彭波 彭宇 彭娟 孔冬艷 何璐璐 孫艷芳 黃雅琴 宋世枝
摘 要 淀粉、儲藏蛋白和脂類等物質是水稻種子中最主要的營養(yǎng)物質,它們在水稻種子中的組成及其含量對稻米品質的優(yōu)劣起決定性的作用。本文綜述了近年來水稻種子中淀粉、儲藏蛋白、脂類物質和氨基酸等主要營養(yǎng)物質的合成及其相關基因的表達與調控等方面所取得的新進展,并分析了這些營養(yǎng)物質在水稻遺傳改良過程中面臨的挑戰(zhàn)與展望,以期為今后稻米品質的遺傳改良與新品種的培育提供參考與借鑒。
關鍵詞 水稻;營養(yǎng)物質;合成;調控
中圖分類號 S511 文獻標識碼 A
Research Advancement and Prospects of Main Nutritious Substances Synthesis and Regulation in Rice Seeds
PENG Bo1*,PENG Yu2,PENG Juan3,KONG Dongyan1,HE Lulu1,SUN Yanfang1,
HUANG Yaqin4,SONG Shizhi5*
1 College of Life Sciences and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, Henan 464000, China
2 School of Science and Technology, Xinyang University, Xinyang, Henan 464000, China
3 Xinyang Station of Plant Protection and Inspection, Xinyang, Henan 464000, China
4 College of Biological and Pharmaceutical Engineering, Xinyang Agriculture and Forestry University, Xinyang, Henan 464000, China
5 Xinyang Academy of Agricultural Science, Xinyang, Henan 464000, China
Abstract Starch, storage proteins and lipids are the main nutritious substances in rice seeds, and the composition and content in seeds play a decisive role in the grain quality of rice. This review mainly summarized the new advances in the synthesis, the related genes expression and regulation of main nutritious substances such as starch, storage proteins, lipids and amino acids in rice seeds. In addition, the challenges of the nutritious substances in rice genetic improvement were also discussed. This review would provide an important reference for genetic improvement of grain quality and the cultivation of new varieties in rice.
Key words rice (Oryza sativa L.); nutritious substance; synthesis; regulation
doi 10.3969/j.issn.1000-2561.2018.06.030
