徐溥群 吳惠霞 楊仕平
摘要:
由于石墨相氮化碳(g-C3N4)優(yōu)越的光電性能以及“無(wú)金屬”的特性,吸引了化學(xué)、物理學(xué)、生物醫(yī)學(xué)、材料學(xué)等各個(gè)領(lǐng)域?qū)ζ涞纳钊胙芯亢吞剿?,成為?dāng)前研究的熱點(diǎn)之一.介紹了g-C3N4的基本性質(zhì)和制備方法,探討了g-C3N4的元素?fù)诫s以及稀土元素的修飾,簡(jiǎn)述了g-C3N4在光催化降解領(lǐng)域和生物醫(yī)學(xué)領(lǐng)域的應(yīng)用.
關(guān)鍵詞:
石墨相氮化碳; 制備; 元素?fù)诫s; 應(yīng)用
中圖分類號(hào): O 613.7文獻(xiàn)標(biāo)志碼: A文章編號(hào): 1000-5137(2018)01-0113-10
Graphitic carbon nitride:synthesis,functionalization and applications
Xu Puqun, Wu Huixia*, Yang Shiping
(College of Life and Environmental Sciences,Shanghai Normal University,Shanghai 200234,China)
Abstract:
Due to the superior optical and electrical performance and the unique property of ″no metal″,graphite phase carbon nitride (g-C3N4) has attracted researchers of chemistry,physics,biomedicine,materials science and other fields to carry out in-depth studies.It has become one of the hotspots of the current research.In this paper,we introduced the basic properties and preparation methods of g-C3N4.Then,we discussed the elemental doping of g-C3N4 and the modification of rare earth elements.Finally,we briefly described the applications of g-C3N4 in the fields of photocatalytic degradation and biomedicine.
Key words:
graphitic carbon nitride; preparation; elemental doping; application
收稿日期: 2017-09-10
基金項(xiàng)目: 教育部環(huán)境功能材料創(chuàng)新團(tuán)隊(duì)(IRT_16R49)
作者簡(jiǎn)介: 徐溥群(1993-),男,碩士研究生,主要從事納米生物材料方面的研究.E-mail:xupuqun@126.com
*通信作者: 吳惠霞(1972-),女,博士,教授,主要從事納米生物材料方面的研究.E-mail:wuhuixia@shnu.edu.cn
引用格式: 徐溥群,吳惠霞,楊仕平.石墨相氮化碳的制備、功能化及應(yīng)用 [J].上海師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2018,47(1):113-122.
Citation format: Xu P Q,Wu H X,Yang S P.Graphitic carbon nitride:synthesis,functionalization and applications[J].Journal of Shanghai Normal University(Natural Sciences),2018,47(1):113-122.
0引言
氮化碳是繼碳納米管、石墨烯等碳系材料后的新興材料.氮化碳分為α相、β相、立方相、準(zhǔn)立方相以及類石墨相這5種結(jié)構(gòu).其中石墨相氮化碳(g-C3N4)的片層結(jié)構(gòu)更類似于石墨烯,這一發(fā)現(xiàn)引起了各界的關(guān)注.g-C3N4由大量的碳和氮元素組成(圖1),具有聚合物特征,其表面化學(xué)性質(zhì)能夠通過(guò)表面修飾來(lái)進(jìn)行調(diào)節(jié).g-C3N4中的碳和氮是通過(guò)sp2雜化的,具有π-共軛電子結(jié)構(gòu)[1].g-C3N4具有適度的帶隙,其帶隙為2.7~2.8 eV,導(dǎo)致約450~460 nm的可見(jiàn)光吸收[2].由于g-C3N4的結(jié)構(gòu)具有芳族C-N雜環(huán),所以g-C3N4是所有C3N4結(jié)構(gòu)中最穩(wěn)定的一種.通過(guò)熱重分析(TGA)可知g-C3N4在600 ℃空氣中仍然能保持熱穩(wěn)定性[3].此外,g-C3N4化學(xué)性質(zhì)很穩(wěn)定,不溶于酸、堿或有機(jī)物溶劑,這些性質(zhì)使其在各種環(huán)境條件下都能成為可靠的材料.優(yōu)異的光學(xué)性能和良好的生物相容性使得g-C3N4在光催化降解、生物傳感器、生物成像等方面有著廣泛的應(yīng)用.
