劉曉光,肖衛(wèi)華,陳佩杰,趙淋淋,曾志剛,2,周永戰(zhàn),鄭莉芳
?
剔除巨噬細(xì)胞可通過(guò)抑制肌再生因子和Akt/mTOR信號(hào)通路損害骨骼肌再生
劉曉光1,肖衛(wèi)華1,陳佩杰1,趙淋淋1,曾志剛1,2,周永戰(zhàn)1,鄭莉芳1
1. 上海體育學(xué)院 運(yùn)動(dòng)科學(xué)學(xué)院, 上海 200438; 2. 井岡山大學(xué) 體育學(xué)院, 江西 吉安 343009。
目的:探討骨骼肌挫傷修復(fù)過(guò)程中巨噬細(xì)胞與肌再生因子及Akt/mTOR信號(hào)通路間的關(guān)系,以深入研究巨噬細(xì)胞在骨骼肌挫傷修復(fù)中的作用及其機(jī)制。方法:80只雄性C57BL/6小鼠隨機(jī)分為骨骼肌損傷組(S,n=32),損傷+巨噬細(xì)胞剔除組(T,n=32),未損傷對(duì)照組(SCon,n=8),未損傷+巨噬細(xì)胞剔除對(duì)照組(TCon,n=8)。骨骼肌挫傷后1d、3d、7d和14d取雙側(cè)腓腸肌外層。蘇木素-伊紅(HE)染色觀察骨骼肌形態(tài)學(xué)變化,熒光定量PCR(RT-PCR)及蛋白質(zhì)印跡法(WB)檢測(cè)肌再生相關(guān)因子及Akt/mTOR蛋白質(zhì)合成信號(hào)分子表達(dá)變化。結(jié)果:1)HE結(jié)果顯示,S組和T組骨骼肌在挫傷后第1 d和3 d肌纖維結(jié)構(gòu)破壞、大量肌纖維壞死、腫脹。S組在損傷第7 d出現(xiàn)大量再生肌纖維,而T組在傷后第7 d僅出現(xiàn)少量再生肌纖維,傷后第14 d仍有大量再生肌纖維出現(xiàn);2)RT-PCR結(jié)果顯示,S組骨骼肌成肌分化抗原(MyoD)和肌細(xì)胞生成素(myogenin)mRNA在挫傷后表達(dá)均顯著增加(<0.01)。而與S組相比,T組損傷骨骼肌中MyoD顯著下調(diào),myogenin顯著上調(diào)表達(dá)(<0.05);3)S組骨骼肌損傷后,與SCon組相比,除機(jī)械生長(zhǎng)因子(MGF)外,多種肌再生因子均顯著上調(diào)表達(dá)。與S組相比,T組損傷骨骼肌中多種肌再生因子表達(dá)均顯著下調(diào)。4)S組骨骼肌損傷后低氧誘導(dǎo)因子1α(HIF-1α)和血管生成素1(Angpt1)mRNA表達(dá)均顯著增加,而血管內(nèi)皮生長(zhǎng)因子(VEGF)mRNA表達(dá)下降。與S組相比,T組HIF-1α和Angpt1在損傷后期顯著上調(diào)表達(dá);5)WB結(jié)果顯示,骨骼肌損傷后,S組p-Akt/Akt、p-mTOR/mTOR、p-p70S6K/p70S6k和p-4EBP1/4EBP1表達(dá)均顯著增加,而T組p-Akt/Akt、p-mTOR/mTOR、p-p70S6K/p70S6k和p-4EBP1/4EBP1與TCon及S組相比均無(wú)顯著變化(>0.05)。結(jié)論:巨噬細(xì)胞在骨骼肌挫傷修復(fù)過(guò)程中發(fā)揮了重要作用,剔除巨噬細(xì)胞可損害挫傷骨骼肌再生,其機(jī)制可能與肌再生因子表達(dá)下調(diào)、蛋白質(zhì)合成信號(hào)通路未激活有關(guān)。
骨骼??;損傷修復(fù);巨噬細(xì)胞;肌再生因子;血管再生因子;蛋白質(zhì)合成信號(hào)通路
骨骼肌是具有高度可塑性的組織,損傷后可進(jìn)行再生,恢復(fù)結(jié)構(gòu)和功能[11]。骨骼肌這種強(qiáng)大的自我再生能力主要依賴于肌衛(wèi)星細(xì)胞。肌衛(wèi)星細(xì)胞是一類肌源性前體細(xì)胞,存在于肌膜和基底膜之間。骨骼肌未損傷時(shí)肌衛(wèi)星細(xì)胞一般處于靜息狀態(tài),而當(dāng)骨骼肌損傷后,肌衛(wèi)星細(xì)胞即可被激活,增殖、分化形成新的肌管或與受損肌纖維融合,參與骨骼肌損傷修復(fù)[31]。
研究表明,骨骼肌損傷修復(fù)過(guò)程中,巨噬細(xì)胞也發(fā)揮了重要作用[4]。M1型巨噬細(xì)胞可分泌腫瘤壞死因子-α(TNF-α)、白介素-1β(IL-1β)和白介素-6(IL-6)等炎性介質(zhì),吞噬壞死肌肉組織。M2型巨噬細(xì)胞可分泌胰島素樣生長(zhǎng)因子-1(IGF-1)、肝細(xì)胞生長(zhǎng)因子(HGF)、抗炎因子白介素-10(IL-10),及促纖維化因子轉(zhuǎn)化生長(zhǎng)因子-β(TGF-β),調(diào)控骨骼肌再生和纖維化[32]。此外,巨噬細(xì)胞還能分泌VEGF,參與血管再生[23],即巨噬細(xì)胞在損傷骨骼肌再生中發(fā)揮了多重作用,但其作用機(jī)制仍遠(yuǎn)未闡明。
現(xiàn)有研究發(fā)現(xiàn),巨噬細(xì)胞在mdx小鼠[34]、毒素致傷[41,37,33]、氯化鋇注射致傷[18]等肌損傷動(dòng)物模型中有重要作用,但在運(yùn)動(dòng)醫(yī)學(xué)領(lǐng)域常見(jiàn)損傷——骨骼肌挫傷中,巨噬細(xì)胞是否發(fā)揮作用及如何發(fā)揮作用,卻少有研究。我們推測(cè),和其他損傷模型相似,巨噬細(xì)胞在挫傷骨骼肌修復(fù)過(guò)程中也具有重要作用,巨噬細(xì)胞剔除可能會(huì)影響肌再生因子和蛋白質(zhì)合成信號(hào)分子表達(dá),從而損害挫傷骨骼肌再生。為驗(yàn)證上述假設(shè),本研究建立了骨骼肌挫傷模型及巨噬細(xì)胞剔除模型,檢測(cè)了骨骼肌中多種肌再生因子及蛋白質(zhì)合成信號(hào)分子表達(dá)變化,深入探索了巨噬細(xì)胞在骨骼肌挫傷修復(fù)中的作用及其機(jī)制。
