国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

抗阻運動激活FSTL1-Akt-mTOR信號通路促進心梗大鼠心肌細胞增殖

2018-04-20 05:26:12田振軍郝美麗
體育科學 2018年3期
關鍵詞:心梗心肌細胞心功能

田振軍,郝美麗,席 悅

?

抗阻運動激活FSTL1-Akt-mTOR信號通路促進心梗大鼠心肌細胞增殖

田振軍,郝美麗,席 悅

陜西師范大學 體育學院 暨運動生物學研究所 運動與心血管健康研究室, 陜西 西安 710062.

目的:探討抗阻運動對心肌梗死(Myocardial Infarction,MI)大鼠卵泡抑素樣蛋白1 (Follistatin-like Protein 1,F(xiàn)STL1)及其受體DIP2A(Disco-interacting Protein 2 homolog A)表達和下游Akt-mTOR信號通路與心肌細胞增殖的影響。方法:雄性SPrague-Dawley大鼠30 只,體重180~220 g,左冠狀動脈前降支結扎制備心梗模型,術后隨機分為假手術組(S)、心梗安靜對照組(MI)、心梗+抗阻運動組(MR),每組10只,其中S組只穿線不結扎。術后1周,MR組先進行1周適應性無負重爬梯運動,再進行4周遞增負荷抗阻運動。訓練結束后24 h,腹腔麻醉,測定LVSP、LVEDP和±dP/dt max評價心功能。Western blot實驗測定心肌FSTL1/DIP2A、PAkt/Akt、P-mTOR/mTOR、CyclinD1、CDK4蛋白表達;免疫熒光實驗觀察心肌細胞增殖;Masson染色觀察并計算心肌膠原容積百分比(CVF%)。結果:與S組比較,MI組心肌FSTL1/DIP2A、CyclinD1和CDK4蛋白表達增加,PAkt/Akt、P-mTOR/mTOR比值顯著上升,心肌細胞增殖百分率顯著升高,CVF%和LVEDP顯著增加,LVSP和±dP/dt max顯著降低;與MI組比較,MR組心肌FSTL1/DIP2A、CyclinD1和CDK4蛋白表達顯著升高,PAkt/Akt、P-mTOR/mTOR比值顯著上升,心肌細胞增殖百分率顯著升高,CVF%和LVEDP顯著降低,LVSP和±dP/dt max顯著升高。結論:抗阻運動上調(diào)FSTL1及其受體DIP2A的表達,激活其下游Akt-mTOR信號通路。表明,F(xiàn)STL1-DIP2A-Akt-mTOR信號通路在抗阻運動促進心梗大鼠心肌細胞增殖、降低心肌纖維化面積和改善心功能中發(fā)揮重要作用。

抗阻運動;心肌梗死;卵泡抑素樣蛋白1;FSTL1-Akt-mTOR信號通路;心肌細胞增殖

心肌梗死(MyocardialInfarction,MI)后心肌嚴重缺血缺氧導致心肌細胞大量丟失和心功能惡化是造成心力衰竭的重要原因[27,17],如何預防和治療MI一直是國內(nèi)外學者高度關注的問題。研究表明,運動鍛煉是預防和治療心血管疾病,尤其是MI的重要臨床干預措施[10],運動可顯著減少心肌凋亡和壞死[12],降低心肌纖維化水平[40],促進血管生成[29],誘導心肌細胞增殖[6],改善左心室病理重構并提高心肌收縮力以及左心室功能[11,13]。有文獻表明,抗阻運動顯著提高MI大鼠心血管的自主調(diào)節(jié)能力,是MI康復安全有效的方法[14],但其康復靶點與機制需要深入探討。