圖1g-C3N4的結(jié)構(gòu)示意圖[4]
1制備方法
g-C3N4易于通過(guò)富氮前體的熱聚合制備,如三聚氰胺[5]、雙氰胺[6]、氨基氰[7]、尿素[8-9]、硫脲[10]等.其中,不同的富氮前體需要不同的反應(yīng)參數(shù)才能制備得到g-C3N4(表1).基于Wang等[11]的開創(chuàng)性工作,采用氨基氰作為g-C3N4的前體.通過(guò)TGA和X射線衍射(XRD)技術(shù)的組合來(lái)表征反應(yīng)中間體化合物.其中氰胺分子在約203 ℃和234 ℃下凝結(jié)成雙氰胺和三聚氰胺.之后是除去氨的凝結(jié)階段.當(dāng)溫度在335 ℃左右時(shí),基本上都會(huì)存在三聚氰胺.進(jìn)一步加熱至約390 ℃導(dǎo)致三聚氰胺發(fā)生重排,形成三-三嗪?jiǎn)卧?最后,在約520 ℃時(shí)形成聚合物g-C3N4.通過(guò)進(jìn)一步凝結(jié),可以得到產(chǎn)物.當(dāng)升高溫度達(dá)到600 ℃以上,g-C3N4就會(huì)變得不穩(wěn)定.超過(guò)700 ℃,g-C3N4將分解產(chǎn)生氮和氰基碎片,最終消失殆盡,沒(méi)有任何產(chǎn)物殘留(圖2).
表1不同富氮前體的熱聚合制備的反應(yīng)溫度
圖2用氰胺作為制備開發(fā)g-C3N4的反應(yīng)途徑[11]
2石墨烯的功能化
迄今,國(guó)內(nèi)外已發(fā)表了大量關(guān)于修飾g-C3N4的文獻(xiàn).通過(guò)使用諸如Zn、Ni、Cu、Fe等金屬元素[12-16]以及O、C、P、S、B、I、F等非金屬元素[17-32]的摻雜來(lái)有效地增加光吸收,降低帶隙,改進(jìn)g-C3N4的光學(xué)和電子性能,提高電荷遷移率和延長(zhǎng)電荷載體的壽命,這些都能顯著提高光催化活性(圖3).
圖3用金屬元素?fù)诫sg-C3N4的示意圖[4]
Wang等[33]首次報(bào)道了Zn2+和Fe2+摻雜在g-C3N4的骨架中.科研人員發(fā)現(xiàn)含金屬的g-C3N4不僅擴(kuò)大了光吸收范圍,而且金屬/g-C3N4納米混合物隨著金屬含量的增加,其吸收峰緩慢地發(fā)生紅移(較低的能量),這表明在金屬摻雜劑和g-C3N4之間形成了主-客體相互作用.Huang等[34]通過(guò)用H2O2處理三聚氰胺來(lái)制備具有高度多孔網(wǎng)絡(luò)的O摻雜的g-C3N4,產(chǎn)生氫鍵誘導(dǎo)的超分子聚集體,然后在550 ℃,N2流下熱煅燒.O元素的摻雜使得g-C3N4的帶隙變小,C原子處的電子密度顯著降低,產(chǎn)生了對(duì)電子-空穴分離有利的內(nèi)部電場(chǎng).Hu等[35]利用雙氰胺作為g-C3N4前體和磷酸氫二銨作為磷源,制備了磷摻雜的g-C3N4.磷原子摻雜到g-C3N4晶格中,產(chǎn)生P-N鍵.
與此同時(shí),不少文獻(xiàn)報(bào)道了通過(guò)稀土元素的摻雜來(lái)增強(qiáng)g-C3N4的光學(xué)性質(zhì)和催化降解效果.Zhao等[36]在200 ℃的微波水熱條件下合成g-C3N4/tz-Bi0.92Gd0.08VO4異質(zhì)結(jié).這異質(zhì)結(jié)能夠形成自組裝球,具有優(yōu)異的紫外光響應(yīng)的n型半導(dǎo)體(圖4).g-C3N4的引入可以形成羥基,然后捕獲光孔并將大量光電子注入到四方相BiVO4(tz-BiVO4)中.這樣能有效促進(jìn)光生電子-空穴對(duì)的分離和遷移,產(chǎn)生活性基團(tuán),隨后迅速礦化羅丹明B(RhB)分子.而Gd3+誘導(dǎo)效應(yīng)影響晶體的轉(zhuǎn)變,從單斜相(ms-BiVO4)到tz-BiVO4,使得降解性質(zhì)得到了提升,提高了礦化效果.Zhao等[37]首次通過(guò)使用殼聚糖作為綠色交聯(lián)劑的熱蒸發(fā)方法,成功地制造了具有高光學(xué)透明度和機(jī)械穩(wěn)定性的下轉(zhuǎn)換和上轉(zhuǎn)換發(fā)光g-C3N4納米微粒(圖5).借助N-羥基琥珀酰亞胺/1-(3-二甲氨基丙基)-3-乙基碳二亞胺鹽酸鹽(EDC/NHS),將羧酸修飾過(guò)的多色稀土(物質(zhì)的量分?jǐn)?shù):78%Y+20%Yb+2%Er)上轉(zhuǎn)換納米粒子(cit-UCNPs)與氨基封端的超薄g-C3N4納米片進(jìn)行化學(xué)偶聯(lián),形成下轉(zhuǎn)換和上轉(zhuǎn)換熒光發(fā)射的雙重模式.