水稻(Oryza sativa L.)是最重要的糧食作物之一。水稻為全世界超過30億的人口提供大約25%的能量需求,特別是在東南亞地區(qū),稻米為其當?shù)鼐用裉峁┑哪芰窟_到76%左右,故稻米是人類能量及其營養(yǎng)物質的一個重要的來源[1-3]。近幾十年來,國內針對水稻的改良與新品種培育,先后實施過高產育種、超高產育種、超級稻育種和綠色超級稻育種等不同計劃的育種目標,其中以提高水稻產量一直作為一個極其重要的育種目標[4]。在此育種進程中,水稻產量有了明顯提高,但稻米品質的遺傳改良卻未得到同步改善,進而導致目前市場上稻米品質不容樂觀。然而稻米品質性狀是一個十分復雜的數(shù)量性狀,主要由營養(yǎng)品質、食味品質、外觀品質、蒸煮品質、研磨和加工品質等組成[5-7],且不同稻米品質性狀與外界環(huán)境因素之間存在一定程度的相互作用[6-9]。預計到2050年全球人口將超過90億[10-11],隨著生活質量的逐步改善,未來相當長時間內,針對優(yōu)質稻米的需求還會保持強勁增長。
水稻種子中主要的營養(yǎng)物質有淀粉、儲藏蛋白、氨基酸和脂類物質等,其中絕大部分營養(yǎng)物質是淀粉和蛋白,它們重量之和占其籽粒干重的90%以上[12-13]。稻米中的淀粉包括直鏈淀粉和支鏈淀粉。兩者結構組成及相對含量,對稻米諸多品質性狀有重要的影響作用[14]。水稻種子中的儲藏蛋白和氨基酸的含量及其相對均衡,是決定稻米營養(yǎng)品質最重要的因素[3, 15]。稻米中儲藏蛋白含量還會影響其食用品質、加工品質和外觀品質等[16]。儲藏蛋白按照不同的分離提取方法和溶解度的區(qū)別可以分為谷蛋白、醇溶蛋白、球蛋白和清蛋白。它們?yōu)槿祟愄峁?5%左右的蛋白質來源[12]。因此,水稻種子中各個營養(yǎng)物質組成及其相對含量對稻米品質性狀(如食味品質、外觀品質、營養(yǎng)品質、蒸煮品質和加工品質等)具有一定程度的影響作用[17-18]。因此,稻米中營養(yǎng)物質的組成及其相對含量與人類的健康密切相關。
近十年來,針對水稻種子中主要營養(yǎng)物質遺傳方面的研究取得重要進展[6, 19-21]。分離并克隆了一大批基因,參與調控稻米中淀粉、儲藏蛋白、脂類物質和維生素等主要營養(yǎng)物質的合成、代謝及其降解等過程[3, 19, 22-23]。水稻種子中主要營養(yǎng)物質與稻米品質性狀息息相關。因此,闡明水稻種子內主要營養(yǎng)物質的合成、調控網絡與遺傳基礎,對今后稻米品質的遺傳改良具有重要理論意義和應用價值。本文重點綜述了近期關于水稻種子內淀粉、儲藏蛋白、氨基酸和脂質等主要營養(yǎng)物質合成及調控方面取得的新進展,并提出了針對水稻種子營養(yǎng)物質進行遺傳改良的策略,為稻米品質的遺傳改良和優(yōu)質水稻新品種的選育提供參考。
1 水稻種子淀粉合成相關基因及其調控
水稻種子中的淀粉是人類膳食營養(yǎng)物質最主要的來源之一,淀粉占稻谷干重的80%~90%[15]。稻米中淀粉的結構及其各成分的相對含量與稻米的品質性狀緊密相關,特別是對稻米的蒸煮與食味品質有重要的影響[9, 24]。水稻種子中淀粉的合成過程十分復雜,一系列與淀粉合成與代謝相關的基因、基因家族以及轉錄因子,在水稻淀粉的合成過程中發(fā)揮重要的作用[25-27],各種非生物脅迫對稻米淀粉的合成及其調控具有一定程度的影響[28]。近期,一批轉錄因子的深入研究結果表明,轉錄因子參與調控淀粉合成相關基因表達,進而影響淀粉的成分與結構。
水稻種子中淀粉的合成過程需要多步酶促反應,一系列與淀粉合成及其代謝相關的基因參與這一過程,且與淀粉合成相關的基因存在較多的等位基因,導致大量同工酶參與淀粉的合成及代謝(圖1)[29-30]。目前,大量研究結果顯示,參與淀粉合成的酶類有腺苷二磷酸葡萄糖焦磷酸化酶(ADP-glucose pyrophosphorylase, AGPase)、顆粒凝結型淀粉合成酶、可溶性淀粉合成酶、淀粉分支酶、淀粉去分支酶、淀粉磷酸化酶、淀粉異構酶、葡萄糖-6-磷酸轉化酶和支鏈淀粉酶等[29, 31-33]。其中,AGPase是稻米淀粉合成關鍵性的一類酶,即產生活性葡萄糖供體ADP-葡萄糖途徑中的限速酶[17, 34]。AGPase由6個基因編碼,OsAGPS-1和OsAGPS-2(a、b)兩個基因負責編碼AGPase的小亞基,而OsAPL-1、OsAPL-2、OsAPL-3和OsAPL-4這4個基因共同編碼AGPase的大亞基[35-36]。這6個基因的表達與否和AGPase的活性高低高度相關。當AGPase的活性較高時,能夠促進水稻種子中淀粉的合成,粒重增加[37];反之,水稻種子中的總淀粉含量下降,胚乳變干癟[32, 38]。因此,通過調節(jié)AGPase基因的表達情況,進而能夠控制AGPase的活性,最終可以實現(xiàn)水稻種子中淀粉品質的改良。