80 只8 周齡C57BL/6雄性小鼠(上海斯萊克實(shí)驗(yàn)動(dòng)物有限公司)隨機(jī)分為骨骼肌損傷組(S,n=32)、損傷+巨噬細(xì)胞剔除組(T,n=32)、未損傷對(duì)照組(SCon,n=8)和未損傷+巨噬細(xì)胞剔除對(duì)照組(TCon,n=8)。小鼠腓腸肌損傷后第1 d、3 d、7 d和14 d取材,每組每時(shí)間點(diǎn)8只。
小鼠用400 mg/kg體重水合氯醛腹腔注射麻醉后,使小鼠固定于平臺(tái)上,且膝關(guān)節(jié)伸直0°,踝關(guān)節(jié)背伸90°位。將重16.8 g,直徑1.6 cm的鋼珠,置于一管狀裝置頂端,自125 cm高處釋放,擊中一打擊裝置,打擊裝置底端撞擊小鼠腓腸肌中部(打擊面積28.26 mm2),制作骨骼肌挫傷模型[40,2]。
小鼠腓腸肌挫傷前2 d,腹腔注射2 mg脂質(zhì)體包被氯膦酸鹽(購(gòu)自www.clodronateliposomes.com),然后在損傷前 2 h小鼠腹腔注射0.5 mg脂質(zhì)體包被氯膦酸鹽,之后在損傷后第3、6、9和12 d都注射0.5 mg脂質(zhì)體包被氯膦酸鹽。此法可特異性剔除體內(nèi)巨噬細(xì)胞,而不影響其他細(xì)胞,是巨噬細(xì)胞剔除的最常用方法[39,30,17]。
在骨骼肌損傷修復(fù)相關(guān)研究中,通常不對(duì)肌纖維類型進(jìn)行特殊說(shuō)明,且腓腸肌為研究者最常用部位[14,6],因此本研究也選取腓腸肌進(jìn)行相關(guān)實(shí)驗(yàn)。小鼠腓腸肌挫傷后在不同時(shí)間點(diǎn)(1 d、3 d、7 d和14 d)取材。小鼠麻醉后頸椎脫位致死,迅速取雙側(cè)受損腓腸肌外層,對(duì)照組取腓腸肌相同部位,通過(guò)HE染色、RT-PCR及WB檢測(cè)相關(guān)指標(biāo)。
骨骼肌經(jīng)4%多聚甲醛(國(guó)藥集團(tuán)化學(xué)試劑有限公司)固定24 h后,石蠟包埋,橫切3~4 μm厚的連續(xù)薄片,切片脫蠟復(fù)水,蘇木精染色,1%鹽酸-酒精分化,伊紅染色,梯度酒精脫水,二甲苯透明,中性樹(shù)膠封片。光學(xué)顯微鏡(Olympus DX70)下觀察并拍攝。
取約60 mg肌肉組織,剪碎后加入1 ml Trizol(美國(guó)Invitrogen公司),用機(jī)械勻漿器(IKA T10,德國(guó)IKA公司)粉碎勻漿。靜置10 min后,加入200 μl氯仿(國(guó)藥集團(tuán)化學(xué)試劑有限公司)并上下顛倒充分混勻后,靜置5 min,會(huì)出現(xiàn)明顯分層。然后12 000 rpm,4℃離心15 min后小心吸取500 μl上清移入一新離心管中,在此離心管中加入等量異丙醇(國(guó)藥集團(tuán)化學(xué)試劑有限公司),顛倒混勻并靜置 20 min。冷凍離心機(jī)(centrifuge5417R,德國(guó)Eppendorf公司)中12 000 rpm,4℃離心10 min,白色羽毛狀沉淀即為 RNA。該沉淀用75%酒精(國(guó)藥集團(tuán)化學(xué)試劑有限公司)洗滌2 次后,加入30 μl DEPC水(生工生物工程(上海)股份有限公司)溶解。測(cè)OD值,OD260/280為1.8~2.0的樣品可用。取2 μg總RNA,按cDNA合成試劑盒說(shuō)明(K1622, Thermo Scientific 公司)加0.2μg隨機(jī)引物,20 mM dNTP mix, 5× Reaction buffer,20U RiboLockTMRNase Inhibitor 和200 U of RevertaidTMM-MuLV Reverse Transcriptase總體積是20 μl。在梯度PCR儀(Mastercycler EP,德國(guó) Eppendorf 公司),進(jìn)行反轉(zhuǎn)錄。反應(yīng)過(guò)程中的溫度控制是25℃ 5 min,42 ℃ 60 min,70 ℃ 5 min,然后,溫度降低到4 ℃,cDNA合成完成。合成的cDNA儲(chǔ)存在-20 ℃?zhèn)溆肹22, 23]。
熒光定量PCR反應(yīng)體系包括12.5 μl 2×Maxima SYBR Green/ROX qPCR Master mix(K0221,Thermo Scientific公司)、1 μl cDNA、無(wú)核酸酶水和300 nM的上下游引物。引物由生工生物工程(上海)股份有限公司設(shè)計(jì)并合成,見(jiàn)表1。 使用熒光定量PCR儀(ABI SteponePlus Real Time PCR System7500,USA)進(jìn)行擴(kuò)增。反應(yīng)條件為:預(yù)變性95 ℃ 10 min,95 ℃ 變性15 s,60 ℃1 min退火/延伸,共40個(gè)循環(huán)。通過(guò)2-△△CT方法計(jì)算所測(cè)樣本mRNA的相對(duì)含量[24,25]。