圖4g-C3N4/tz-Bi0.92Gd0.08VO4異質(zhì)結(jié)提出的礦化機(jī)理[36]
圖5負(fù)載上轉(zhuǎn)換納米粒子(UCNP)的g-C3N4 的光動(dòng)力治療機(jī)理[37]
3應(yīng)用領(lǐng)域
g-C3N4是一種無(wú)金屬的聚合物半導(dǎo)體,具有良好的光學(xué)性質(zhì)、較高的比表面積、良好的生物相容性等.這使得g-C3N4在光學(xué)、電學(xué)、生物醫(yī)學(xué)等諸多領(lǐng)域的應(yīng)用潛力非常廣泛.
3.1光催化領(lǐng)域的應(yīng)用
雖然g-C3N4在Wang等[10]的開創(chuàng)性報(bào)告已被證明能夠在可見(jiàn)光照射下,通過(guò)分解水和有機(jī)污染物產(chǎn)生H2.然而,因?yàn)槭艿焦怆娮?空穴對(duì)的快速?gòu)?fù)合,塊狀g-C3N4仍然具有低光催化活性.所以為了改進(jìn)這一點(diǎn),更多的研究者開始在Wang等[10]研究的基礎(chǔ)上,深入對(duì)g-C3N4結(jié)構(gòu)的探究并進(jìn)行不同修飾和改進(jìn).這樣使得g-C3N4在光催化領(lǐng)域的潛在應(yīng)用被挖掘出來(lái),提高了其光學(xué)性能.
Xu等[38]首次通過(guò)簡(jiǎn)單的化學(xué)剝離塊狀g-C3N4成功地獲得了單原子層g-C3N4納米片.與塊狀g-C3N4相比,單層g-C3N4納米片表面積更大,光電載流子傳輸性能優(yōu)異.因此,單層g-C3N4納米片的光催化活性和光電流明顯增強(qiáng).與塊狀氮化碳相比,單層氮化碳納米片作為光催化劑,能夠催化產(chǎn)生3倍量的H2.Tong等[39]制備g-C3N4/TiO2(二氧化鈦)納米復(fù)合材料,在可見(jiàn)光和模擬陽(yáng)光照射下,該材料對(duì)于RhB的催化降解,比單純的TiO2、g-C3N4及其混合物具有更高的降解效率.其中g(shù)-C3N4占質(zhì)量分?jǐn)?shù)為25.9%的g-C3N4/TiO2納米片表現(xiàn)出最高的光催化效率.在模擬太陽(yáng)光的照射下,可以在50 min內(nèi)降解幾乎所有的RhB.
另外,Jiang等[40]成功地制備了一種具有不同無(wú)定形五氧化二鉭(Ta2O5)溶膠/g-C3N4質(zhì)量比的新型可見(jiàn)光反應(yīng)型納米片復(fù)合材料(ATCN).ATCN復(fù)合材料的這種顯著增強(qiáng)的光催化活性可以主要?dú)w因于g-C3N4和無(wú)定形Ta2O5之間的協(xié)同效應(yīng),這種協(xié)同效應(yīng)導(dǎo)致光生電子-空穴對(duì)更有效的分離、增大BET表面積以及增強(qiáng)可見(jiàn)光吸收.其中,加入體積為10 mL無(wú)定形Ta2O5為最佳材料.該光催化劑具有最高的可見(jiàn)光光催化活性(99.14%),降解速率常數(shù)為2.0055 h-1,分別約為純g-C3N4、無(wú)定形Ta2O5的6.2倍和14.9倍.值得一提的是,即使在4個(gè)循環(huán)之后,ATCN樣品也具有良好的再利用性和穩(wěn)定性.
Zhang等[41]則是將稀土元素應(yīng)用到了光催化領(lǐng)域.將等離子體激發(fā)和上轉(zhuǎn)換效應(yīng)結(jié)合,之后應(yīng)用在光催化中,借此大幅度擴(kuò)大光響應(yīng)范圍并且增強(qiáng)光催化的活性.該實(shí)驗(yàn)首次將Au納米粒子、上轉(zhuǎn)換納米微球(NYF)和g-C3N4納米片巧妙地整合到單個(gè)納米結(jié)構(gòu)體系中.這里的NYF微球用到了稀土元素Y、Yb、Tm.與純g-C3N4相比,這種納米復(fù)合材料在甲基橙(MO)的光催化降解中表現(xiàn)出優(yōu)異的活性,以及極好的穩(wěn)定性.值得一提的是,在優(yōu)化實(shí)驗(yàn)的過(guò)程中,最佳方案的催化劑為1 %Au-NYF/g-C3N4(每1 mg催化劑的催化速率為0.032 h-1,即負(fù)載質(zhì)量分?jǐn)?shù)為1%的Au納米粒子).該催化劑的催化速率遠(yuǎn)遠(yuǎn)超過(guò)NYF/g-C3N4(每1 mg催化劑的催化速率為0.009 h-1)和g-C3N4(每1 mg催化劑的催化速率為0.009 h-1).Au-NYF/g-C3N4納米復(fù)合材料在不同光照下的高性能歸因于明顯促進(jìn)的電荷的分離和抑制復(fù)合,以及這些組分中載流子和能量的有效轉(zhuǎn)移.通過(guò)光電化學(xué)測(cè)量進(jìn)一步證實(shí)了促進(jìn)的電荷的分離和轉(zhuǎn)移.利用同樣的原理,梁瑞鈺等[42]用Ce摻雜g-C3N4,隨后對(duì)亞甲基藍(lán)進(jìn)行催化降解.實(shí)驗(yàn)表明Ce摻雜質(zhì)量分?jǐn)?shù)為0.21%時(shí),材料的催化性能最優(yōu),是純g-C3N4的4.9倍,并經(jīng)過(guò)5次循環(huán)后仍保持96%的催化活性.同時(shí),該課題組通過(guò)實(shí)驗(yàn)還發(fā)現(xiàn),Ce的摻雜量決定了材料的催化性能.如若Ce的摻雜量過(guò)高,材料的體系中就會(huì)產(chǎn)生高濃度的Ce4+,Ce4+將會(huì)捕獲大量的光生電子,進(jìn)而間接引起光生電子-空穴復(fù)合效應(yīng).李婷婷等[43]則是利用研磨-焙燒法來(lái)制備g-C3N4-SmVO4.并通過(guò)實(shí)驗(yàn)得出材料在450 ℃、g-C3N4的質(zhì)量分?jǐn)?shù)為70%時(shí),材料對(duì)RhB的催化降解活性是最優(yōu)的.此外,材料不僅具有良好的穩(wěn)定性,對(duì)于亞甲基藍(lán)也有很好的催化作用.
