国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

TMEPAI蛋白表達(dá)對(duì)溶酶體穩(wěn)定性的影響

2018-05-04 11:53羅深恒白喜龍李玉銀刁愛(ài)坡
關(guān)鍵詞:溶酶體細(xì)胞株質(zhì)粒

羅深恒,白喜龍,景 磊,李玉銀,刁愛(ài)坡

(天津科技大學(xué)生物工程學(xué)院,天津 300457)

溶酶體于1955年被發(fā)現(xiàn),是一個(gè)由單層膜圍繞、內(nèi)含多種酸性水解酶類的囊泡狀細(xì)胞器[1-2].溶酶體的主要功能是消化作用,同時(shí)還具有降解表面受體、失活病原微生物、修復(fù)細(xì)胞膜等功能[3].近年來(lái)研究表明,溶酶體調(diào)控著細(xì)胞內(nèi)的多種死亡信號(hào)[3-4].當(dāng)它受到一些外界因子,如腫瘤壞死因子[5-6]、Fas[7]、p53[8]、微管穩(wěn)定劑[9]、氧化應(yīng)激[7,10]和星形孢菌素[11]刺激時(shí),溶酶體膜發(fā)生通透化,其內(nèi)部的組織蛋白酶從溶酶體腔釋放到細(xì)胞質(zhì).一旦這些組織蛋白酶被釋放到細(xì)胞質(zhì)中,特別是半胱氨酸組織蛋白酶B和L以及天冬氨酰蛋白酶 D,可誘發(fā)線粒體外膜通透化,繼而引發(fā)半胱天冬蛋白酶或細(xì)胞凋亡誘導(dǎo)因子介導(dǎo)的凋亡[11-13],或者調(diào)節(jié)半胱天冬蛋白酶或細(xì)胞凋亡誘導(dǎo)因子介導(dǎo)的細(xì)胞程序性死亡[6,14].另外,由于不同因素引起的溶酶體膜穩(wěn)定性下降可導(dǎo)致與溶酶體相關(guān)疾病的發(fā)生,如矽肺、類風(fēng)濕性關(guān)節(jié)炎等[15].

目前已被鑒定的溶酶體相關(guān)蛋白包括溶酶體相關(guān)膜蛋白(LAMP1、LAMP2)、溶酶體內(nèi)在蛋白(LIMP2)以及溶酶體膜糖蛋白(LGP85).這些蛋白都高度糖基化,能保護(hù)溶酶體膜不被其內(nèi)部的水解酶降解[16-18],防止溶酶體通透化,從而維持溶酶體穩(wěn)定性.

前列腺跨膜蛋白(transmembrane prostate androgen-induced protein,TMEPAI)是 N-端含有一個(gè)跨膜區(qū)(TMD)的Ⅰ型跨膜蛋白,由287個(gè)氨基酸組成. 編碼TMEPAI的基因最早于2000年由Xu等[19]在前列腺癌細(xì)胞中通過(guò)基因表達(dá)系列分析受雄激素調(diào)控的基因時(shí)發(fā)現(xiàn)的,TMEPAI基因定位于染色體 20q13,TMEPAI在眾多癌細(xì)胞中高表達(dá),包括乳腺癌[20-21]、肺癌[22]、骨癌[23]、卵巢癌[24]、前列腺癌[25]、結(jié)腸癌、腎癌及胃癌細(xì)胞[26-28].TMEPAI在癌細(xì)胞中的表達(dá)受部分生長(zhǎng)因子(EGF和 TGF-β)調(diào)控,如在肺癌細(xì)胞中,TMEPAI的持續(xù)高表達(dá)需要 TGF-β的刺激,EGF能夠協(xié)同 TGF-β共同調(diào)節(jié)誘導(dǎo) TMEPAI的表達(dá)[29].本實(shí)驗(yàn)室近期研究發(fā)現(xiàn) TMEPAI蛋白在細(xì)胞內(nèi)定位于溶酶體和晚期內(nèi)吞體,并能夠通過(guò)促進(jìn) TGF-β受體(TβR)的溶酶體降解負(fù)調(diào)控 TGF-β信號(hào)[22].