水稻種子中負責淀粉合成另一類關鍵性的酶是淀粉合成酶(Starch synthetase, SS),它包括GBSS和SSS。其中GBSS-1和GBSS-II是GBSS的2種異構酶,GBSS-1是由Waxy基因(又稱Wx基因)編碼,在水稻中主要負責種子中長的直鏈淀粉的合成[39-40]。Wxa、Wxb、Wxin、Wxg3、Wxmq、Wxmp、Wxop和wx都是Waxy基因的等位基因,它們共同直接或者間接地控制淀粉合成酶的活性,最終決定水稻種子中直鏈淀粉的含量[17, 25, 41]。可溶性淀粉合成酶在水稻中存在SS-I、SS-II(a,b,c)、SS-III(a,b)和SS-IV (a,b)共8種異構酶,其中SS-I基因目前還沒有發(fā)現(xiàn)對應的等位基因形式,SS-I酶在淀粉合成的短糖鏈的合成過程中發(fā)揮重要的作用[42-43]。SS-II(a,b,c)、SS-III(a,b)和SS-IV (a,b)基因在水稻淀粉的合成過程中,特別是在支鏈淀粉的糖鏈延伸的時候,它們編碼的可溶性淀粉合成酶對ADP-葡萄糖的活性要高于GBSS,故有利于支鏈淀粉的合成與延伸。SS-I、SS- II a和SS-IIIa基因相互協(xié)同調控水稻種子中支鏈淀粉側鏈的合成,SS-II(a,b,c)和SS-III(a,b)基因都是特異表達的基因,主要集中在水稻的胚乳或者葉片中特異表達[17,44]。因此,編碼顆粒凝結型淀粉合成酶和可溶性淀粉合成酶及其對應的異構酶的基因,在水稻種子內直鏈淀粉和支鏈淀粉的合成及其代謝的過程中發(fā)揮關鍵性的作用。
淀粉分支酶(SBE)和淀粉去分支酶(DBE)在水稻種子淀粉合成代謝過程中,主要負責淀粉側鏈的引入與不合適側鏈的移除[45-46]。SBE-1,SBE-Ⅱ(a,b)和SBE-Ⅲ基因分別編碼淀粉分支酶對應的4種異構酶形式,它們在淀粉葡聚糖的主鏈當中引入α-1.6-糖苷鍵,導致淀粉側鏈的產生與延伸[47-48]。淀粉去分支酶包括異淀粉酶(ISA)和支鏈淀粉酶(PUL)這兩類酶,其中異淀粉酶由ISA1、ISA2和ISA3 3個基因共同編碼,ISA1和ISA2基因在水稻胚乳支鏈淀粉合成的過程中發(fā)揮極其重要的功能,這3個基因如果發(fā)生突變,將會導致水稻胚乳中不能合成淀粉[33]。ISA3基因對水稻種子中儲藏淀粉的影響不大,主要負責種子中瞬時淀粉的代謝過程[49]。PUL基因的突變或者功能的喪失將導致水稻胚乳淀粉中短鏈分支淀粉的明顯增加[50-51]。因此,在針對水稻種子中淀粉及其對應稻米品質遺傳改良的過程中,可能需要根據(jù)不同的育種目標來篩選特定類型的等位基因,從而加快水稻新品種的選育。
目前,水稻種子中淀粉合成代謝相關單個基因的功能研究的比較透徹。多個淀粉合成相關基因共同控制種子中淀粉的代謝過程[13],并且還有大量淀粉合成相關轉錄因子參與到淀粉的合成。其中的一個基因發(fā)生突變,將會引起其他多個淀粉代謝相關基因及其轉錄的改變[52]。因此,水稻種子中淀粉合成相關基因及其轉錄組成一個極其復雜的調控網絡,它們之間是如何協(xié)調表達調控的仍知之甚少。例如,Du1基因的表達產物能夠調控Wx基因的剪接方式及其效率,最終直接影響水稻種子中直鏈淀粉的含量[53-54]。APETALA2/乙烯應答原件結合蛋白的一個轉錄因子RSR1(Rice Starch Regulator 1)[55],如果RSR1基因表達量增高,水稻種子中淀粉合成相關基因則受到抑制。