3.2生物醫(yī)學(xué)領(lǐng)域的應(yīng)用
近年來(lái)g-C3N4在生物醫(yī)學(xué)領(lǐng)域的應(yīng)用取得了很大的進(jìn)展.利用g-C3N4所具有的良好的生物相容性,科研人員在生物醫(yī)學(xué)中開展了大量的研究,進(jìn)而探索出g-C3N4在該領(lǐng)域的許多應(yīng)用,包括生物成像、藥物和基因載體、光學(xué)治療等.
3.2.1生物成像
Zhang等[44]首次從含有大量塊狀g-C3N4的水中,通過(guò)在溶液中剝離的方法,成功制備超薄g-C3N4納米片.該超薄納米片的尺寸分布范圍為70~160 nm,高度為約2.5 nm,約為7個(gè)C-N層(圖6).與塊狀g-C3N4相比,超薄納米片顯示增強(qiáng)的光吸收和光響應(yīng),而且其量子產(chǎn)率高達(dá)19.6%.受益于高量子產(chǎn)率、高穩(wěn)定性、良好的生物相容性以及無(wú)毒性,水溶性超薄g-C3N4納米片有望用于生物成像,可進(jìn)一步擴(kuò)展到生物標(biāo)記和生物醫(yī)學(xué)應(yīng)用.
圖6剝離后的g-C3N4 納米片的原子力顯微鏡(AFM)圖(a)和透射電子顯微鏡(TEM)圖(b)[41]
Zhang等[45]在g-C3N4上修飾了MnO2納米粒子,通過(guò)對(duì)體內(nèi)谷胱甘肽的響應(yīng)來(lái)進(jìn)行熒光成像.Xie等[46]制備了單層g-C3N4量子點(diǎn),用于細(xì)胞核的雙光子熒光成像.該單層g-C3N4量子點(diǎn)尺寸分布在2~6 nm,具有穩(wěn)定且強(qiáng)烈的雙光子熒光以及良好的生物相容性,能作為與4,6-聯(lián)脒-2-苯基吲哚(DAPI)相當(dāng)?shù)木G色、經(jīng)濟(jì)、安全的熒光探針.Ma等[47]開發(fā)了基于Fe(III)摻雜的二維C3N4的線粒體靶向納米平臺(tái).Fe(III)的摻雜導(dǎo)致過(guò)氧化物酶模擬材料在癌細(xì)胞中對(duì)H2O2具有優(yōu)異的催化性能并產(chǎn)生O2.因?yàn)槟[瘤的缺氧問(wèn)題被克服,所以光動(dòng)力治療(PDT)的效率得到改善.同時(shí)材料具有有效的T1加權(quán)的體內(nèi)磁共振成像(MRI)能力.在對(duì)荷瘤小鼠靜脈注射12 h后,腫瘤區(qū)域的信號(hào)強(qiáng)度有明顯增強(qiáng).通過(guò)增強(qiáng)的滲透性和保留(EPR)效應(yīng),24 h后整個(gè)腫瘤面積變得更加明亮,這有利于提供最佳的治療時(shí)間.該設(shè)計(jì)也是首次將多個(gè)不同的功能納入基于梭型Fe摻雜的C3N4納米片的單一納米級(jí)納米平臺(tái).