鑒于 TMEPAI是溶酶體膜相關(guān)蛋白并且在癌細(xì)胞中高表達(dá),那么其功能是否可以增加溶酶體的穩(wěn)定性,從而增強(qiáng)癌細(xì)胞的抗凋亡能力.基于此猜想,本研究擬構(gòu)建穩(wěn)定表達(dá) TMEPAI細(xì)胞株,通過(guò) MTT法、流式細(xì)胞技術(shù)和免疫熒光技術(shù)研究細(xì)胞內(nèi)TMEPAI蛋白表達(dá)對(duì)溶酶體穩(wěn)定性的影響,為探索TMEPAI在腫瘤細(xì)胞發(fā)生中的作用提供理論依據(jù).

1 材料與方法

1.1 材料

1.1.1 菌種、細(xì)胞及質(zhì)粒

大腸桿菌(E.coli)TOP10、肺癌細(xì)胞 A549及質(zhì)粒pEF-IRES-puro 均為本實(shí)驗(yàn)室保存.

1.1.2 主要試劑

Taq DNA 聚合酶、T4 DNA連接酶、限制性內(nèi)切酶、DAN marker、蛋白 預(yù)染 marker,F(xiàn)ermentas 公司;質(zhì)粒小提試劑盒、DNA純化回收試劑盒、膠回收試劑盒,上海生工生物工程有限公司;LipofectamineTM2000、Alexa Fluor?555 goat anti-rabbit IgG、Alexa Fluor?488 donkey anti-mouse IgG、Alexa Fluor?680 goat anti-rabbit IgG,Invitrogen公司;細(xì)胞完全培養(yǎng)基F-12K、胰酶、胎牛血清、DPBS,GIBIO公司;Flag抗體、嘌呤霉素(puromycin)、吖啶橙(acridine orange,AO)、DNA 染料(hoechst 33342),Sigma 公司;TMEPAI抗體為本實(shí)驗(yàn)室純化所得;LAMP2抗體,Abcam公司;Rab7抗體,Santa Cruz 公司;β-actin抗體,天津三箭生物技術(shù)有限公司;引物合成和基因測(cè)序由北京華大基因公司完成.

1.2 方法

1.2.1 pEF-IRES-TMEPAI-Flag重組載體的構(gòu)建與鑒定

根據(jù)目的基因 TMEPAI的核酸序列和表達(dá)載體pEF-IRES-puro 的多克隆位點(diǎn),設(shè)計(jì)擴(kuò)增目的基因的引物,其中上、下游引物 P1、P2分別添加 AflⅡ和XbaⅠ的酶切位點(diǎn)(下劃線標(biāo)示).P1∶5'-CGCGCTT AAG ATGCACCGCTTGATGGG-3';P2∶5'-CTGTCT AGACTACTTGTCGTCATCGTCTTTGTAGTCGCTC GAGAGAGGGTGTCCTTTCTGTTTATCC-3'.以實(shí)驗(yàn)室保存的重組質(zhì)粒 pEGFP-N3-TMEPAI為模板進(jìn)行PCR擴(kuò)增得到 TMEPAI基因片段.真核表達(dá)載體pEF-IRES-puro以及 TMEPAI基因純化產(chǎn)物經(jīng) AflⅡ和XbaⅠ雙酶切后純化回收.酶切產(chǎn)物經(jīng)T4,DNA連接酶連接并轉(zhuǎn)化大腸桿菌 TOP10,挑取單克隆菌落進(jìn)行培養(yǎng)并提取質(zhì)粒后,經(jīng)AflⅡ和XbaⅠ酶切及PCR鑒定為陽(yáng)性的重組質(zhì)粒,進(jìn)一步測(cè)序鑒定.

1.2.2 穩(wěn)轉(zhuǎn)細(xì)胞系的建立

最適嘌呤霉素篩選濃度的確定:在 6孔板中接種適量A549細(xì)胞,37,℃、5%,CO2條件下培養(yǎng)細(xì)胞生長(zhǎng)至 80%~90%,,更換含有不同濃度嘌呤霉素(0~2,μg/mL)的培養(yǎng)基繼續(xù)培養(yǎng).每天鏡下觀察,隔天更換含有嘌呤霉素新鮮培養(yǎng)液.培養(yǎng)3~5,d后,導(dǎo)致細(xì)胞全部死亡的嘌呤霉素最低濃度為最低致死濃度,即最適嘌呤霉素篩選濃度(一般以4,d完全致死為準(zhǔn)).