表1 熒光定量PCR引物序列
取60~80 mg腓腸肌移入2 ml EP管中,加入含磷酸酶抑制劑的蛋白裂解液(P0013B,上海碧云天生物技術(shù)有限公司)后,剪碎組織并充分勻漿;4 ℃離心機(jī)12 000 rpm離心5 min,取上清液;二喹啉甲酸(BCA)法測(cè)蛋白樣本濃度(P009,上海碧云天生物技術(shù)有限公司);SDS-PAGE電泳,5%濃縮膠,70 V恒壓電泳30 min,10%分離膠,110 V恒壓電泳90 min后(Protean tetra電泳槽,美國(guó)Biorad公司),用濕轉(zhuǎn)法(Trans-Blot 轉(zhuǎn)印槽,美國(guó) Biorad 公司)轉(zhuǎn)至聚偏氟乙烯(PVDF)膜(美國(guó)默克密理博公司)上;PVDF膜于5%脫脂牛奶(光明乳業(yè)股份有限公司)中室溫封閉1.5 h;分別加入一抗Akt、磷酸化Akt、mTOR、磷酸化mTOR、p70 s6k、磷酸化p70 s6k、4EBP1、磷酸化4 EBP1和GAPDH(所有一抗為兔抗小鼠1:1000,CST公司),4°過(guò)夜,TBST洗膜3次,加入HRP標(biāo)記二抗(1:5 000,Santa Cruz公司)室溫孵育1 h,ECL發(fā)光法(Tanon 5200自動(dòng)發(fā)光儀,中國(guó)天能儀器有限公司)檢測(cè)蛋白條帶,采用Image J分析軟件測(cè)定條帶灰度值。
圖1 脂質(zhì)體包被氯膦酸鹽對(duì)損傷骨骼肌巨噬細(xì)胞標(biāo)志物表達(dá)的影響
Figure 1 Effects of CL-liposomes on the Specific Markers of Macrophages of Muscle Post-injury.
注:a:CD68;b:CD206; S:骨骼肌損傷組;T:損傷+巨噬細(xì)胞剔除組;SCon:未損傷對(duì)照組;TCon:未損傷+巨噬細(xì)胞剔除對(duì)照組;與SCon組比較,a<0.05;aa<0.01;與TCon組比較,b<0.05;bb<0.01;S組與T組同一時(shí)間點(diǎn)比較,c<0.05;cc<0.01;CD68:M1巨噬細(xì)胞特異標(biāo)志物;CD206:M2巨噬細(xì)胞特異標(biāo)志物。
RT-PCR結(jié)果顯示,S組骨骼肌中CD68(M1巨噬細(xì)胞標(biāo)志物)[38,34,32,10]mRNA在傷后第1 d、3 d和7 d表達(dá)量均顯著增加(<0.05)。與S組相比,T組CD68 mRNA在傷后1 d、3d和7d表達(dá)量均顯著降低(<0.01),但在損傷后第14 d表達(dá)量顯著高于S組(<0.01)。同時(shí),T組CD206(M2巨噬細(xì)胞標(biāo)志物)[15,24]mRNA在損傷后1 d和3 d表達(dá)量均顯著低于S組(<0.01,圖1)。
同時(shí),本課題組前期通過(guò)流式細(xì)胞術(shù)檢測(cè)損傷骨骼肌中巨噬細(xì)胞含量。結(jié)果發(fā)現(xiàn),骨骼肌損傷后第1 d和第3 d脂質(zhì)體包被氯膦酸鹽處理組中巨噬細(xì)胞百分比顯著低于損傷組[39,17]。此結(jié)果和Shen等[27]相似,他們發(fā)現(xiàn),小鼠經(jīng)脂質(zhì)體包被氯膦酸鹽處理,在傷后第1 d骨骼肌中巨噬細(xì)胞浸潤(rùn)減少了73.2%,第2 d減少了80.2%,第3 d減少77.4%,以上結(jié)果證實(shí),巨噬細(xì)胞剔除模型得以成功建立。
本研究采用重物擊打腓腸肌,建立骨骼肌挫傷模型。HE結(jié)果顯示,SCon組骨骼肌細(xì)胞形態(tài)規(guī)則,肌細(xì)胞核位于肌膜下,肌纖維結(jié)構(gòu)完整性較好。損傷后第1 d,肌纖維結(jié)構(gòu)破壞,炎性細(xì)胞浸潤(rùn)。傷后第3 d,大量炎性細(xì)胞浸潤(rùn)到損傷部位,且S組骨骼肌中可見(jiàn)少量再生肌纖維(中央核肌纖維)。骨骼肌損傷后第7 d,壞死肌纖維被大量中央成核肌纖維所代替,損傷后第14 d仍可見(jiàn)部分中央成核肌纖維。提示,骨骼肌挫傷后第14 d損傷骨骼肌未完全恢復(fù)。此結(jié)果證實(shí),骨骼肌挫傷模型得以成功建立[40,2]。
雖然S組骨骼肌在傷后第3 d可見(jiàn)少量再生肌纖維,但T組骨骼肌中未見(jiàn)再生肌纖維。S組骨骼肌傷后第7 d可見(jiàn)大量新生肌纖維,T組僅有少量中央成核肌纖維零星分布,且仍有少量炎性細(xì)胞浸潤(rùn)。在傷后第14 d,S組中大部分再生肌纖維已成熟,僅出現(xiàn)少量再生肌纖維,而在T組中出現(xiàn)大量再生肌纖維,表明巨噬細(xì)胞剔除使骨骼肌再生得以延遲,有損骨骼肌再生(圖2)。
圖2 巨噬細(xì)胞剔除損害骨骼肌再生
Figure 2 Macrophages Depletion Showed Markedly Impaired Muscle Regeneration after Injury.