卵泡抑素樣蛋白1(Follistatin-like Protein 1,F(xiàn)STL1)是分泌型的細胞外基質(zhì)糖蛋白,最初由小鼠成骨細胞的細胞系MC3T3-E1中克隆得到[30]。研究發(fā)現(xiàn),F(xiàn)STL1在心、腎和肺等多個器官中均有表達[2],并有可能作為急性冠狀動脈綜合征預后的生物標志物[36],在細胞的增殖與分化[9]、肥大[33]、抗凋亡和炎癥反應[21]、血管再生[23]等方面發(fā)揮重要作用。FSTL1與心肌細胞膜上受體DIP2A(Disco-interacting Protein 2 homolog A)結合激活Akt信號發(fā)揮心臟保護作用[24]。主動脈狹窄、缺血/再灌注損傷和MI導致心臟FSTL1表達上調(diào)。FSTL1過表達或小RNA干擾可通過PI3K-Akt-mTOR和Erk1/2信號通路,影響心肌細胞凋亡[22]。增加心外膜FSTL1表達可減少MI大鼠心肌纖維化,或激活PI3K-Akt通路可誘導心肌細胞增殖[35,37]。本研究前期報道,運動可上調(diào)MI心臟FSTL1蛋白表達,誘導血管新生[1],但運動是否能激活MI心臟FSTL1-DIP2A-Akt-mTOR信號通路,誘導心肌細胞增殖,發(fā)揮心臟保護作用,目前尚無文獻報道。本文采用抗阻運動方式對上述問題進行探討,為MI心臟運動康復手段和方法篩選提供理論和實驗依據(jù)。

1 材料與方法

1.1 主要儀器和試劑

主要儀器:小動物呼吸機(ALC-V8)、生物信號采集系統(tǒng)(Power-Lab/8ST)、電泳儀和多色凝膠成像系統(tǒng)(Bio-Rad ChemiDocTMMP)、病理組織包埋機(BM-II)、石蠟切片機(LEICA-RM2126)、生物組織攤烤片機(YT-6C)、光學顯微鏡(OlymPus BX51)、熒光顯微鏡(Nikon EcliPse 55i)等。

主要試劑:兔多克隆抗體FSTL1(GeneTex)、DIP2A(Biorbyt)、PAkt、Akt、P-mTOR、mTOR、Cyclin D1和小鼠多克隆抗體PCNA(CST)、CDK4(Snata Cruz)、兔多克隆抗體cTnT(北京博奧森)、山羊抗兔二抗、山羊抗小鼠二抗、Dylight 594標記的山羊抗小鼠二抗、FITC標記的山羊抗兔二抗等。

1.2 實驗動物與分組

SPrague-Dawley雄性大鼠購于西安交通大學動物實驗管理中心,體重為180~220 g,適應性喂養(yǎng)1周后,左冠狀動脈前降支結扎法制備MI模型,術后存活20只,隨機分為心梗安靜對照組(MI)、心梗+抗阻運動組(MR),每組10只。另選取10只大鼠作為假手術對照組(S),只穿線不結扎。大鼠分組后,分籠飼養(yǎng),每籠5只,自由進食飲水。S組和MI組不運動,MR組進行負重爬梯訓練。

1.3 MI模型制備和抗阻運動方案

MI模型制備:大鼠腹腔注射戊巴比妥鈉(5%,30 mg/kg)麻醉,呼吸面罩輔助呼吸并連接心電圖全程記錄。常規(guī)開胸暴露出心臟,于左心耳和肺動脈圓錐交界以下2 mm處進針,結扎左冠狀動脈前降支。以心電圖ST段抬高或T波倒置,結扎處以下心肌顏色變淺或變白為手術成功,常規(guī)關胸護理。

抗阻運動方案:依據(jù)文獻和預實驗確定抗阻運動方案[4,14]。MR組術后1周開始進行爬梯抗阻運動,爬梯高為1.1 m,間隔為2 cm,傾斜度為85°。第1周為無負重適應性訓練,之后進行4周遞增負荷爬梯運動,每天遞增體重的10%,當負荷遞增至體重的75%后,保持75%體重的負荷直到訓練結束,5 d/周×4周。

1.4 心功能測定、取材和樣品處理

4周訓練結束24 h后,腹腔麻醉,常規(guī)血流動力學方法測定心功能。導管經(jīng)右頸總動脈逆行插入至左心室,Power-Lab/8ST生物信號采集系統(tǒng)記錄左心室收縮壓(left ventricular systolic Pressure,LVSP)、左心室舒張末壓(left ventricular end-diastolic Pressure,LVEDP)和左心室壓力最大上升和下降速率(±dP/dt max)等。之后即刻開胸摘取心臟,生理鹽水清洗殘血(0~4 ℃),6只心臟液氮固定24 h后移至-80 ℃冰箱保存,用于Western blot實驗,另4只心臟10%中性甲醛固定,用于組織學實驗。