穩(wěn)定細(xì)胞系的建立:在 100,mm 培養(yǎng)皿中接種適量細(xì)胞,37,℃、5%,CO2條件下培養(yǎng)細(xì)胞生長(zhǎng)至70%~80%,時(shí),利用LipofectamineTM2000將重組質(zhì)粒轉(zhuǎn)染A549細(xì)胞,24,h后更換含有最適嘌呤霉素篩選濃度的新鮮培養(yǎng)液.每天更換含有篩選濃度嘌呤霉素的新鮮培養(yǎng)液進(jìn)行培養(yǎng).待單克隆長(zhǎng)至肉眼可見(jiàn)時(shí),將單克隆挑起并轉(zhuǎn)移至新的培養(yǎng)皿繼續(xù)培養(yǎng),收集細(xì)胞,免疫印跡實(shí)驗(yàn)(Western blot)檢測(cè)穩(wěn)定細(xì)胞系是否建立成功.

1.2.3 免疫印跡實(shí)驗(yàn)檢測(cè)TMEPAI蛋白的表達(dá)

收集對(duì)數(shù)生長(zhǎng)期的單克隆細(xì)胞,加入適量 RIPA裂解緩沖液(50,mmol/L,Tris-HCl(pH,7.4),150,mmol/L NaCl,1%,Triton X-100)(含蛋白酶抑制劑)在冰上裂解 30,min,離心收集上清加入 SDS上樣緩沖液,經(jīng)12%,SDS-PAGE分離后轉(zhuǎn)至 PVDF膜上,5%,的脫脂奶粉室溫封閉 1,h,于 4,℃下進(jìn)行一抗(TMEPAI 1∶500、β-actin 1∶2,000)孵育過(guò)夜,PBST洗膜后再與二抗孵育2,h后,PVDF膜在Odyssey紅外激光成像系統(tǒng)下掃描成像.

1.2.4 免疫熒光法檢測(cè)TMEPAI在細(xì)胞中定位

將適量細(xì)胞接種于已預(yù)先放置無(wú)菌細(xì)胞爬片的30,mm 培養(yǎng)皿中,待細(xì)胞生長(zhǎng)至約 70%,,取出細(xì)胞爬片用預(yù)冷的甲醇-20,℃固定 5,min,DPBS洗滌 1次后一抗(Flag 1∶100、LAMP2 1∶200、Rab7 1∶100)室溫孵育 3,h,DPBS洗滌 3次后二抗(Alexa Fluor?555,goat anti-rabbit IgG 1 ∶ 200 、Alexa Fluor?488 donkey anti-mouse IgG 1∶200、hoechst 33342 10,μg/mL)室溫孵育 30,min,共聚焦熒光顯微鏡下觀察拍照.

1.2.5 MTT法檢測(cè)細(xì)胞增殖

實(shí)驗(yàn)設(shè)置實(shí)驗(yàn)組與對(duì)照組,每組設(shè) 6個(gè)復(fù)孔.96孔板每孔接種 5,000個(gè)細(xì)胞.待細(xì)胞貼壁后,分別加入 0、1、2、4、8、16、32、64、128,μmol/L 氯喹.處理48,h后,每孔加入20,μL MTT溶液(5,mg/mL),繼續(xù)培養(yǎng) 4,h后,小心吸去孔內(nèi)培養(yǎng)液.每孔加入 200,μL二甲基亞砜(DMSO),置搖床上低速振蕩 10,min,使結(jié)晶物充分溶解,酶標(biāo)儀測(cè)定490,nm處吸光度.

1.2.6 吖啶橙(AO)染色分析過(guò)表達(dá)TMEPAI對(duì)溶酶體穩(wěn)定性的影響

熒光顯微鏡分析:將適量對(duì)數(shù)期的細(xì)胞接種于放有細(xì)胞爬片的30,mm培養(yǎng)皿中,培養(yǎng)24,h后,DPBS洗滌2次,加入含有2,μmol/L AO的DPBS,于37,℃孵育 15,min,DPBS洗滌 3次,細(xì)胞爬片在熒光顯微鏡下觀察拍照.

流式細(xì)胞術(shù)分析:將適量細(xì)胞接種于 60,mm培養(yǎng)皿中培養(yǎng) 24,h后,胰酶消化細(xì)胞,收集 1×106個(gè)細(xì)胞于DPBS中,加入2,μmol/L AO,于37,℃避光孵育15,min.流式細(xì)胞儀檢測(cè)紅色熒光強(qiáng)度.

