance response to blast[J].Mol Plant Pathol,2012,13 (8):828-841.

[46]Peng X,Hu Y,Tang X,et al.Constitutive expression of rice WRKY30 gene increases the endogenous jas?monic acid accumulation,PR gene expression and re? sistance to fungal pathogens in rice[J].Planta,2012, 236(5):1485-1498.

[47]Shimono M,Sugano S,Nakayama A,etal.Rice WRKY45 plays a crucial role in benzothiadiazole-in?ducible blast resistance[J].Plant Cell,2007,19(6):2064-2076.

[48]Tao Z,Liu H,Qiu D,et al.A pair of allelic WRKY genes play opposite roles in rice-bacteria interactions [J].Plant Physiol,2009,151(2):936-948.

[49]Wang H,Hao J,Chen X,et al.Overexpression of riceWRKY89 enhancesultravioletB toleranceand diseaseresistancein riceplants[J].PlantMolBiol, 2007,65(6):799-815.

[50]Chujo T,Miyamoto K,Shimogawa T,etal.Os?WRKY28,a PAMP-responsive transrepressor,negative?ly regulates innate immune responses in rice against rice blast fungus[J].Plant Mol Biol,2013,82(1-2):23-37.

[51]Yokotani N,Sato Y,Tanabe S,et al.WRKY76 is a rice transcriptional repressor playing opposite roles in blast disease resistance and cold stress tolerance[J].J Exp Bot,2013,64(16):5085-5097.

[52]Hu L,Ye M,Li R,et al.The rice transcription fac?torWRKY53 suppressesherbivore-induced defenses by acting as a negative feedback modulator of mito?gen-activated protein kinase activity[J].Plant Physiol, 2015,169(4):2907-2921.

[53]Wu X,Shiroto Y,Kishitani S,et al.Enhanced heat and drought tolerance in transgenic rice seedlings over?expressing OsWRKY11 under the control of HSP101 promoter[J].Plant Cell Rep,2009,28(1):21-30.

[54]Shen H,Liu C,Zhang Y,et al.OsWRKY30 is acti?vated by MAP kinases to confer drought tolerance in rice[J].Plant Mol Biol,2012,80(3):241-253.

[55]Kim C Y,Vo K T X,Nguyen C D,et al.Functional analysis of a cold-responsive rice WRKY gene,Os?WRKY71[J].Plant Biotechnol Rep,2016,10(1):13-23.

[56]Dai X,Wang Y,Zhang W H.OsWRKY74,a WRKY transcription factor,modulates tolerance to phosphate starvation in rice[J].J Exp Bot,2016,67(3):947-960.

[57]Zhang C Q,Xu Y,Lu Y,et al.The WRKY transcrip?tion factor OsWRKY78 regulates stem elongation and seed development in rice[J].Planta,2011,234(3):541-554.

[58]Xie Z,Zhang Z L,Zou X,et al.Interactions of two abscisic-acid induced WRKY genes in repressing gib?berellin signaling in aleurone cells[J].Plant J,2006,46 (2):231-242.

[59]Rob atzek S,Somssich I E.A new member of the Ara?bidopsis WRKY transcription factor family, At?WRKY6,is associated with both senescence-and de?fence-related processes[J].Plant J,2001,28(2):123-133.

[60]Miao Y,Laun T,Zimmermann P,et al.Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis[J].Plant Mol Biol,2004,55 (6):853-867.

[61]Besseau S,Li J,Palva E T.WRKY54 and WRKY70 co-operate as negative regulators of leaf senescence in Arabidopsis thaliana[J].J Exp Bot,2012,63(7):2667-2679.

[62]Jing S,Zhou X,Song Y,et al.Heterologous expres?sion of OsWRKY23 gene enhances pathogen defense and dark-induced leaf senescence in Arabidopsis[J]. Plant Growth Regulation,2009,58(2):181-190.