1.5 Western blot 實驗

取心梗邊緣區(qū)心肌組織50 mg,加入預冷蛋白抽提試劑500μl,剪碎勻漿,4 °C離心,取上清液,BCA蛋白定量。常規(guī)制膠、上樣、電泳、轉(zhuǎn)膜,5%BSA室溫封閉1 h,孵育一抗FSTL1(1:1 000)、DIP2A(1:200)、PAkt(1:2 000)、Akt(1:1 000)、P-mTOR/mTOR(1:1 000)、CyclinD1(1:400)、CDK4(1:200)、內(nèi)參為GAPDH(1:8 000),4 ℃過夜。次日室溫復溫30 min,TBST清洗5 min/次×5次,室溫孵育二抗(1:8 000)1 h,TBST清洗二抗5 min/次×5次,ECL發(fā)光,凝膠成像系統(tǒng)成像與分析。

1.6 Masson染色

取固定48 h后心臟,流水沖洗5 h,梯度酒精脫水、三氯甲烷透明,石蠟常規(guī)浸蠟和包埋,連續(xù)切片(5 μm)制片,Masson染色,常規(guī)脫水透明,中性樹膠封片,OlymPus BX51光學顯微鏡下觀察拍片,Image-Pro Plus 5.1軟件測定藍色膠原面積,計算心肌膠原面積百分比(CVF%),CVF%=膠原面積/心肌組織總面積×100%。

1.7 免疫熒光實驗

石蠟切片脫蠟至水,PBS清洗,微波抗原修復,室溫冷卻,PBS清洗5 min/次×3次,5%BSA室溫封閉1 h,甩去BSA,滴加小鼠來源的一抗PCNA(1:100)和兔來源的cTnT(1:100)混合抗體,4 ℃過夜。次日室溫復溫45 min,PBS清洗,避光滴加Dylight 594標記的山羊抗小鼠(1:100)二抗、FITC標記的山羊抗兔二抗(1:100)和DAPI(1:800)的混合液,37℃避光孵育1 h后,PBS清洗5 min/次×5次(避光),封片,Nikon EcliPse 55i 熒光顯微鏡觀察拍片。同時設置空白對照和陰性對照。

1.8 圖像與數(shù)據(jù)處理

2 實驗結果

2.1 抗阻運動上調(diào)MI心臟FSTL1及其受體DIP2A蛋白表達

Western Blot結果顯示,與S組比較,MI組FSTL1蛋白表達顯著上調(diào)(<0.01),DIP2A蛋白表達升高,但無顯著差異。與MI組比較,MR組FSTL1及其受體DIP2A蛋白表達均顯著增加(<0.01)。表明,MI心臟FSTL1及其受體DIP2A表達出現(xiàn)代償性升高,而抗阻運動可顯著增加MI心臟FSTL1及其受體DIP2A 表達(圖1)。

圖1 MI心臟FSTLI及其受體DIP2A蛋白表達結果

Figure 1 The Protein Expression Result of FSTL1 and Its Receptor DIP2A in MI Heart

2.2 抗阻運動激活MI心臟PI3K/Akt信號通路

Western Blot結果顯示,與S組比較,MI組PAkt/Akt、P-mTOR/mTOR的比值均顯著增加(<0.05),CyclinD1和CDK4蛋白表達均顯著增加(<0.01,<0.05);與MI組比較,MR組PAkt/Akt、P-mTOR/mTOR的比值均顯著升高(<0.01,<0.05),CyclinD1和CDK4蛋白表達均顯著升高(<0.05)。表明,MI后PI3K/Akt通路的磷酸化水平代償性上調(diào),抗阻運動可有效激活PI3K/Akt通路,啟動細胞增殖周期(圖2)。

2.3 抗阻運動誘導MI大鼠心肌細胞增殖

免疫熒光結果顯示,PCNA為細胞增殖核抗原,呈紅色熒光(圖3,A~C);cTnT為心肌肌鈣蛋白,標記心肌細胞,呈綠色熒光(圖3,D~F);DAPI標記細胞核,呈藍色熒光(圖3,G~I)。PCNA+/cTnT+雙陽性,表示新生的心肌細胞。與S組比較,MI組PCNA+/cTnT+心肌細胞數(shù)目增多,心肌細胞增殖百分率顯著增加(<0.01);與MI組比較,MR組PCNA+/cTnT+心肌細胞數(shù)目增多,心肌細胞增殖百分率顯著升高(<0.05)。表明,MI后心肌細胞增殖出現(xiàn)代償性增加,抗阻運動可顯著誘導MI大鼠心肌細胞增殖(圖3,J~P)。