MyoD通常視為肌衛(wèi)星細(xì)胞增殖標(biāo)志物,myogenin 為肌衛(wèi)星細(xì)胞分化標(biāo)志物[9]。與SCon組相比,S組MyoD mRNA在骨骼肌傷后第1 d和3 d表達(dá)顯著增加(<0.01)。T組MyoD mRNA與S組相比,在傷后第7 d表達(dá)顯著降低(<0.05) (圖3 a)。S組myogenin mRNA在傷后第1 d和3 d表達(dá)均顯著增加(<0.01)。與S組相比,T組myogenin mRNA在傷后第14 d的表達(dá)顯著增加(<0.05,圖3)。
圖3 巨噬細(xì)胞剔除對(duì)損傷骨骼肌肌衛(wèi)星細(xì)胞增殖分化物表達(dá)的影響
Figure 3 Effects of Macrophages Depletion on the Marker of Proliferation and Differentiation of Satellite Cell Post Injury.
S:骨骼肌損傷組;T:損傷+巨噬細(xì)胞剔除組;SCon:未損傷對(duì)照組;TCon:未損傷+巨噬細(xì)胞剔除對(duì)照組;與SCon組比較,a<0.05;aa<0.01;與TCon組比較,b<0.05;bb<0.01;S組與T組同一時(shí)間點(diǎn)比較,c<0.05;cc<0.01;
圖4 巨噬細(xì)胞剔除對(duì)損傷骨骼肌肌再生因子表達(dá)的影響
Figure 4 Effects of Macrophages Depletion on Regulatory Factors for Muscle Regeneration
S:骨骼肌損傷組;T:損傷+巨噬細(xì)胞剔除組;SCon:未損傷對(duì)照組;TCon:未損傷+巨噬細(xì)胞剔除對(duì)照組;與SCon組比較,a<0.05;aa<0.01;與TCon組比較,b<0.05;bb<0.01;S組與T組同一時(shí)間點(diǎn)比較,c<0.05;cc<0.01;
熒光定量PCR結(jié)果顯示,S組HGF mRNA在傷后第1 d、3 d和7 d表達(dá)量均顯著增加(<0.01)。而T組HGF mRNA在傷后第1 d和3 d表達(dá)量均顯著低于S組(<0.05,圖4 a)。
S組中uPA和IGF-1 mRNA的表達(dá)與HGF相似,在損傷后表達(dá)量顯著增加,巨噬細(xì)胞剔除后T組中uPA和IGF-1的表達(dá)顯著低于S組(圖4 b,c)。
骨骼肌損傷后S組MGF的表達(dá)與SCon組相比,無(wú)顯著變化(>0.05)。T組MGF mRNA在損傷前顯著高于S組(<0.01),而在損傷后第1 d和3 d表達(dá)量顯著低于S組(<0.01)。
S組生長(zhǎng)分化因子11(GDF11)mRNA在傷后第1 d表達(dá)顯著增加(<0.01),T組GDF11 mRNA在傷后第7 d顯著低于S組(<0.05)。
S組大麻素受體2(CB2R)mRNA在傷后第1 d和3 d表達(dá)均顯著增加(<0.01),而T組CB2R mRNA在傷后1 d和7 d表達(dá)均顯著低于S組(圖4)。
圖 5 巨噬細(xì)胞剔除對(duì)損傷骨骼肌血管再生因子表達(dá)的影響
Figure. 5 Effects of macrophage depletion on the expression of angiogenesis factors
S:骨骼肌損傷組;T:損傷+巨噬細(xì)胞剔除組;SCon:未損傷對(duì)照組;TCon:未損傷+巨噬細(xì)胞剔除對(duì)照組;與SCon組比較,a<0.05;aa<0.01;與TCon組比較,b<0.05;bb<0.01;S組與T組同一時(shí)間點(diǎn)比較,c<0.05;cc<0.01;
熒光定量PCR研究發(fā)現(xiàn),S組HIF-1α mRNA在傷后1 d、3 d和7 d表達(dá)顯著增加,而在傷后14d T組HIF-1α mRNA表達(dá)顯著高于S組(<0.05,圖5 a)。
S組Angpt1 mRNA在傷后1-7d表達(dá)均顯著增加(<0.01),傷后14 d雖進(jìn)行性下降,但仍顯著高于SCon組(<0.01)。巨噬細(xì)胞剔除后T組中Angpt1在損傷前以及損傷后第14 d表達(dá)均顯著高于S組(<0.05,圖5c)。
VEGF mRNA在傷后第7d表達(dá)顯著低于SCon組(<0.05),而TCon組VEGF mRNA顯著高于SCon組(<0.05,圖5 b)。
圖 6 巨噬細(xì)胞剔除對(duì)損傷骨骼肌蛋白質(zhì)合成信號(hào)分子表達(dá)的影響
Figure. 6 Effects of macrophage depletion on the pathway of protein synthesis
S:骨骼肌損傷組;T:損傷+巨噬細(xì)胞剔除組;SCon:未損傷對(duì)照組;TCon:未損傷+巨噬細(xì)胞剔除對(duì)照組;與SCon組比較,a<0.05;aa<0.01;與TCon組比較,b<0.05;bb<0.01;S組與T組同一時(shí)間點(diǎn)比較,c<0.05;ccP<0.01;
WB結(jié)果顯示,S組骨骼肌p-Akt/Akt和p-mTOR/mTOR均在傷后第1d表達(dá)顯著增加(<0.05),p-p70S6K/p70S6k在傷后1d和3d表達(dá)均顯著增加,p-4EBP1/4EBP1在傷后1d、3d、7d和14d表達(dá)均顯著增加。而T組p-Akt/Akt、p-mTOR/mTOR、p-p70S6K/p70S6K和p-4EBP1/4EBP1與SCon組及S組相比雖有增加,但并無(wú)顯著變化(>0.05,圖6a,b,c,d)