1.3 統(tǒng)計(jì)學(xué)分析

應(yīng)用 SPSS軟件進(jìn)行數(shù)據(jù)的整理分析,采用 t檢驗(yàn)進(jìn)行組間比較,檢驗(yàn)結(jié)果P<0.05表示差異有統(tǒng)計(jì)學(xué)意義,*、**和***分別表示與對(duì)照組比較 P<0.05、P<0.01和P<0.001.

2 結(jié)果與分析

2.1 重組質(zhì)粒pEF-IRES-TMEPAI-Flag的構(gòu)建

以本實(shí)驗(yàn)室構(gòu)建的 pEGFP-N3-TMEPAI重組載體為模版,利用引物 P1、P2,定向擴(kuò)增目的片段(圖1(a)).PCR產(chǎn)物經(jīng)雙酶切純化后連接,轉(zhuǎn)化 E.coli TOP10宿主菌.挑取 Amp+抗性陽(yáng)性克隆菌培養(yǎng),提取質(zhì)粒后進(jìn)行 PCR檢測(cè)(圖 1(b)),在 913,bp處有明顯條帶,與 TMEPAI目的基因大小一致.進(jìn)一步將重組質(zhì)粒進(jìn)行雙酶切鑒定(圖 1(c)),結(jié)果大小分別為載體片段 5,700,bp和目的片段 913,bp.基因測(cè)序結(jié)果顯示,目的基因與 GenBank中 TMEPAI基因序列(GenBank No.NM_020182.4)完全一致.以上結(jié)果表明,重組質(zhì)粒pEF-IRES-TMEPAI-Flag構(gòu)建成功.

圖1 重組質(zhì)粒pEF-IRES-TMEPAI-Flag的構(gòu)建和鑒定Fig. 1 Construction and identification of the recombinant plasmid pEF-IRES-TMEPAI-Flag

2.2 穩(wěn)定表達(dá)TMEPAI細(xì)胞株的構(gòu)建及鑒定

穩(wěn)定細(xì)胞株構(gòu)建實(shí)驗(yàn)篩選獲得 2個(gè)空載體對(duì)照的細(xì)胞株,分別為 pEF-IRES-puroⅠ、pEF-IRES-puroⅡ;3個(gè)穩(wěn)定表達(dá) TMEPAI-Flag的細(xì)胞株,分別為TMEPAI-FlagⅠ、TMEPAI-FlagⅡ、TMEPAI-FlagⅢ.采用Western blot檢測(cè)穩(wěn)定株TMEPAI蛋白表達(dá),結(jié)果如圖 2所示,其中 A549為正常 A549細(xì)胞;pEFIRES-puroⅠ/Ⅱ?yàn)榭蛰d體對(duì)照組;TMEPAI-FlagⅠ/Ⅱ/Ⅲ為穩(wěn)定表達(dá) TMEPAI-Flag的 A549細(xì)胞株.正常的 A549細(xì)胞與空載體對(duì)照組的 A549細(xì)胞中TMEPAI的表達(dá)量較低,而穩(wěn)定表達(dá) TMEPAI-Flag的A549細(xì)胞中TMEPAI蛋白水平顯著提高.由此表明,穩(wěn)定表達(dá)TMEPAI的A549細(xì)胞株構(gòu)建成功,其中 TMEPAI-FlagⅢ表達(dá)量最高,因此選用該穩(wěn)定株進(jìn)行后續(xù)實(shí)驗(yàn).

圖2 Western blot 檢測(cè)穩(wěn)定細(xì)胞株TMEPAI表達(dá)Fig. 2 Detection of the expression of TMEPAI in stable cell lines by Western blot

采用免疫熒光法檢測(cè)構(gòu)建的 A549穩(wěn)定細(xì)胞株中TMEPAI的定位情況.如圖3所示,在穩(wěn)定細(xì)胞株中,TMEPAI與 LAMP2(溶酶體 marker)有明顯共定位,與 Rab7(晚期內(nèi)吞體 marker)有部分共定位,由此進(jìn)一步證明,成功構(gòu)建穩(wěn)定表達(dá) TMEPAI-Flag的A549細(xì)胞株.