2.4 抗阻運動降低MI心臟的心肌纖維化面積,改善心功能

圖2 MI心臟PAkt/Akt、P-mTOR/mTOR、CyclinD1和CDK4蛋白表達結果

Figure 2. The Protein Expression Result of PAkt/Akt、P-mTOR/mTOR、CyclinD1 and CDK4 in MI Heart

Figure 3. The Immunofluorescence Result of Cardiomyocyte Proliferation in MI Heart

注:Masson染色,心肌細胞為紫紅色,膠原纖維為藍色,細胞核為藍紫色。A為S組;B為MI組,E為MI組局部放大;C為MR組,F(xiàn)為MR組局部放大;D為膠原容積百分數(shù)統(tǒng)計比較。

Figure 4. The Masson Staining Result of Myocardium in MI Heart

圖5 MI心臟血流動力學測試結果

Figure 5. The Result of Hemodynamic Index in MI Heart

光鏡觀察Masson染色結果顯示,細胞核呈藍紫色,心肌細胞呈紅色,膠原纖維呈藍色。與S組比較,MI組心肌組織發(fā)生替代性纖維化,CVF%顯著增加(<0.01);與MI組比較,MR組膠原纖維有所減少,CVF%顯著降低(<0.01)。表明,MI后膠原纖維過度增生,抗阻運動可抑制膠原纖維的進一步擴大,降低纖維化面積程度(圖4,A-F)。

心功能結果顯示,與S組比較,MI組LVSP、±dP/dt max均顯著降低(<0.01),LVEDP顯著升高(<0.01);與MI組比較,MR組LVSP、±dP /dt max均顯著上升(<0.05,<0.01,<0.05),LVEDP顯著下降(<0.05),表明,MI后心功能顯著降低,抗阻運動可顯著改善心功能(圖5)。

2.5 心肌FSTL1蛋白表達與細胞增殖百分率、CVF%、心功能變化的相關性

相關性分析顯示,MI及MI抗阻運動后,心肌FSTL1蛋白表達與心肌細胞增殖百分率呈顯著正相關(=0.761,<0.01),與CVF%呈顯著負相關(=-0.822,<0.01)。表明,在MI條件下,隨著心肌FSTL1蛋白表達升高,心肌細胞增殖增加,心肌膠原面積減少。心肌細胞增殖百分率與LVSP、+dP /dt max、-dP /dt max呈顯著正相關(=0.872,<0.01;=0.708,<0.05;=0.780,<0.01),與LVEDP呈顯著負相關(=-0.679,<0.01)。表明,隨著心肌細胞增殖的增加,MI大鼠心功能顯著改善。

3 分析與討論

研究證實,F(xiàn)STL1在促進心肌細胞增殖、降低心肌纖維化[35]、抑制心肌細胞凋亡[21]和誘導心肌血管再生[1]等方面,可作為心臟保護因子發(fā)揮重要作用。內(nèi)源性干預證實,缺血再灌注小鼠內(nèi)源性高表達,可顯著降低心梗面積和細胞凋亡[22],特異性敲除小鼠心肌基因后,壓力超負荷心臟表現(xiàn)出心肌病理性肥大和心功能損害[31]。外源性干預表明,注射FSTL1重組蛋白可顯著降低心梗面積[21]。表明,F(xiàn)STL1在抑制病理性心臟的發(fā)生發(fā)展中發(fā)揮重要作用。內(nèi)皮細胞和心肌細胞膜上有FSTL1受體DIP2A分布,F(xiàn)STL1與DIP2A結合可激活下游Akt信號,發(fā)揮心臟保護作用。FSTL1也可直接激活PI3K-Akt-mTOR和Erk1/2信號[22]。小RNA干擾降低DIP2A表達后,Akt磷酸化水平顯著降低[24]。表明,F(xiàn)STL1直接激活或與DIP2A結合激活PI3K-Akt-mTOR和Erk1/2信號[20]。本研究前期發(fā)現(xiàn),抗阻運動干預顯著增加MI心肌的FSTL1蛋白表達[1]。本研究結果顯示,MI后進行抗阻運動可顯著升高DIP2A蛋白表達,激活Akt和mTOR磷酸化水平。文獻報道,運動可激活PI3K-Akt-mTOR信號通路[42],該信號通路在促進心肌細胞增殖與抑制凋亡中發(fā)揮重要作用。因此認為,抗阻運動發(fā)揮心梗心臟保護效應的機制,可能是通過上調(diào)MI大鼠心肌FSTL1及其受體DIP2A蛋白表達,激活Akt-mTOR信號通路而發(fā)揮作用。