圖7材料在小鼠體內(nèi)的造影效果[49]
Feng等[48]則是將稀土元素與g-C3N4結(jié)合,此舉也在生物成像方面起到了非常優(yōu)異的效果.該課題組制備了一種UCNP納米粒子,其核-殼結(jié)構(gòu)是由NaGdF4∶Yb/Tm @ NaGdF4∶Yb @ NaNdF4∶Yb上轉(zhuǎn)換發(fā)光(UCL)芯和光敏g-C3N4介孔殼組成.這種結(jié)構(gòu)設(shè)計(jì)有著大比表面積和高負(fù)載量的優(yōu)點(diǎn),還具備了UCL、MRI和CT三模式成像的創(chuàng)新性.而在此之后,該課題組又進(jìn)一步通過(guò)在超順磁性氧化鐵納米球表面涂覆介孔石墨相碳氮化物(g-C3N4),然后用超小型UCNP來(lái)進(jìn)行修飾,最后借助聚乙二醇(PEG)分子來(lái)進(jìn)行改性[49].Fe3O4核與UCNPs之間的氮化碳層可以顯著降低Fe3O4對(duì)UCNPs發(fā)射強(qiáng)度的淬滅效應(yīng).納米平臺(tái)表現(xiàn)出特定的磁性靶向性能,可以同時(shí)通過(guò)體外和體內(nèi)T1/T2加權(quán)雙模態(tài)MRI來(lái)監(jiān)測(cè)(圖7).
3.2.2分子載體
Liu等[50]在g-C3N4/Fe3O4納米片上載了藥物RhB,載藥量高達(dá)108.6 mg·g-1,證明了其在靶向藥物遞送中具有很大的潛在應(yīng)用.Li等[51]首次報(bào)道了g-C3N4納米片可以作為納米載體以抑制金屬離子誘導(dǎo)的β-淀粉樣蛋白(Aβ)聚集并分解預(yù)制的Aβ-Cu2+聚集體.
3.2.3生物檢測(cè)
Hu等[52]驗(yàn)證了g-C3N4具有對(duì)各種染料標(biāo)記的ssDNA熒光團(tuán)的高熒光猝滅能力,進(jìn)而設(shè)計(jì)了一種新的多色熒光納米探針,用于多重序列特異性DNA檢測(cè)(圖8).Deng等[53]基于超薄氮化碳納米片(C3N4)負(fù)載的鈷(II)原卟啉IX(CoPPIX)制備了高效仿生催化劑.制備的納米催化劑通過(guò)在C3N4的邊緣平面上的多種胺與鏈霉抗生物素蛋白進(jìn)一步綴合以便于標(biāo)記.使用生物素化的分子信標(biāo)作為捕獲探針,通過(guò)電化學(xué)還原H2O2作為共反應(yīng)物,開發(fā)出敏感的基于電化學(xué)發(fā)光的DNA測(cè)定方法,顯示線性范圍為10-15~10-10 mol/L,檢測(cè)限為3.7×10-16 mol/L.
圖8g-C3N4 納米探針檢測(cè)ssDNA機(jī)理圖[52]
3.2.4光動(dòng)力治療
Chen等[54]設(shè)計(jì)開發(fā)了一種由負(fù)載DOX的g-C3N4@ZIF-8納米顆粒組成的新型納米尺度核-殼平臺(tái).制備的g-C3N4@ZIF-8納米顆粒具有良好的生物相容性,可以有效地產(chǎn)生單線態(tài)氧,可用于光動(dòng)力治療.
Feng等[55]利用Tm3+激活的UCNPs進(jìn)行光動(dòng)力治療,通過(guò)觸發(fā)無(wú)機(jī)光敏劑在組織穿透近紅外(NIR)光照射下產(chǎn)生細(xì)胞毒性活性氧(ROS)來(lái)有效消除腫瘤細(xì)胞.由于稀土元素的加入,使得UCNPs芯上涂覆介孔g-C3N4層在連接超小型Au25納米團(tuán)簇和PEG分子(命名為UCNPs@g-C3N4-Au25-PEG)之后,形成了一種新型雙光敏劑納米平臺(tái).來(lái)自UCNPs的紫外-可見(jiàn)(UV-vis)光和強(qiáng)烈的NIR發(fā)射可以分別激活g-C3N4和激發(fā)Au25納米團(tuán)簇以產(chǎn)生ROS,從而實(shí)現(xiàn)兩種光敏劑的同時(shí)激活,增強(qiáng)單個(gè)NIR光激發(fā)介導(dǎo)的PDT效率.值得一提的是,實(shí)驗(yàn)通過(guò)高溫?zé)峤夥ǐ@得核殼結(jié)構(gòu)的UCNP合成β-NaYF4∶Yb,Tm核,然后通過(guò)順序外延生長(zhǎng)法將外殼(β-NaGdF4∶Yb)涂覆在表面上.這也是制備UCNP的經(jīng)典方法.在此之前,該課題組還在制備UCNP的時(shí)候摻雜了Nd元素[50].通過(guò)808 nm NIR光激發(fā),發(fā)射的UV-vis光可以激活g-C3N4產(chǎn)生大量的ROS,并且摻雜的Nd3+離子能產(chǎn)生明顯的熱效應(yīng),這導(dǎo)致該材料能通過(guò)光動(dòng)力治療和光熱治療兩種手段來(lái)對(duì)腫瘤進(jìn)行治療和干預(yù).