圖3 穩(wěn)定細(xì)胞株中TMEPAI的定位Fig. 3 TMEPAI localization in stable cell lines

2.3 TMEPAI過(guò)表達(dá)對(duì)溶酶體穩(wěn)定性的影響

氯喹是一種溶酶體抑制劑,通過(guò)升高溶酶體腔內(nèi)pH使溶酶體膨大,并引起溶酶體通透化,從而抑制溶酶體功能[30].利用不同濃度的氯喹處理穩(wěn)定細(xì)胞株,觀察TMEPAI表達(dá)對(duì)溶酶體穩(wěn)定性的影響,結(jié)果如圖4所示.隨著氯喹處理細(xì)胞的濃度增加,48,h后正常 A549細(xì)胞的存活率逐漸降低,32,μmol/L時(shí)細(xì)胞基本完全死亡.而穩(wěn)定細(xì)胞株在氯喹處理濃度32,μmol/L 時(shí)仍有細(xì)胞存活.由此說(shuō)明,過(guò)表達(dá)TMEPAI可以增加溶酶體對(duì)氯喹的耐受性,使溶酶體穩(wěn)定性增強(qiáng).

圖4 MTT檢測(cè)過(guò)表達(dá)TMEPAI對(duì)溶酶體穩(wěn)定性的影響Fig. 4 Effect of TMEPAI expression on the lysosome stability by MTT assay

2.4 吖啶橙染色分析過(guò)表達(dá) TMEPAI對(duì)溶酶體穩(wěn)定性的影響

吖啶橙(AO)是一種溶酶體異質(zhì)性熒光染料,可透過(guò)細(xì)胞膜進(jìn)入溶酶體內(nèi),細(xì)胞內(nèi)不同區(qū)域的 pH影響AO分布的濃度,即pH低時(shí)AO濃度高,而pH高時(shí)AO濃度低.當(dāng)用紫外光激發(fā)時(shí),AO在高濃度(當(dāng)其存在于溶酶體內(nèi))下顯示橘紅色熒光,而在低濃度(當(dāng)其存在于細(xì)胞質(zhì)和細(xì)胞核中)下顯示綠色熒光[31].因此,AO染色的細(xì)胞內(nèi)橘紅色熒光強(qiáng)度越強(qiáng),說(shuō)明溶酶體越穩(wěn)定,分別通過(guò)熒光顯微鏡以及流式細(xì)胞技術(shù)分析細(xì)胞內(nèi)紅色熒光的強(qiáng)度.

利用熒光顯微鏡觀察 AO在穩(wěn)定表達(dá) TMEPAI細(xì)胞株內(nèi)的分布情況,結(jié)果如圖 5所示.與對(duì)照組相比,穩(wěn)定細(xì)胞株(TMEPA1-FlagⅢ)的紅色熒光較強(qiáng),說(shuō)明過(guò)表達(dá) TMEPAI后,溶酶體的穩(wěn)定性增強(qiáng),即TMEPAI增加了溶酶體的穩(wěn)定性.

圖5 AO染色檢測(cè)TMEPAI表達(dá)對(duì)溶酶體穩(wěn)定性的影響Fig. 5 Effect of TMEPAI expression on the lysosome stability by AO staining

采用流式細(xì)胞技術(shù)對(duì)AO染色進(jìn)行定量分析,結(jié)果如圖 6所示.對(duì)照組高于紅色熒光閾值(溶酶體陽(yáng)性)的細(xì)胞數(shù)為 73.8%,,實(shí)驗(yàn)組(TMEPA1-FlagⅢ)的細(xì)胞數(shù)為 92.7%,較對(duì)照組增加了 18.9%.這說(shuō)明過(guò)表達(dá)TMEPAI后,細(xì)胞內(nèi)的紅色熒光強(qiáng)度增強(qiáng),溶酶體的穩(wěn)定性增強(qiáng).

圖6 流式細(xì)胞技術(shù)分析過(guò)表達(dá) TMEPAI對(duì)溶酶體穩(wěn)定性的影響Fig. 6 Impact of TMEPAI expression on the lysosome stability by flow cytometry assay