MyoD一般作為生肌調(diào)節(jié)因子參與衛(wèi)星細(xì)胞激活,而myogenin則參與肌衛(wèi)星細(xì)胞分化[40]。本研究中,T組myogenin表達(dá)量在傷后1 d、3 d和7 d相比,于S組均不同程度降低,但第14 d卻處于高表達(dá)狀態(tài)。結(jié)合形態(tài)學(xué)結(jié)果來(lái)看,T組在第14天時(shí),仍有較多再生肌纖維(圖2),提示,巨噬細(xì)胞剔除可能延遲了肌衛(wèi)星細(xì)胞分化,損害了骨骼肌再生。此結(jié)果和Segawa等[26]相似,他們發(fā)現(xiàn),抑制巨噬細(xì)胞活性可影響損傷骨骼肌中肌衛(wèi)星細(xì)胞增殖和分化,損害骨骼肌再生。但Summan等[30]的研究認(rèn)為,剔除巨噬細(xì)胞并不影響肌衛(wèi)星細(xì)胞增殖和分化。從其實(shí)驗(yàn)設(shè)計(jì)來(lái)看,Summan等僅用傷后第3 d研究巨噬細(xì)胞剔除對(duì)肌衛(wèi)星細(xì)胞增殖分化的影響,存在一定的局限性,本研究采用多點(diǎn)檢測(cè)(傷后1-14 d),結(jié)果可能更為客觀。
骨骼肌再生過(guò)程中,多種肌再生因子發(fā)揮了重要作用,如IGF-1與骨骼肌蛋白質(zhì)合成有關(guān),其異構(gòu)體MGF則可能參與了肌衛(wèi)星細(xì)胞的激活[29,1];HGF可激活骨骼肌中靜息態(tài)肌衛(wèi)星細(xì)胞[12],uPA則促進(jìn)巨噬細(xì)胞向損傷骨骼肌趨化[7];CB2R可調(diào)節(jié)損傷骨骼肌中炎癥反應(yīng)和纖維化[42],而GDF11可影響成肌細(xì)胞分化[3]。這些因子中,有多種因子如IGF-1[18]、HGF[25]和uPA[21]等可由巨噬細(xì)胞分泌。本研究中,巨噬細(xì)胞剔除使挫傷骨骼肌修復(fù)受損,是否與這些因子有關(guān)?我們對(duì)此展開(kāi)了相關(guān)研究。結(jié)果表明,骨骼肌挫傷后,多種肌再生因子(MGF除外)均顯著上調(diào)表達(dá),參與損傷骨骼肌修復(fù),而巨噬細(xì)胞剔除后,這些肌再生因子出現(xiàn)顯著下調(diào)。提示,這些肌再生因子可能參與了巨噬細(xì)胞剔除損害骨骼肌再生這一過(guò)程。
血管再生是骨骼肌損傷后修復(fù)過(guò)程中的一個(gè)重要環(huán)節(jié),骨骼肌損傷后新生的血管不僅能為再生組織提供充足的O2和營(yíng)養(yǎng)物質(zhì),還能進(jìn)一步促進(jìn)骨骼肌細(xì)胞的再生,維持局部組織內(nèi)環(huán)境穩(wěn)態(tài)[35,28]。有研究證實(shí),HIF-1α、Angpt1和 VEGF不僅與血管再生有關(guān),且可直接參與骨骼肌損傷修復(fù)過(guò)程[36,20,5]。巨噬細(xì)胞也是血管再生所必須的,它可通過(guò)分泌一些血管再生因子促進(jìn)血管內(nèi)皮細(xì)胞分化,促進(jìn)血管形成[44]。剔除巨噬細(xì)胞小鼠其血管再生水平顯著降低,骨骼肌損傷修復(fù)能力受損[13]。但對(duì)于巨噬細(xì)胞剔除如何影響挫傷骨骼肌再生過(guò)程中血管再生卻鮮有報(bào)道。本研究發(fā)現(xiàn),巨噬細(xì)胞剔除可顯著提高傷后第14 d HIF-1α和Angpt1表達(dá)。HIF-1α是低氧環(huán)境誘導(dǎo)產(chǎn)生的關(guān)鍵因子,其高水平表達(dá)提示,損傷處氧氣供應(yīng)不足,血管損傷未完成修復(fù)[36,22]。巨噬細(xì)胞剔除后,這兩種血管再生因子在損傷修復(fù)后期仍處于高表達(dá)狀態(tài),提示,巨噬細(xì)胞剔除可能加劇損傷骨骼肌修復(fù)后期缺氧狀態(tài)、延長(zhǎng)了血管再生過(guò)程,進(jìn)而損害骨骼肌再生。同時(shí),本課題組前期研究也發(fā)現(xiàn),巨噬細(xì)胞剔除后,在骨骼肌損傷修復(fù)后期仍有較高水平的炎癥反應(yīng)和氧化應(yīng)激反應(yīng),提示,巨噬細(xì)胞剔除延遲了骨骼肌損傷修復(fù)進(jìn)程[39]。
在骨骼肌損傷后的修復(fù)過(guò)程中,蛋白質(zhì)合成需大于分解,才能有效完成修復(fù)過(guò)程。Akt/mTOR信號(hào)通路是蛋白質(zhì)合成的主要信號(hào)通路,骨骼肌損傷后可能通過(guò)激活A(yù)kt/mTOR及其下游信號(hào)分子促進(jìn)蛋白質(zhì)合成,加速骨骼肌損傷后修復(fù)過(guò)程[43,16]。與其他骨骼肌損傷模型相似,本研究發(fā)現(xiàn),骨骼肌挫傷后第1 d即可激活A(yù)kt/mTOR及其下游信號(hào)分子p70S6K和4EBP1,提示骨骼肌損傷后,Akt/mTOR蛋白質(zhì)合成信號(hào)通路被激活,促進(jìn)蛋白質(zhì)合成[19,8]。但巨噬細(xì)胞剔除是否影響挫傷骨骼肌修復(fù)過(guò)程中蛋白質(zhì)合成信號(hào)通路的激活,卻未見(jiàn)相關(guān)報(bào)道。本實(shí)驗(yàn)研究發(fā)現(xiàn),巨噬細(xì)胞剔除后,挫傷骨骼肌中Akt/mTOR及其下游信號(hào)分子p70S6K和4EBP1與剔除對(duì)照組及損傷組相比均無(wú)顯著變化。提示,巨噬細(xì)胞剔除后損傷骨骼肌中Akt/mTOR蛋白質(zhì)合成信號(hào)通路可能未被激活。因此,巨噬細(xì)胞剔除損害骨骼肌再生可能與巨噬細(xì)胞剔除后未能激活損傷骨骼肌中Akt/mTOR蛋白質(zhì)合成信號(hào)通路有關(guān)。