細胞周期激活是心肌細胞增殖的必備條件,其關鍵點在G1期和S期之間。Cycin/CDK復合物可調(diào)控細胞周期從G1期與S期的轉(zhuǎn)化,啟動細胞周期[18]。CyclinD可結合并激活CDK進而誘導心肌細胞增殖,PI3K-Akt信號激活后可上調(diào)CyclinD和CDK4的表達,誘導細胞增殖[19,32]。諸多文獻表明,跑臺或游泳等耐力運動可激活內(nèi)源性c-kit+心臟干細胞和sca-1+心臟祖細胞分化為心肌細胞[34,38],發(fā)揮心臟重塑作用[16]。跑臺運動可增加正常大鼠心臟ki67和BrdU標記的心肌細胞數(shù)目[34],上調(diào)MI大鼠心肌PCNA表達[8];游泳運動可增加缺血再灌注小鼠心肌ki67和EdU表達水平[39],上調(diào)壓力超負荷致小鼠病理性肥厚心肌的PCNA、磷酸化H3、BrdU和AuroraB表達水平[7]。表明,耐力運動可誘導心臟干/祖細胞的增殖效應。但有關抗阻運動與心臟干/祖細胞研究的報道尚少。本研究結果表明,4周抗阻運動顯著增加MI大鼠心臟的CyclinD1、CDK4表達和PCNA+/cTnT+雙陽性心肌細胞數(shù)目。推測,抗阻運動對MI心臟的保護效應,可能通過刺激FSTL1表達,并與其受體DIP2A結合或直接激活PI3K-Akt-mTOR信號,參與心肌細胞增殖,發(fā)揮缺血心臟的保護作用。

動物實驗和臨床研究表明,MI后早期運動訓練可減少心臟膠原纖維含量,降低纖維化,改善心肌收縮力和左心室功能[13,41]。長期有氧運動可抑制大鼠缺血/再灌注心肌凋亡,改善心臟舒/縮功能[42]。適宜強度的抗阻運動在動物和人正常心臟重塑[3]、心血管功能調(diào)節(jié)及適應過程中[26,25],均發(fā)揮積極效應,亦可改善MI致心衰大鼠的心功能,減弱心臟病理性肥大,降低左心室膠原蛋白沉積和炎癥反應[4];抑制鹽超載誘導的大鼠心室重構和左室舒張壓紊亂[5],下調(diào)糖尿病大鼠的心臟氧化應激水平[28],改善其心功能[15],因此認為,無論是針對正常心臟或病理性心臟,抗阻運動均可產(chǎn)生積極效應。本研究結果表明, 4周抗阻運動顯著降低MI后心肌CVF%和LVEDP,顯著提高LVSP和±dP/dt max,且增殖的心肌細胞數(shù)目與FSTL1表達水平和心功能改善呈顯著正相關,與心肌纖維化面積呈顯著負相關。提示,抗阻運動可能通過激活心肌FSTL1-DIP2A-Akt-mTOR信號通路,促進心肌細胞增殖,降低MI心臟纖維化,顯著改善心功能。

4 結論

抗阻運動上調(diào)FSTL1及其受體DIP2A的表達,激活其下游Akt-mTOR信號通路。表明,F(xiàn)STL1-DIP2A-Akt-mTOR信號通路在抗阻運動促進心梗大鼠心肌細胞增殖、降低心肌纖維化面積和改善心功能中發(fā)揮重要作用。

[1] 席悅, 蔡夢昕, 田振軍. 不同運動方式上調(diào)FSTL1蛋白表達誘導心梗心臟血管新生[J]. 體育科學, 2016, (36)10: 32-39.

[2] Adams D, Larman B, Oxburgh L. Developmental expression of mouse follistatin-like 1 (fstl1): Dynamic regulation during organogenesis of the kidney and lung[J]. Gene Express Patterns, 2007, 7(4): 491-500.

[3] Alves J P, Nunes R B, Ddc F,. High-intensity resistance training alone or combined with aerobic training improves strength, heart function and collagen in rats with heart failure[J]. Am J Transl Res, 2017, 9(12): 5432-5441.