3 討 論

溶酶體結(jié)構(gòu)和功能的完整性需要溶酶體膜蛋白以及腔內(nèi)水解酶的共同調(diào)節(jié),溶酶體膜蛋白主要負(fù)責(zé)調(diào)節(jié)內(nèi)腔 pH、胞質(zhì)蛋白的膜融合以及降解產(chǎn)物的外排.越來(lái)越多的研究表明,溶酶體蛋白通過(guò)溶酶體調(diào)控一系列細(xì)胞生理過(guò)程,如溶酶體跨膜蛋白LAPTM4B能夠維持溶酶體膜腔 pH,增強(qiáng)溶酶體的穩(wěn)定性[30];轉(zhuǎn)錄因子 EB(transcription factor EB,TFEB)能夠酸化溶酶體內(nèi)腔,促進(jìn)水解酶的運(yùn)輸以及自噬體與溶酶體的融合[32-33].TMEPAI是溶酶體定位蛋白質(zhì)[22],本實(shí)驗(yàn)室前期研究發(fā)現(xiàn) TMEPAI能夠增強(qiáng)溶酶體的穩(wěn)定性,抵抗藥物刺激(etoposide)引起的溶酶體通透化(lysosomal membrane permeabilization,LMP)[34].溶酶體的通透化會(huì)使腔內(nèi)H+以及酸性水解酶釋放到胞質(zhì)中,導(dǎo)致細(xì)胞內(nèi)pH失衡以及細(xì)胞器損傷.通過(guò) konckdown實(shí)驗(yàn)證明了干擾 TMEPAI表達(dá)能降低溶酶體膜的穩(wěn)定性,與本文的結(jié)果一致,證明了TMEPAI表達(dá)能增加溶酶體膜的穩(wěn)定性.

對(duì)于活細(xì)胞來(lái)說(shuō),溶酶體內(nèi)高濃度的水解酶為其發(fā)揮功能起到重要作用,但它的不穩(wěn)定可能會(huì)給自身帶來(lái)潛在的危害.一旦溶酶體膜被破壞,將導(dǎo)致其內(nèi)部水解酶釋放至細(xì)胞質(zhì),造成溶酶體通透化,引起無(wú)法控制的細(xì)胞內(nèi)容物降解.同時(shí),大量的溶酶體膜破裂可引起細(xì)胞內(nèi)酸化,從而導(dǎo)致細(xì)胞死亡.此外,溶酶體通透化可能與活性氧(ROS)有關(guān),溶酶體去穩(wěn)定化已被認(rèn)為是由氧化應(yīng)激引起的細(xì)胞損傷所造成的[35],并且 ROS可誘導(dǎo)溶酶體泄漏[36].本文通過(guò)構(gòu)建穩(wěn)定表達(dá) TMEPAI細(xì)胞株,研究發(fā)現(xiàn) TMEPAI表達(dá)能增加溶酶體膜的穩(wěn)定性.Hu等[37]研究表明TMEPAI與ROS有關(guān),由此推測(cè)TMEPAI可能通過(guò)抑制 ROS增加溶酶體穩(wěn)定性.Kirkegaard等[38]發(fā)現(xiàn)熱休克蛋白 70(Hsp70)通過(guò)調(diào)節(jié)鞘磷脂代謝增加溶酶體膜的穩(wěn)定性.TMEPAI表達(dá)增加溶酶體膜的穩(wěn)定性可能增強(qiáng)了癌細(xì)胞的抗凋亡能力,實(shí)驗(yàn)也表明過(guò)表達(dá) TMEPAI可以抵抗氯喹對(duì)肺癌細(xì)胞 A549殺傷作用.因此,TMEPAI可能成為抗癌的潛在藥物靶點(diǎn).

4 結(jié) 語(yǔ)

本研究成功構(gòu)建了 pEF-IRES-TMEPAI-Flag表達(dá)載體,并建立了穩(wěn)定表達(dá)TMEPAI的細(xì)胞株,且證實(shí)了 TMEPAI蛋白在溶酶體表達(dá).同時(shí),發(fā)現(xiàn)TMEPAI表達(dá)可以增強(qiáng)溶酶體的穩(wěn)定性.

參考文獻(xiàn):

[1] de Duve C. The lysosome turns fifty[J]. Nature Cell Biology,2005,7(9):847-849.

[2] Mullins C,Bonifacino J S. The molecular machinery for lysosome biogenesis[J]. Bioessays,2001,23(4):333-343.

[3] Jaattela M,Tschopp J. Caspase-independent cell death in T lymphocytes[J]. Nature Immunology,2003,4(5):416-423.

[4] Ferri K F,Kroemer G. Organelle-specific initiation of cell death pathways[J]. Nature Cell Biology,2001,3(11):255-263.

[5] Guicciardi M E,Deussing J,Miyoshi H,et al. Cathepsin B contributes to TNF-alpha-mediated hepatocyte apoptosis by promoting mitochondrial release of cytochrome C[J]. Journal of Clinical Investigation,2000,106(9):1127-1137.

[6] Foghsgaard L,Wissing D,Mauch D,et al. Cathepsin B acts as a dominant execution protease in tumor cell apoptosis induced by tumor necrosis factor[J]. Journal of Cell Biology,2001,153(5):999-1010.