巨噬細(xì)胞在骨骼肌挫傷修復(fù)過(guò)程中發(fā)揮了重要作用,剔除巨噬細(xì)胞可損害挫傷骨骼肌再生,其機(jī)制可能與肌再生因子表達(dá)下調(diào)、蛋白質(zhì)合成信號(hào)通路未激活有關(guān)。
[1] 劉曉光, 徐苗苗, 陳佩杰, 等. IGF-1在治療骨骼肌損傷中的應(yīng)用潛能及其相關(guān)機(jī)制[J]. 生命的化學(xué), 2016, (04): 496-502.
[2] 劉曉光, 趙淋淋, 曾志剛, 等. 骨骼肌損傷修復(fù)過(guò)程中肌再生調(diào)節(jié)因子和血管再生因子表達(dá)規(guī)律研究[J]. 中國(guó)康復(fù)醫(yī)學(xué)雜志, 2016, (12): 1294-1300.
[3] 劉曉光, 趙淋淋, 田向陽(yáng), 等. 生長(zhǎng)分化因子11在延緩衰老中的作用[J]. 中國(guó)老年學(xué)雜志, 2015, (17): 5016-5019.
[4] 肖衛(wèi)華, 陳佩杰, 劉宇. 巨噬細(xì)胞在骨骼肌急性損傷修復(fù)中的作用研究進(jìn)展[J]. 中國(guó)運(yùn)動(dòng)醫(yī)學(xué)雜志, 2014, (3): 269-274.
[5] ARSIC N, ZACCHIGNA S, ZENTILIN L,. Vascular endothelial growth factor stimulates skeletal muscle regeneration in vivo[J]. Mol Ther, 2004, 10(5): 844-854.
[6] BEDAIR H S, KARTHIKEYAN T, QUINTERO A,. Angiote-nsin II receptor blockade administered after injury improves musc-le regeneration and decreases fibrosis in normal skeletal muscle [J]. Am J Sports Med, 2008, 36(8): 1548-1554.
[7] BRYER S C, FANTUZZI G, VAN ROOIJEN N,. Urokinase-type plasminogen activator plays essential roles in macrophage chemotaxis and skeletal muscle regeneration[J]. J Immunol, 2008, 180(2): 1179-1188.
[8] CONTE T C, SILVA L H, SILVA M T,. The beta2-adrenocep-tor agonist formoterol improves structural and functional regener-ative capacity of skeletal muscles from aged rat at the early stages of postinjury[J]. J Gerontol A Biol Sci Med Sci, 2012, 67(5): 443-455.
[9] CORNELISON D D, WOLD B J. Single-cell analysis of regulato-ry gene expression in quiescent and activated mouse skeletal mus-cle satellite cells[J]. Dev Biol, 1997, 191(2): 270-283.
[10] DENG B, WEHLING-HENRICKS M, VILLALTA S A,. IL-10 triggers changes in macrophage phenotype that promote muscle growth and regeneration[J]. J Immunol, 2012, 189(7): 3669-3680.
[11] ENDO T. Molecular mechanisms of skeletal muscle development, regeneration, and osteogenic conversion[J]. Bone, 2015, 80: 2-13.
[12] GRASMAN J M, DO D M, PAGE R L,. Rapid release of growth factors regenerates force output in volumetric muscle loss injuries[J]. Biomaterials, 2015, 72: 49-60.
[13] KOH Y J, KOH B I, KIM H,. Stromal vascular fraction from adipose tissue forms profound vascular network through the dyna-mic reassembly of blood endothelial cells[J]. Arterioscler Thromb Vasc Biol, 2011, 31(5): 1141-1150.