[4] Alves J P, Nunes R B, Stefani G P,. Resistance training improves hemodynamic function, collagen deposition and inflammatory profiles: experimental model of heart failure[J]. Plos One, 2014, 9(10): e110317.

[5] BARRETTI D L M, MELO S F S, OLIVEIRA E M,. Resistance training attenuates salt overload-induced cardiac remodeling and diastolic dysfunction in normotensive rats[J]. Brazilian J Med Bio Res, 2017, 50(9): e6146.

[6] Bei Y, Fu S, Chen X,. Cardiac cell proliferation is not necessary for exercise-induced cardiac growth but required for its protection against ischaemia/reperfusion injury[J]. J Cell Molecular Med, 2017: 1-8.

[7] Bostrom P, Mann N, Wu J,C/EBPβcontrols exercise-induced cardiac growth and protects against pathological cardiac remodeling[J]. Cell, 2010, 143(7): 1072-1083.

[8] Cai M X, Shi X C, Chen T,Exercise training activates neuregulin 1/Erbβ signaling and promotes cardiac repair in a rat myocardial infarction model[J]. Life Sci, 2016, 149: 1-9.

[9] Chaly Y, Blair H C, Smith S M,. Follistatin-like protein 1 regulates chondrocyte proliferation and chondrogenic differentiation of mesenchymal stem cells[J]. Ann Rheumatic Diseases, 2015, 74(7): 1467-1473.

[10] Chow CK, Jolly S, Rao-Melacini P,. Association of diet, exercise, and smoking modifcation with risk of early cardiovascular events after acute coronary syndromes[J]. Circulation, 2010, 121(6): 750–758.

[11] Ellingsen ?, Halle M, Conraads V M,. High-intensity interval training in patients with heart failure with reduced ejection fraction[J]. Circulation, 2017, 135(9): 839-849.

[12] French J P, Hamilton K L, Quindry J C,Exercise-induced protection against myocardial apoptosis and necrosis: MnSOD, calcium-handling proteins, and calpain[J]. Faseb J , 2008, 22(8): 2862-2871.

[13] Giallauria F, Acampa W, Ricci F,. Exercise training early after acute myocardial infarction reduces stress-induced hypoperfusion and improves left ventricular function[J]. Eur J Nuclear Med Molecular Imaging, 2013, 40(3): 315-324.

[14] Grans C F, Feriani D J, Abssamra M E,Resista-nce training after myocardial infarction in rats: its role on cardiac and autonomic function[J]. Arquivos Brasileiros De Cardiologia, 2014, 103(1): 60-68.

[15] Ko T H, Marquez J C, Kim H K,Resistance exercise improves cardiac function and mitochondrial efficiency in diabetic rat hearts[J]. Pflugers Archiv Eur J Physiol, 2018, 470: 263-275.

[16] Leite C F, Lopes C S, Alves A C,Endogenous resident c-kit cardiac stem cells increase in mice with an exercise-induced, physiologically hypertrophied heart[J]. Stem Cell Res, 2015, 15(1): 151-164.

[17] LIN Q H. The impact of cardiac rehabilitation exercise on cardiopulmonary capacity and life quality of the patients with myocardial infarction[J]. Atlantis Press, 2014: 88-90.

[18] MATTHEW P S, ANDREW W J, HELEN R F,. CDK substrate phosphorylation and ordering the cell cycle[J]. Cell, 2016, 167(7): 1750-1761.

[19] Muisehelmericks R C, Grimes H L, Bellacosa A,Cyclin D expression is controlled post- transcriptionally via a phosphatidylinositol 3-kinase/akt-dependent pathway[J]. J Bio Chem, 1998, 273(45): 29864-29872.

[20] NOVOYATLEVA T, SAJJAD A, POGORYELOV,FGF1-mediated cardiomyocyte cell cycle reentry depends on the interaction of FGFR-1 and Fn14[J]. FASEB J, 2014, 28(6): 2492-2503.

[21] Ogura Y, Ouchi N, Ohashi K,. Therapeutic impact of follistatin-like 1 on myocardial ischemic injury in preclinical models[J]. Circulation, 2012, 126(14): 1728-1738.

[22] Oshima Y, Ouchi N, Sato K,. Follistatin-like 1 is an akt-regulated cardioprotective factor that is secreted by the heart[J]. Circulation, 2008, 117(24): 3099-3108.