另外一個轉錄因子OsbZIP58 能夠直接與多個淀粉合成代謝相關基因(如SSSIIa、Wx、AGPL3、SBEI、SBEIIb 和 ISA2 等)的啟動子結合,或者是與OsLOL1相互作用[23, 56],進而調控上述基因的表達,最終影響水稻種子中淀粉的積累、堊白性狀的形成及其水稻種子的萌發(fā)。此外,還有一些轉錄因子也參入水稻種子直鏈淀粉或者支鏈淀粉的合成過程之中,如OsbZIP33、OsBP-5和FLOURY ENDOSPERM2等[56-58]。它們?yōu)榈久字械矸酆考捌涑煞值倪z傳改良提供新的策略。因此,今后需要進一步加強與水稻種子中淀粉合成相關基因及其轉錄因子協(xié)同調控方面的研究,逐步解析淀粉合成與降解這一復雜調控網絡,進而加速稻米淀粉的改良進程。
色氨酸和苯丙氨酸作為人和動物體不能合成的必需氨基酸,對人和動物的生長發(fā)育和新陳代謝起著重要的作用[91]。色氨酸和苯丙氨酸同屬于芳香族氨基酸,而芳香族氨基酸是水稻體內各種次生代謝物質的前體,它們與水稻的生長發(fā)育乃至稻米的品質都密切相關[92]。與增加稻米中賴氨酸和甲硫氨酸的含量相比,增加稻米中色氨酸和苯丙氨酸含量的研究工作相對較少[93]。在植物、細菌和真菌中,芳香族氨基酸同屬于莽草酸代謝途徑,并且具有一個共同的前體物質分支酸,多種對于反饋不敏感的鄰氨基苯甲酸合成酶的α亞基相關基因已用于農作物游離色氨酸的遺傳改良之中[92,94]。研究色氨酸有大量的突變體植株可以利用,但卻很難找到苯丙氨酸含量發(fā)生顯著改變的突變體,而在Mtr 1突變體植株中,其苯丙氨酸和色氨酸都存在[95-96]。在超量表達Mtr 1的植株中,Mtr 1編碼的脫水酶ADT/PDT能夠催化苯丙氨酸生物合成的最后一步反應[97],并且色氨酸和苯丙氨酸的含量都明顯增加,暗示著鄰氨基苯甲酸合成酶和ADT/PDT脫水酶在水稻種子合成色氨酸和苯丙氨酸的代謝途徑中發(fā)揮關鍵性的調節(jié)作用。
半胱氨酸和甲硫氨酸是構成蛋白質重要的氨基酸,半胱氨酸的合成可以增強植物的抗氧化脅迫能力。它是植物將無機硫轉化為有機硫的第一個含硫的有機物,其它絕大多數(shù)含硫代謝物都直接或間接來源于半胱氨酸,故半胱氨酸在植物硫代謝過程中處于中心位置[98-99]。絲氨酸酰基轉移酶和3-磷酸甘油酸脫氫酶是半胱氨酸合成代謝過程中的2個限速酶,硫化氫與O-乙酰絲氨酸最后在半胱氨酸合成酶的催化下反應形成半胱氨酸[100],絲氨酸?;D移酶和3-磷酸甘油酸脫氫酶嚴格調控半胱氨酸合成的催化反應,導致半胱氨酸的含量總體偏低。利用半胱氨酸合成酶和絲氨酸乙酰轉移酶來合成半胱氨酸合成酶復合物,這將更加有效的調節(jié)半胱氨酸的生物合成[101]。蛋氨酸又稱甲硫氨酸,是人和動物不能自身合成的一種必需氨基酸。甲硫氨酸不僅在機體內能夠合成蛋白質,而且可以為機體提供具有活性甲基基團,還可以在體內轉化為半胱氨酸[102-103]。甲硫氨酸的缺乏對人類和牲畜產業(yè)會產生多種危害,長期食用甲硫氨酸含量較低的食物將導致多種疾病的發(fā)生。例如將導致羊的羊毛減少,奶牛的牛奶產量降低,肉類品質下降,并且還會影響機體對其他相關氨基酸的吸收與利用[104]。故增加甲硫氨酸的含量一直是植物遺傳學家和育種學家追求的重要目標之一。用帶泛素的啟動子驅動絲氨酸乙酰轉移酶基因的表達,能夠將水稻中的甲硫氨酸和半胱氨酸分別增加1.4倍和2.4倍[105],在轉基因水稻植株中的異亮氨酸、亮氨酸和纈氨酸的含量也明顯升高,同時表明甲硫氨酸在水稻體內可以轉化為異亮氨酸。因此,利用基因工程的策略,能夠顯著提高水稻種子中必需氨基酸的含量,進而改善稻米的營養(yǎng)品質。
4 水稻種子中脂質合成及其調控
脂質包括脂肪和磷脂,是水稻種子中十分重要的營養(yǎng)物質,主要分布于水稻種子的胚和胚乳外面的糊粉層,在水稻種子中脂質與直鏈淀粉之間形成復合體[106-107]。目前,在水稻基因組中已定位到許多QTLs位點與脂質密切相關,但已經分離克隆相關的QTL基因還比較少見[108]。脂肪酸氧化酶(LOX)是導致稻米營養(yǎng)品質降低的重要因素,因為該酶能夠催化脂質發(fā)生氧化反應[82]。水稻基因組中的LOX-1、LOX-2、LOX-3或者r9- LOX-1均編碼脂肪酸氧化酶[109-111],深入研究發(fā)現(xiàn)LOX-2、LOX-3或者r9- LOX-1能夠抑制脂肪酸發(fā)生降解反應,而LOX-3或者r9- LOX-1表達量降低后可以有效減少黃金稻米中β-胡蘿卜素的降解過程。