4總結(jié)
如今,g-C3N4在光學(xué)、生物醫(yī)學(xué)、電化學(xué)等領(lǐng)域的相關(guān)研究和應(yīng)用已經(jīng)取得了明顯的成果.g-C3N4的制備方法也有了簡(jiǎn)單穩(wěn)定的操作手段,但是現(xiàn)有的g-C3N4的制備方法都或多或少存在缺陷,比如如何大規(guī)模、短時(shí)間、高產(chǎn)率的制備高質(zhì)量的g-C3N4仍然是研究者們探索的問(wèn)題之一.在光催化方面,g-C3N4通過(guò)元素?fù)诫s、化學(xué)修飾等方式,來(lái)解決光生電子-空穴對(duì)的快速?gòu)?fù)合的問(wèn)題,使得g-C3N4提高了其在光催化方面的穩(wěn)定性和光催化效率.而在生物醫(yī)學(xué)領(lǐng)域,g-C3N4良好的生物相容性使得該材料在此領(lǐng)域有很好的發(fā)展?jié)摿?剝離后的g-C3N4本身所具有的熒光能在生物成像、生物檢測(cè)方面得以應(yīng)用,其良好的光動(dòng)力性質(zhì)使其在腫瘤的光動(dòng)力治療方面具有良好的應(yīng)用前景.但是g-C3N4的探索還需更加深入,如何能將其實(shí)際應(yīng)用于生物醫(yī)學(xué)領(lǐng)域,這還需要進(jìn)行更多實(shí)驗(yàn)去研究.
參考文獻(xiàn):
[1]Maeda K,Wang X,Nishihara Y,et al.Photocatalytic activities of graphitic carbon nitride powder for water reduction and oxidation under visiblelight [J].Journal of Physical Chemistry C,2009,113(12):4940-4947.
[2]Dong F,Zhao Z W,Xiong T,et al.In situ construction of g-C3N4/g-C3N4 metal-free heterojunction for enhanced visible-light photocatalysis [J].Applied Materials & Interfaces,2013,5(21):11392-11401.
[3]Wang X C,Blechert S,Antonietti M.Polymeric graphitic carbon nitride for heterogeneous photocatalysis [J].Acs Catalysis,2012,2(8):1596-1606.
[4]Ong W J,Tan L L,Ng Y H,et al.Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation:are we a step closer to achieving sustainability? [J].Chemical Reviews,2016,116(12):7159-7329.
[5]Yan S C,Li Z S,Zou Z G.Photodegradation performance of g-C3N4 fabricated by directly heating melamine [J].Langmuir,2009,25:10397-10401.
[6]Bai X J,Yan S C,Wang J J,et al.A simple and efficient strategy for the synthesis of a chemically tailored g-C3N4 material [J].Journal of Materials Chemistry A,2014,2(41):17521-17529.
[7]Wang X C,Maeda K,Chen X F,et al.Polymer semiconductors for artificial photosynthesis:hydrogen evolution by mesoporous graphitic carbon nitride with visible light [J].Journal of the American Chemical Society,2009,131(5):1680-1681.
[8]Ong W J,Tan L L,Chai S P,et al.Graphene oxide as a structure-directing agent for the two-dimensional interface engineering of sandwich-like graphene-g-C3N4 hybrid nanostructures with enhanced visible-light photoreduction of CO2 to methane [J].Chemical Communications,2014,51(5):858-861.
[9]Zhang Y W,Liu J H,Wu G,et al.Porous graphitic carbon nitride synthesized via direct polymerization of urea for efficient sunlight-driven photocatalytic hydrogen production [J].Nanoscale,2012,4(17):5300-5303.
[10]Zhang G G,Zhang J S,Zhang M W,et al.Polycondensation of thiourea into carbon nitride semiconductors as visible light photocatalysts [J].Journal of Materials Chemistry,2012,22(16):8083-8091.
[11]Wang X C,Maeda K,Thomas A,et al.A metal-free polymeric photocatalyst for hydrogen production from water under visible light [J].Nature Materials,2009,8(1):76-80.
[12]Pan H,Zhang Y W,Shenoy V B,et al.Ab initio study on a novel photocatalyst:functionalized graphitic carbon Nitride Nanotube [J].Acs Catalysis,2011,1(1):99-104.
[13]Ding G,Wang W,Jiang T,et al.Highly selective synthesis of phenol from benzene over a vanadium-doped graphitic carbon nitride catalyst [J].Chemcatchem,2013,5(1):192-200.
[14]Yue B,Li Q Y,Iwai H,et al.Hydrogen production using zinc-doped carbon nitride catalyst irradiated with visible light [J].Science & Technology of Advanced Materials,2011,12(3):034401.
[15]Tonda S,Kumar S,Kandula S,et al.Fe-doped and mediated graphitic carbon nitride nanosheets for enhanced photocatalytic performance under natural sunlight [J].Journal of Materials Chemistry A,2014,2(19):6772-6780.