[23] Ouchi N, Oshima Y, Ohashi K,. Follistatin-like 1, a secreted muscle protein, promotes endothelial cell function and revascularization in ischemic tissue through a nitric-oxide synthase-dependent mechanism[J]. J Bio Chem, 2008, 283(47): 32802-32811.

[24] Ouchi N, Yohashi A, Ohashi K,. DIP2A functions as a FSTL1 receptor[J]. J Bio Chem, 2010, 285 (10): 7127-7134.

[25] Piras A, Persiani M, Damiani N,. Peripheral heart action (PHA) training as a valid substitute to high intensity interval training to improve resting cardiovascular changes and autonomic adaptation[J]. Eur J Appl Physiol, 2015, 115(4): 763-773.

[26] Queiroz A C, Kanegusuku H, Forjaz C L. Effects of resistance training on blood pressure in the elderly[J]. Arquivos Brasileiros De Cardiol, 2010, 95(1): 135-140.

[27] Rochette L, Vergely C.“Pro-youthful” factors in the “l(fā)abyrinth” of cardiac rejuvenation[J]. Experiment Gerontol, 2016, 83: 1-5.

[28] SAMADI A, GAEINI A, RAVASI A,The effect of resistance exercise on oxidative stress in cardiac and skeletal muscle tissues of streptozotocin-induced diabetic rats[J]. J Physics Condensed Matter, 2013, 18(39): 9055-9070.

[29] Shen M, Yu M, Li J,Effects of exercise training on kinin receptors expression in rats with myocardial infarction[J]. Archives Physiol Biochem, 2017: 1-6.

[30] Shibanuma M, Mashimo J, Mita A,. Cloning from a mouse osteoblastic cell line of a set of transforming-growth-factor-β1-regulated genes, one of which seems to encode a follistatin-related polypeptide[J]. Eur J Biochem, 1993, 217(1): 13-19.

[31] Shimano M, Ouchi N, Nakamura K,. Cardiac myocyte follistatin-like 1 functions to attenuate hypertrophy following pressure overload[J]. Proc Natl Acad Sci U S A, 2011, 108(43): E899-906.

[32] Tamamori-Adachi M, Ito H, Sumrejkanchanakij P,Critical role of cyclin D1 nuclear import in cardiomyoc-yte proliferation[J]. Cir Res, 2003, 92(1): 12-19.

[33] Tanaka K, Valeromu?oz M, Wilson R M,Follistatin like 1 regulates hypertrophy in heart failure with preserved ejection fraction[J]. Jacc Basic Translation Sci, 2016, 1(4): 207-221.

[34] Waring C D, Carla V, Angela P,. The adult heart responds to increased workload with physiologic hypertrophy, cardiac stem cell activation, and new myocyte formation[J]. Eur Heart J, 2014, 35(39): 2722-2731.

[35] Wei K, Serpooshan V, Hurtado C,. Epicardial fstl1 reconstitution regenerates the adult mammalian heart[J]. Nature, 2015, 525(7570): 479-485.

[36] WIDERA C, GIANNITIST E, KEMPF T,Identification of follistatin-like 1 by expression cloning as an activator of the growth differentiation factor 15 gene and a prognostic biomarker in acute coronary syndrome[J]. Clin Chem, 2012, 58(8): 1233-1241.

[37] Xiao F, Kimura W, Sadek H A. A hippo "akt" regulates cardiomyocyte proliferation[J]. Cir Res, 2015, 116(1): 3-5.

[38] XIAO J J, XU T Z, LI J,. Exercise-induced physiological hypertrophy initiates activation of cardiac progenitor cells[J]. Int J Clin Experiment Pathol, 2014, 7(2): 663-669.

[39] Xiao J, Shi J, Bei Y,. TCTAP A-038 miR-17-3p contributes to rxercise-induced cardiac growth and protects against myocardial ischemia-reperfusion injury[J]. J Am College Cardiol, 2017, 7(3): 664-676.

[40] Xiao L, He H, Ma L,Effects of miR-29a and miR-101a expression on myocardial interstitial collagen generation after aerobic exercise in myocardial-infarcted rats[J]. Archives Med Res, 2017, 48(1): 27-34.

[41] Xu X, Wan W, Powers A S,Effects of exercise training on cardiac function and myocardial remodeling in post myocardial infarction rats[J]. J Molecular Cellular Cardiol, 2008, 44(1): 114-122.