[14] KOWALSKI K, ARCHACKI R, ARCHACKA K,. Stromal derived factor-1 and granulocyte-colony stimulating factor treatm-ent improves regeneration of Pax7-/- mice skeletal muscles [J]. J Cachexia Sarcopenia Muscle, 2016, 7(4): 483-496.
[15] LEE K C, LIN H C, HUANG Y H,. Allo-transplantation of mesenchymal stem cells attenuates hepatic injury through IL1Ra dependent macrophage switch in a mouse model of liver disease [J]. J Hepatol, 2015, 63(6): 1405-1412.
[16] LI H Y, ZHANG Q G, CHEN J W,. The fibrotic role of phosphatidylinositol-3-kinase/Akt pathway in injured skeletal muscle after acute contusion[J]. Int J Sports Med, 2013, 34(9): 789-794.
[17] LIU X, LIU Y, ZHAO L,. Macrophage depletion impairs skeletal muscle regeneration: The roles of regulatory factors for muscle regeneration[J]. Cell Biol Int, 2017, 41(3): 228-238.
[18] LU H, HUANG D, SAEDERUP N,. Macrophages recruited via CCR2 produce insulin-like growth factor-1 to repair acute skeletal muscle injury[J]. FASEB J, 2011, 25(1): 358-369.
[19] MIYABARA E H, CONTE T C, SILVA M T,. Mammalian target of rapamycin complex 1 is involved in differentiation of regenerating myofibers in vivo[J]. Muscle Nerve, 2010, 42(5): 778-787.
[20] MOFARRAHI M, MCCLUNG J M, KONTOS C D,. Angiopoietin-1 enhances skeletal muscle regeneration in mice[J]. Am J Physiol Regul Integr Comp Physiol, 2015, 308(7): R576-589.
[21] NOVAK M L, BRYER S C, CHENG M,. Macrophage-specific expression of urokinase-type plasminogen activator prom-otes skeletal muscle regeneration[J]. J Immunol, 2011, 187(3): 1448-1457.
[22] ONO Y, SENSUI H, SAKAMOTO Y,. Knockdown of hypoxia-inducible factor-1alpha by siRNA inhibits C2C12 myoblast differentiation[J]. J Cell Biochem, 2006, 98(3): 642-649.
[23] PERDIGUERO E, SOUSA-VICTOR P, RUIZ-BONILLA V,. p38/MKP-1-regulated AKT coordinates macrophage transitions and resolution of inflammation during tissue repair[J]. J Cell Biol, 2011, 195(2): 307-322.
[24] SACLIER M, YACOUB-YOUSSEF H, MACKEY A L,. Differentially activated macrophages orchestrate myogenic precur-sor cell fate during human skeletal muscle regeneration[J]. Stem Cells, 2013, 31(2): 384-396.
[25] SAWANO S, SUZUKI T, DO M K,. Supplementary immun-ocytochemistry of hepatocyte growth factor production in activat-ed macrophages early in muscle regeneration[J]. Anim Sci J, 2014, 85(12): 994-1000.
[26] SEGAWA M, FUKADA S, YAMAMOTO Y,. Suppression of macrophage functions impairs skeletal muscle regeneration with severe fibrosis[J]. Exp Cell Res, 2008, 314(17): 3232-3244.
[27] SHEN W, LI Y, ZHU J,. Interaction between macrophages, TGF-beta1, and the COX-2 pathway during the inflammatory phase of skeletal muscle healing after injury[J]. J Cell Physiol, 2008, 214(2): 405-412.
[28] SHIMIZU-MOTOHASHI Y, ASAKURA A. Angiogenesis as a novel therapeutic strategy for Duchenne muscular dystrophy through decreased ischemia and increased satellite cells[J]. Front Physiol, 2014, 5: 50.
[29] SONG Y H, SONG J L, DELAFONTAINE P,. The therapeut-ic potential of IGF-I in skeletal muscle repair[J]. Trends Endocrin-ol Metab, 2013, 24(6): 310-319.
[30] SUMMAN M, WARREN G L, MERCER R R,. Macrophages and skeletal muscle regeneration: a clodronate-containing liposo-me depletion study[J]. Am J Physiol Regul Integr Comp Physiol, 2006, 290(6): R1488-1495.
[31] TIDBALL J G. Mechanisms of muscle injury, repair, and regener-ation [J]. Compr Physiol, 2011, 1(4): 2029-2062.
[32] TIDBALL J G, VILLALTA S A. Regulatory interactions between muscle and the immune system during muscle regeneration[J]. Am J Physiol Regul Integr Comp Physiol, 2010, 298(5): R1173-1187.
[33] TYNER J W, UCHIDA O, KAJIWARA N,. CCL5-CCR5 interaction provides antiapoptotic signals for macrophage survival during viral infection[J]. Nat Med, 2005, 11(11): 1180-1187.
[34] VILLALTA S A, RINALDI C, DENG B,. Interleukin-10 reduces the pathology of mdx muscular dystrophy by deactivating M1 macrophages and modulating macrophage phenotype[J]. Hum Mol Genet, 2011, 20(4): 790-805.
[35] WAGATSUMA A. Endogenous expression of angiogenesis-related factors in response to muscle injury[J]. Mol Cell Biochem, 2007, 298(1-2): 151-159.
[36] WAGATSUMA A, KOTAKE N, YAMADA S. Spatial and tempo-ral expression of hypoxia-inducible factor-1alpha during myogen-esis in vivo and in vitro[J]. Mol Cell Biochem, 2011, 347(1-2): 145-155.
[37] WANG H, MELTON D W, PORTER L,. Altered macrophage phenotype transition impairs skeletal muscle regeneration[J]. Am J Pathol, 2014, 184(4): 1167-1184.