[16]Ye X,Cui Y,Qiu X,et al.Selective oxidation of benzene to phenol by Fe-CN/TS-1 catalysts under visible light irradiation [J].Applied Catalysis B Environmental,2014,152-153(1):383-389.
[17]Guo S N,Zhu Y,Yan Y Y,et al.Holey structured graphitic carbon nitride thin sheets with edge oxygen doping via photo-Fenton reaction with enhanced photocatalytic activity [J].Applied Catalysis B Environmental,2016,185:315-321.
[18]Bu Y Y,Chen Z Y.Effect of oxygen-doped C3N4 on the separation capability of the photoinduced electron-hole pairs generated by O-C3N4@TiO2 with quasi-shell-core nanostructure [J].Electrochimica Acta,2014,144(144):42-49.
[19]Dong G H,Ai Z H,Zhang L Z.Efficient anoxic pollutant removal with oxygen functionalized graphitic carbon nitride under visible light [J].Rsc Advances,2014,4(11):5553-5560.
[20]She X,Liang L,Ji H,et al.Template-free synthesis of 2D porous ultrathin nonmetal-doped g-C3N4,nanosheets with highly efficient photocatalytic H2,evolution from water under visible light [J].Applied Catalysis B Environmental,2016,187(5):144-153.
[21]Dong G H,Zhao K,Zhang L Z.Carbon self-doping induced high electronic conductivity and photoreactivity of g-C3N4 [J].Chemical Communications,2012,48(49):6178-6180.
[22]Zhang P,Li X H,Shao C L,et al.Hydrothermal synthesis of carbon-rich graphitic carbon nitride nanosheets for photoredox catalysis [J].Journal of Materials Chemistry A,2015,3(7):3281-3284.
[23]Zhang L G,Chen X F,Guan J,et al.Facile synthesis of phosphorus doped graphitic carbon nitride polymers with enhanced visible-light photocatalytic activity [J].Materials Research Bulletin,2013,48(9):3485-3491.
[24]Lan D H,Wang H T,Chen L,et al.Phosphorous-modified bulk graphitic carbon nitride:Facile preparation and application as an acid-base bifunctional and efficient catalyst for CO2,cycloaddition with epoxides [J].Carbon,2016,100:81-89.
[25]Xu C Y,Han Q,Zhao Y,et al.Sulfur-doped graphitic carbon nitride decorated with graphene quantum dots for an efficient metal-free electrocatalyst [J].Journal of Materials Chemistry A,2015,3(5):1841-1846.
[26]Ma X G,Lyu Y H,Xu J,et al.A strategy of enhancing the photoactivity of g-C3N4 via doping of nonmetal elements:a first-principles study [J].Journal of Physical Chemistry C,2016,116(44):23485-23493.
[27]Lin S,Ye X X,Gao X M,et al.Mechanistic insight into the water photooxidation on pure and sulfur-doped g-C3N4,photocatalysts from DFT calculations with dispersion corrections [J].Journal of Molecular Catalysis a Chemical,2015,406:137-144.
[28]Lu C H,Chen R Y,Wu X,et al.Boron doped g-C3N4,with enhanced photocatalytic UO2+2,reduction performance [J].Applied Surface Science,2016,360(Part B):1016-1022.
[29]Raziq F,Qu Y,Zhang X L,et al.Enhanced cocatalyst-free visible-light activities for photocatalytic fuel production of g-C3N4 by trapping holes and transferring electrons [J].The Journal of Physical Chemistry C,2016,48(2):31-41.
[30]Pan H Z,Zhang H Y,Liu H M,et al.Interstitial boron doping effects on the electronic and magnetic properties of graphitic carbon nitride materials [J].Solid State Communications,2015,203(203):35-40.
[31]Hu S Z,Ma L,Xie Y,et al.Hydrothermal synthesis of oxygen functionalized S-P codoped g-C3N4 nanorods with outstanding visible light activity under anoxic conditions [J].Dalton Transactions,2015,44(48):20889-20897.
[32]Han Q,Hu C G,Zhao F,et al.One-step preparation of iodine-doped graphitic carbon nitride nanosheets as efficient photocatalysts for visible light water splitting [J].Journal of Materials Chemistry A,2015,3(8):4612-4619.
[33]Wang X C,Chen X F,Thomas A,et al.Metal-containing carbon nitride compounds:a new functional organic-metal hybrid material [J].Advanced Materials,2010,21(16):1609-1612.
[34]Huang Z F,Song J,Pan L,et al.Carbon nitride with simultaneous porous network and O-doping for efficient solar-energy-driven hydrogen evolution [J].Nano Energy,2015,12:646-656.
[35]Hu S Z,Ma L,You J G,et al.A simple and efficient method to prepare a phosphorus modified g-C3N4 visible light photocatalyst [J].Rsc Advances,2014,4(41):21657-21663.
[36]Zhao C C,Tan G Q,Huang J,et al.Preparation of self-assembled spherical g-C3N4/tz-Bi0.92Gd0.08VO4 heterojunctions and their mineralization properties [J].Acs Applied Materials & Interfaces,2015,7(43):23949-23957.