[7] Brunk U T,Svensson I. Oxidative stress,growth factor starvation and Fas activation may all cause apoptosis through lysosomal leak[J]. Redox Report,1999,4(1/2):3-11.

[8] Yuan X M,Li W,Dalen H,et al. Lysosomal destabilization in p53-induced apoptosis[J]. Proceedings of the National Academy of Sciences of the United States of America,2002,99(9):6286-6291.

[9] Broker L E,Huisman C,Span S W,et al. Cathepsin B mediates caspase-independent cell death induced by microtubule stabilizing agents in non-small cell lung cancer cells[J]. Cancer Research,2004,64(1):27-30.

[10] Brunk U T,Dalen H,Roberg K,et al. Photo-oxidative disruption of lysosomal membranes causes apoptosis of cultured human fibroblasts[J]. Free Radical Biology &Medicine,1997,23(4):616-626.

[11] Bidere N,Lorenzo H K,Carmona S,et al. Cathepsin D triggers Bax activation,resulting in selective apoptosisinducing factor(AIF)relocation in T lymphocytes entering the early commitment phase to apoptosis[J].Journal of Biological Chemistry,2003,278(33):31401-31411.

[12] Boya P,Andreau K,Poncet D,et al. Lysosomal membrane permeabilization induces cell death in a mitochondrion-dependent fashion[J]. Journal of Experimental Medicine,2003,197(10):1323-1334.

[13] Roberg K,Kagedal K,Ollinger K. Microinjection of cathepsin D induces caspase-dependent apoptosis in fibroblasts[J]. American Journal of Pathology,2002,161(1):89-96.

[14] Vancompernolle K,Van Herreweghe F,Pynaert G,et al.Atractyloside-induced release of cathepsin B,a protease with caspase-processing activity[J]. FEBS Letters,1998,438(3):150-158.

[15] Zhang L,Sheng R,Qin Z. The lysosome and neurodegenerative diseases[J]. Acta Biochimica et Biophysica Sinica,2009,41(6):437-445.

[16] Kornfeld S,Mellman I. The biogenesis of lysosomes[J].Annual Review of Cell Biology,1989,5:483-525.

[17] Fukuda M. Lysosomal membrane glycoproteins.Structure,biosynthesis,and intracellular trafficking[J].Journal of Biological Chemistry,1991,266(32):21327-21330.

[18] Eskelinen E L. Roles of LAMP-1 and LAMP-2 in lysosome biogenesis and autophagy[J]. Molecular Aspects of Medicine,2006,27(5/6):495-502.

[19] Xu L L,Shanmugam N,Segawa T,et al. A novel androgen-regulated gene,PMEPA1,located on chromosome 20q13 exhibits high level expression in prostate[J].Genomics,2000,66(3):257-263.

[20] Tanner M M,Tirkkonen M,Kallioniemi A,et al.Increased copy number at 20q13 in breast cancer:Defining the critical region and exclusion of candidate genes[J]. Cancer Research,1994,54(16):4257-4260.

[21] Hirokawa Y S,Takagi A,Uchida K,et al. High level expression of STAG1/PMEPA1 in an androgenindependent prostate cancer PC3 subclone[J]. Cellular &Molecular Biology Letters,2007,12(3):370-377.

[22] Bai X,Jing L,Li Y,et al. TMEPAI inhibits TGF-beta signaling by promoting lysosome degradation of TGF-beta receptor and contributes to lung cancer development[J]. Cellular Signalling,2014,26(9):2030-2039.

[23] Wang L. TGFbeta induces a pro-bone metastasis program in prostate cancer[J]. Cancer Discovery,2015,5(7):23.

[24] Hidaka S,Yasutake T,Takeshita H,et al. Differences in 20q13. 2 copy number between colorectal cancers with and without liver metastasis[J]. Clinical Cancer Research,2000,6(7):2712-2717.

[25] Ishkanian A S,Mallof C A,Ho J,et al. High-resolution array CGH identifies novel regions of genomic alteration in intermediate-risk prostate cancer[J]. Prostate,2009,69(10):1091-1100.

[26] Brunschwig E B,Wilson K,Mack D,et al. PMEPA1,a transforming growth factor-beta-induced marker of terminal colonocyte differentiation whose expression is maintained in primary and metastatic colon cancer[J].Cancer Research,2003,63(7):1568-1575.