[38] XIAO W, CHEN P, DONG J. Effects of overtraining on skeletal muscle growth and gene expression[J]. Int J Sports Med, 2012, 33(10): 846-853.
[39] XIAO W, LIU Y, CHEN P. Macrophage depletion impairs skele-tal muscle regeneration: the roles of pro-fibrotic factors, inflam-mation, and oxidative Stress[J]. Inflammation, 2016, 39(6): 2016-2028.
[40] XIAO W, LIU Y, LUO B,. Time-dependent gene expression analysis after mouse skeletal muscle contusion[J]. J Sport Heal Sci, 2016, 5(1): 101-108.
[41] ZHANG C, LI Y, WU Y,. Interleukin-6/signal transducer and activator of transcription 3 (STAT3) pathway is essential for macrophage infiltration and myoblast proliferation during muscle regeneration[J]. J Biol Chem, 2013, 288(3): 1489-1499.
[42] ZHANG M, JIANG S K, TIAN Z L,. CB2R orchestrates fibrogenesis through regulation of inflammatory response during the repair of skeletal muscle contusion[J]. Int J Clin Exp Pathol, 2015, 8(4): 3491-3502.
[43] ZHANG P, LIANG X, SHAN T,. mTOR is necessary for proper satellite cell activity and skeletal muscle regeneration[J]. Biochem Biophys Res Commun, 2015, 463(1-2): 102-108.
[44] ZORDAN P, RIGAMONTI E, FREUDENBERG K,. Macro-phages commit postnatal endothelium-derived progenitors to angi-ogenesis and restrict endothelial to mesenchymal transition during muscle regeneration[J]. Cell Death Dis, 2014, 5: e1031.
Depletion of Macrophage Impairs Skeletal Muscle Regeneration by Inhibited the Expression of Muscle Regeneration Regulatory Factors and Akt / mTOR Protein Synthesis Signaling Pathway
LIU Xiao-guang1, XIAO Wei-hua1, CHEN Pei-jie1, ZHAO Lin-lin1, ZENG Zhi-gang1,2, ZHOU Yong-zhan1, ZHENG Li-fang1
1.Shanghai University of Sport, Shanghai 200438, China; 2.Jinggangshan University, Ji’an 343009, China
Objective: The purpose of this study is to explore the relationship between macrophage and muscle regeneration regulatory factors and Akt/mTOR signaling pathway, in order to investigate the role and mechanism of macrophages in the regeneration of injured skeletal muscle. Methods: Eighty C57BL/6 mice were randomly divided into muscle contusion (S, n=32), muscle contusion+ macrophages depleted (T, n=32), control (SCon, n=8), and macrophages depleted control groups (TCon, n=8). Their outer layer of the gastrocnemius muscles were harvested at the time points of 1, 3, 7 and 14d post-injury. The changes of skeletal muscle morphology were assessed by hematoxylin and eosin (HE) stains. The gene and protein expression was analyzed by real-time polymerase chain reaction (RT-PCR) and western blotting (WB). Results: 1) The HE results showed that skeletal muscle fibers were significantly impaired and the injured fibers had almost degenerated at 1d and 3d post-injury in both S and T groups. At 7d after injury, the damaged muscle area in the group S had been replaced mostly by newly formed muscle fibers, whereas numerous necrotic myofibers and inflammatory cells dominated the injured muscle regions of group T. In addition, a large number of regenerated muscle fibers were observed at 14d after injury in the group T. 2) The Myogenic Differentiation Antigen (MyoD) and myogenin mRNA increased significantly post-injury (p<0.01). As compared to the S group, macrophage depletion significantly inhibited MyoD mRNA level and increased myogenin mRNA level in the group T post-injury (p<0.05). 3) The regulatory factors of muscle regeneration (except mechano growth factor, MGF) mRNA increased significantly in the group S post-injury. However, compared with group S, the expression of regulatory factors of muscle regeneration of T group was significantly down regulated. 4) Hypoxia-inducible factor-1α (HIF-1α) and angiopoietin1 (Angpt1) mRNA increased significantly post-injury in group S. Compared with group S, HIF-1 and Angpt1 in T group were significantly up-regulated in the later stage of muscle regeneration. 5) WB analysis showed that p-Akt/Akt, p-mTOR/mTOR, p-p70S6K/p70S6k and p-4EBP1/4EBP1 increased significantly post-injury in group S. However, there were no significantly change in the expression of p-Akt/Akt, p-mTOR/mTOR, p-p70S6K/p70S6k and p-4EBP1/4EBP1 in the group T after injury. Conclusion: Macrophages play important roles in muscle regeneration after injury. Macrophage depletion impairs muscle regeneration and that the inhibition of muscle regeneration regulatory factors and Akt/mTOR pathway may involve in the process.
1000-677X(2018)03-0056-09
10.16469/j.css.201803006
G804.7
A
2017-10-10;
2018-02-03
國(guó)家自然科學(xué)基金資助項(xiàng)目(31300975, 31271273); 上海市人類運(yùn)動(dòng)能力開(kāi)發(fā)與保障重點(diǎn)實(shí)驗(yàn)室資助項(xiàng)目(11DZ2261100)。
劉曉光,男,在讀博士研究生,主要研究方向?yàn)檫\(yùn)動(dòng)健康促進(jìn)的生物學(xué)機(jī)制,E-mail:xiaoguangliu2008@126.com;肖衛(wèi)華,男,博士,副教授,研究方向?yàn)檫\(yùn)動(dòng)健康促進(jìn)的生物學(xué)機(jī)制,E-mail: xiaoweihua@sus.edu.cn; 陳佩杰,男,博士,教授,研究方向?yàn)檫\(yùn)動(dòng)免疫與運(yùn)動(dòng)健康促進(jìn),E-mail:chenpeijie@sus.edu.cn。