[37]Zhao Y F,Wei R Y,F(xiàn)eng X,et al.Dual-mode luminescent nanopaper based on ultrathin g-C3N4 nanosheets grafted with rare-earth up-conversion nanoparticles [J].Acs Applied Materials & Interfaces,2016,8(33):21555-21562.
[38]Xu J,Zhang L W,Shi R,et al.Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis [J].Journal of Materials Chemistry A,2013,1(46):14766-14772.
[39]Tong Z W,Dong Y,Xiao T X,et al.Biomimetic fabrication of g-C3N4/TiO2,nanosheets with enhanced photocatalytic activity toward organic pollutant degradation [J].Chemical Engineering Journal,2015,260(260):117-125.
[40]Jiang Y H,Liu P P,Liu Y,et al.Construction of amorphous Ta2O5/g-C3N4,nanosheet hybrids with superior visible-light photoactivities for organic dye degradation and mechanism insight [J].Separation & Purification Technology,2016,170:10-21.
[41]Zhang J Z,Deng J J,Xu Z H,et al.High-efficiency broadband C3N4 photocatalysts:synergistic effects from upconversion and plasmons [J].ACS Catalysis,2017,7:6225-6234.
[42]梁瑞鈺,徐冬冬,查文瑩,等.鈰摻雜石墨相氮化碳的合成及可見(jiàn)光光催化性能 [J].高等學(xué)校化學(xué)學(xué)報(bào),2016,37(11):1953-1959.
Liang R Y,Xu D D,Zha W Y,et al.Preparation of Ce-doped graphitic carbon nitride with enhanced visible-light photocatalytic activity [J].Chemical Journal of Chinese Universities,2016,37(11):1953-1959.
[43]李婷婷.釩酸釤基催化劑的制備及其光催化性能的研究 [D].金華:浙江師范大學(xué),2013.
Li T T.Preparation and photocatalytic activities of vanadate samarium based catalysts [D].Jinghua:Zhejiang Normal University,2013.
[44]Zhang X D,Xie X,Wang H,et al.Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging [J].Journal of the American Chemical Society,2013,135(1):18-21.
[45]Zhang X L,Zheng C,Guo S S,et al.Turn-On fluorescence sensor for intracellular imaging of glutathione using g-C3N4 nanosheet-MnO2 sandwich nanocomposite [J].Analytical Chemistry,2014,86:3426-3434.
[46]Zhang X D,Wang H X,Wang H,et al.Single-layered graphitic-C3N4 quantum dots for two-photon fluorescence imaging of cellular nucleus [J].Advanced Materials,2014,26(26):4438-4443.
[47]Ma Z F,Zhang M C,Jia X D,et al.Fe(III)-doped two-dimensional C3N4 nanofusiform:a new O2-evolving and mitochondria-targeting photodynamic agent for MRI and Enhanced Antitumor Therapy [J].Small,2016,12(39):5477-5487.
[48]Feng L L,He F,Liu B,et al.g-C3N4 coated upconversion nanoparticles for 808 nm near-infrared light triggered phototherapy and multiple imaging [J].Chemistry of Materials,2016,28(21):7935-7946.
[49]Feng L L,Dan Y,F(xiàn)ei H,et al.A core-shell-satellite structured Fe3O4@g-C3N4-UCNPs-PEG for T1/T2-weighted dual-modal MRI-guided photodynamic therapy [J].Advanced Healthcare Materials,2017,6(18):1700502.
[50]Liu C G,Wu X T,Li X F,et al.Synthesis of graphene-like g-C3N4/Fe3O4 nanocomposites with high photocatalytic activity and for drug delivery [J].Rsc Advances,2014,4(107):62492-62498.
[51]Li M,Guan Y J,Ding C,et al.An ultrathin graphitic carbon nitride nanosheet:a novel inhibitor of metal-induced amyloid aggregation associated with alzheimer′s disease [J].Journal of Materials Chemistry B,2016,4(23):4072-4075.
[52]Hu K,Zhong T M,Huang Y,et al.Graphitic carbon nitride nanosheet-based multicolour fluorescent nanoprobe for multiplexed analysis of DNA [J].Microchimica Acta,2015,182(5-6):949-955.
[53]Deng S Y,Yuan P X,Ji X B,et al.Carbon nitride nanosheet-supported porphyrin:a new biomimetic catalyst for highly efficient bioanalysis [J].Acs Applied Materials & Interfaces,2015,7(1):543-552.
[54]Chen R,Zhang J F,Wang Y,et al.Graphitic carbon nitride nanosheet@metal-organic framework core-shell nanoparticles for photo-chemo combination therapy [J].Nanoscale,2015,7(41):17299-17305.
[55]Feng L L,He F,Dai Y L,et al.A versatile near infrared light triggered dual-photosensitizer for Synchronous bioimaging and photodynamic therapy [J].Acs Applied Materials & Interfaces,2017,9(15):12993-13008.