[63]Han M,Kim C Y,Lee J,et al.OsWRKY42 repress?es OsMT1d and induces reactive oxygen species and leaf senescence in rice[J].Mol Cells,2014,37(7):532-539.

[64]Ricachenevsky F K,Sperotto R A,Menguer P K,et al.Identification of Fe-excess-induced genes in rice shoots reveals a WRKY transcription factor responsive to Fe,drought and senescence[J].Mol Biol Rep,2010, 37(8):3735-3745.

[65]Johnson C S,Kolevski B,Smyth D R.TRANSPAR?ENT TESTA GLABRA2,a trichome and seed coat de? velopment gene of Arabidopsis,encodes a WRKY tran?scription factor[J].Plant Cell,2002,14(6):1359-1375.

[66]Ishida T,HattoriS,Sano R,etal.Arabidopsis TRANSPARENT TESTA GLABRA2 is directly regulat?ed by R2R3 MYB transcription factorsand isin?volved in regulation of GLABRA2 transcription in epi?dermal differentiation[J].Plant Cell,2007,19(8):2531.

[67]Zhang J,Peng Y L,Guo Z J,et al.Constitutive ex?pression of pathogen-inducible OsWRKY31 enhances disease resistance and affects root growth and auxin response in transgenic rice plants[J].Cell Res,2008,18 (4):508-521.

[68]Tian X,Li X,Zhou W,et al.Transcription factor Os?WRKY53 positively regulates brassinosteroid signaling and plantarchitecture[J].PlantPhysiol,2017,175(3): 1337.

[69]Wang H,Meng J,Peng X,et al.Rice WRKY4 acts as a transcriptionalactivatormediating defense re?sponses toward Rhizoctonia solani,the causing agent of rice sheath blight[J].Plant Mol Biol,2015,89(1-2): 157-171.

[70]Zhang Z L,Shin M,Zou X,et al.A negative regula?tor encoded by a rice WRKY gene represses both ab?scisic acid and gibberellins signaling in aleurone cells [J].Plant Mol Biol,2009,70(1-2):139-151.

[71]Xie Z,Zhang Z L,Zou X,et al.Annotations and functional analyses of the rice WRKY gene superfami?ly reveal positive and negative regulators of abscisic acid signaling in aleurone cells[J].Plant Physiol,2005, 137(1):176-189.

猜你喜歡
葉枯病稻瘟病結(jié)構(gòu)域
基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候選基因
作物學報(2022年6期)2022-04-08 01:26:44
蛋白質(zhì)結(jié)構(gòu)域劃分方法及在線服務綜述
不同藥劑防治苗稻瘟病、葉稻瘟病效果試驗研究
生物綠肥在稻瘟病防治中的應用與示范
重組綠豆BBI(6-33)結(jié)構(gòu)域的抗腫瘤作用分析
大蒜葉枯病重發(fā)原因分析與綠色防控技術
上海蔬菜(2016年5期)2016-02-28 13:18:08
組蛋白甲基化酶Set2片段調(diào)控SET結(jié)構(gòu)域催化活性的探討
水稻白葉枯病菌Ⅲ型效應物基因hpaF與毒力相關
蘋果炭疽葉枯病在芮城縣的發(fā)生特點及防治
幾種藥劑防治水稻稻瘟病穗瘟效果試驗
友谊县| 渭南市| 遵化市| 根河市| 自治县| 涟源市| 宜春市| 丹凤县| 栾川县| 夏河县| 新昌县| 无棣县| 道孚县| 朝阳县| 新巴尔虎右旗| 龙州县| 融水| 密云县| 临洮县| 和田市| 徐水县| 芜湖县| 荃湾区| 浦北县| 伊金霍洛旗| 昌江| 江门市| 颍上县| 手机| 新化县| 都昌县| 襄垣县| 万盛区| 土默特右旗| 华池县| 望江县| 永宁县| 庄河市| 沙河市| 莎车县| 瑞丽市|