[42] Zhang K R, Liu H T, Zhang H F,Long-term aerobic exercise protects the heart against ischemia/reperfusion injury via PI3 kinase-dependent and Akt-mediated mechanism[J]. Apoptosis, 2007, 12(9): 1579-1588.

Resistance Training Activates the Signaling Pathway of FSTL1-Akt-mTOR and Induces Cardiomyocyte Proliferation in Rats with Myocardial Infarction

TIAN Zhen-jun,HAO Mei-li,XI Yue

Shaanxi Normal University Xi' an 710062, China.

Objectives: This study aimed at discussing the effect of resistance training on expression of Follistatin-like protein 1(FSTL1) and its receptor Disco-interacting protein 2 homolog A( DIP2A) , downstream signaling pathway of Akt-mTOR and cardiomyocyte proliferation in rats with MyocardialInfarction(MI). Methods: 30 male Sprague-Dawley rats, weight about 180-220g were randomly divided into three groups: Sham-operated group(S), sedentary MI group(MI) and MI with resistance training group(MR) after the MI model was established by ligation of left anterior descending coronary artery. After surgery 1 week, rats in MR took adaptability climbing up ladder unload training for 1 week. Then subjected progressive loading training for 4 weeks. The 24 hours after training, rats were anesthetized, the LVSP, LVEDP, ±dp/dt max were tested in order to evaluate cardiac function. The protein expression of FSTL1, DIP2A, pAkt, Akt, p-mTOR, mTOR, CyclinD1 and CDK4 in Myocardium were measured by Western blot, cardiomyocyte proliferation was observed and analyzed by immunofluorescence. Collagen volume fraction(%) of Myocardium were calculated by Masson Staining. Results: Compared with S, the protein expression of FSTL1, DIP2A, pAkt/Akt, p-mTOR/mTOR, CyclinD1 and CDK4, cardiomyocyte proliferation, the CVF% and LVEDP of MI increased, the LVSP and ±dp/dt max significantly decreased; Compared with MI, the protein expression of FSTL1, DIP2A, pAkt/Akt, p-mTOR/mTOR, CyclinD1 and CDK4, cardiomyocyte proliferation, the CVF% and LVEDP of MR significantly upregulated, the LVSP, ±dp/dt max significantly downregulated. Conclusions: Resistance training may via upregulate the expression of FSTL1 and its receptor DIP2A in Myocardium, activates the signaling pathway of Akt-mTOR, induces cardiomyocyte proliferation, and improves cardiac function.

1000-677X(2018)03-0040-08

10.16469/j.css.201803005

G804.5

2017-07-07;

2018-02-27

國家自然科學基金(31371199)資助項目。

田振軍,男,教授,博士生導師,主要研究方向為運動與心血管健康,Email:tianzj611@hotmail.com; 郝美麗,女,在讀碩士生,主要研究方向為運動與心血管健康; 席悅,男,在讀博士生,主要研究方向為運動與心血管健康。

猜你喜歡
心梗心肌細胞心功能
左歸降糖舒心方對糖尿病心肌病MKR鼠心肌細胞損傷和凋亡的影響
活血解毒方對缺氧/復氧所致心肌細胞凋亡的影響
心梗突發(fā)的九大不典型“求救信號”
誘發(fā)“心梗”的10個危險行為
祝您健康(2019年10期)2019-10-18 01:29:28
心功能如何分級?
β2微球蛋白的升高在急性心梗中預測死亡風險的臨床意義
心肌細胞慢性缺氧適應性反應的研究進展
中西醫(yī)結合治療舒張性心功能不全臨床觀察
槲皮素通過抑制蛋白酶體活性減輕心肌細胞肥大
冠狀動脈支架置入后左心功能變化
贺州市| 沙坪坝区| 兴化市| 五莲县| 莆田市| 赤城县| 喜德县| 凌源市| 长沙市| 江华| 舞阳县| 大兴区| 孝感市| 安顺市| 北川| 宁德市| 潜江市| 陆河县| 库车县| 固原市| 元朗区| 大石桥市| 桦南县| 靖宇县| 肇州县| 武安市| 苗栗市| 罗定市| 江源县| 武山县| 府谷县| 驻马店市| 闽侯县| 富蕴县| 孟津县| 灵武市| 宜兴市| 桃江县| 色达县| 凯里市| 贵南县|