[27] Reichling T,Goss K H,Carson D J,et al. Transcriptional profiles of intestinal tumors in Apc(Min)mice are unique from those of embryonic intestine and identify novel gene targets dysregulated in human colorectal tumors[J].Cancer Research,2005,65(1):166-176.

[28] Rae F K,Hooper J D,Nicol D L,et al. Characterization of a novel gene,STAG1/PMEPA1,upregulated in renal cell carcinoma and other solid tumors[J]. Molecular Carcinogenesis,2001,32(1):44-53.

[29] Azami S,Vo Nguyen T T,Watanabe Y,et al. Cooperative induction of transmembrane prostate androgen induced protein TMEPAI/PMEPA1 by transforming growth factor-beta and epidermal growth factor signaling[J]. Biochemical & Biophysical Research Communications,2015,456(2):580-585.

[30] Li Y,Zhang Q,Tian R,et al. Lysosomal transmembrane protein LAPTM4B promotes autophagy and tolerance to metabolic stress in cancer cells[J]. Cancer Research,2011,71(24):7481-7489.

[31] Vanderlinden E,Vanstreels E,Boons E,et al. Intracytoplasmic trapping of influenza virus by a lipophilic derivative of aglycoristocetin[J]. Journal of Virology,2012,86(17):9416-9431.

[32] Settembre C,F(xiàn)raldi A,Medina D L,et al. Signals from the lysosome:A control centre for cellular clearance and energy metabolism[J]. Nature Reviews Molecular Cell Biology,2013,14(5):283-296.

[33] Zhou J,Tan S H,Nicolas V,et al. Activation of lysosomal function in the course of autophagy via mTORC1 suppression and autophagosome-lysosome fusion[J]. Cell Research,2013,23(4):508-523.

[34] Luo S,Yang M,Lv D,et al. TMEPAI increases lysosome stability and promotes autophagy[J]. The International Journal of Biochemistry & Cell Biology,2016,76:98-106.

[35] Zdolsek J,Zhang H,Roberg K,et al. H2O2-mediated damage to lysosomal membranes of J-774 cells[J]. Free Radical Research Communications,1993,18(2):71-85.

[36] Antunes F,Cadenas E,Brunk U T. Apoptosis induced by exposure to a low steady-state concentration of H2O2is a consequence of lysosomal rupture[J]. Biochemical Journal,2001,356(2):549-555.

[37] Hu Y,He K,Wang D,et al. TMEPAI regulates EMT in lung cancer cells by modulating the ROS and IRS-1 signaling pathways[J]. Carcinogenesis,2013,34(8):1764-1772.

[38] Kirkegaard T,Roth A G,Petersen NH,et al. Hsp70 stabilizes lysosomes and reverts Niemann-Pick diseaseassociated lysosomal pathology[J]. Nature,2010,463(7280):549-553.

猜你喜歡
溶酶體細(xì)胞株質(zhì)粒
全基因組測(cè)序后質(zhì)粒的組裝與鑒定研究進(jìn)展*
大連化物所發(fā)展出時(shí)空超分辨四維熒光成像 解析全細(xì)胞溶酶體
安羅替尼對(duì)肺腺癌細(xì)胞株A549放射敏感性的影響及機(jī)制
miR-21負(fù)向調(diào)控宮頸癌HeLa細(xì)胞株中hTERT的表達(dá)
mcr-1陽(yáng)性類噬菌體質(zhì)粒與F33∶A-∶B-質(zhì)粒共整合形成的融合質(zhì)粒的生物學(xué)特性分析
溶酶體功能及其離子通道研究進(jìn)展
槲芪癥消湯對(duì)人肝癌細(xì)胞株HepG2.2.15增殖和凋亡的影響
開(kāi)發(fā)新方法追蹤植物病害的全球傳播(2020.6.7 iPlants)
高中階段有關(guān)溶酶體的深入分析
淺談溶酶體具有高度穩(wěn)定性的原因
南昌县| 西充县| 思南县| 辰溪县| 曲阜市| 沂源县| 泽普县| 马鞍山市| 西宁市| 广饶县| 岳池县| 山东| 勃利县| 静安区| 双鸭山市| 蚌埠市| 金坛市| 长沙市| 德州市| 马鞍山市| 枣阳市| 宁化县| 五大连池市| 克东县| 临城县| 龙川县| 兴城市| 遵义县| 东宁县| 昭通市| 互助| 樟树市| 日土县| 南开区| 无锡市| 南陵县| 西峡县| 泗水县| 桦南县| 秦皇岛市| 吉林省|