極長鏈多不飽和脂肪酸和長鏈多不飽和脂肪酸是膽固醇和類花生酸合成以及維持細胞膜的運輸必不可少的調節(jié)物質[112],它們是構成神經細胞的主要成分(如腦和視網膜組織)[113],進而影響人體的發(fā)育與健康。通過不同的途徑(如ω-6代謝通路或ω-3代謝通路)都能夠合成超長鏈多不飽和脂肪酸[114],故多種基因編碼的蛋白或者酶類均有助于提高超長鏈多不飽和脂肪酸的水平。如FAD3、D5延長酶基因、ω-3脂肪酸去飽和酶基因、Δ8-去飽和酶基因和Δ5-去飽和酶基因等[115-118]。其中FAD3蛋白能夠催化種子中α-亞麻酸的合成,進而可以用來提高水稻種子中α-亞麻酸的含量。而α-亞麻酸是長鏈ω3-不飽和脂肪酸重要的前體物質,在水稻種子中α-亞麻酸的含量較低。如果超量表達FAD3基因,則能夠大幅度提高水稻種子中α-亞麻酸的含量[119]。在水稻中,目前已經克隆了3個FAD3基因。這些基因在水稻種子中是如何發(fā)揮功能來增加α-亞麻酸濃度的,尚不清楚其中的調控機制。
油質蛋白在植物種子的油體中含量豐富,可以用來調節(jié)種子脂肪的含量。利用水稻胚乳特異表達的啟動子驅動大豆油體蛋白基因的超量表達,使轉基因水稻種子中的脂肪含量提高36%以上,而總的甘油三酯脂肪酸的含量并沒有明顯的變化[120]。稻米油中含有大量的抗氧化的物質,如谷維素、卵磷脂、生育酚和生育三烯酚等。它們對于人類健康十分有益[121]。利用水稻胚特異表達的啟動子REG驅動GmFAD3-1 和OsFAD3基因的表達,將會導致水稻胚和糊粉層等部位的α-亞麻酸含量顯著增加,而增加的α-亞麻酸整好位于甘油三酯的sn-2位置,很容易被人體消化吸收[122]。前期研究發(fā)現(xiàn),OsLTP36在水稻中編碼一個脂質轉運蛋白的基因。若OsLTP36基因下調表達,會嚴重影響水稻種子的發(fā)育,并且會顯著降低水稻種子中的脂質含量[123-124]。目前,盡管針對脂質代謝的研究已經取得重要進展,水稻中與脂質代謝相關的基因也有一些被分離克隆,但是關于水稻種子中脂質代謝途徑是如何精細調控的還有待深入研究。
5 水稻種子主要營養(yǎng)物質改良面臨的挑戰(zhàn)與展望
水稻種子主要營養(yǎng)物質包括淀粉、儲藏蛋白、脂類物質和氨基酸等。通過遺傳工程或代謝工程來改良這些主要的營養(yǎng)物質,需要將目的基因在合適的啟動子驅動下產生最佳的功能蛋白或酶類[125],從而促進水稻種子中大量和微量營養(yǎng)物質的合成,并不影響其他代謝途徑和植株正常的生長發(fā)育[126]。目前,有些營養(yǎng)物質在水稻體內生物合成途徑及其調控的機制尚不清楚,進而限制了遺傳工程或者代謝工程在水稻遺傳改良中的應用。利用多組學(蛋白質組學、代謝組學、轉錄組學等)的策略,針對水稻種子中的營養(yǎng)物質已做了大量的研究,并取得重要進展。如在利用基因工程改良的水稻中產生一些不良的過敏性蛋白質可以通過蛋白質組學進行篩選[127]。代謝組學能夠將水稻體內的多種代謝物進行精準定量,并鑒定與水稻非生物脅迫抗性和營養(yǎng)饑餓相關的代謝產物標志物[128-129]。因此,有助于促進種子中有益營養(yǎng)物質的積累,對提高人類的健康水平具有重要的意義。
目前,氣相色譜-質譜聯(lián)用技術、液相色譜-質譜聯(lián)用技術、毛細管電泳-質譜聯(lián)用技術、X射線熒光光譜技術、X射線能譜分析技術、掃描電鏡和透射電鏡技術,以及近年來單細胞活體成像等技術的迅速發(fā)展[1],為深入研究水稻種子中主要營養(yǎng)物質的合成與積累提供新的技術方案。但是,針對多基因同時作用于生物合成途徑過程中的多個步驟,或者針對多個合成途徑的多個性狀,在水稻種子中同時進行遺傳改良依然具有挑戰(zhàn)性。盡管已經揭示了很多與水稻種子營養(yǎng)物質合成相關基因的功能,但是功能基因往往還受其他基因直接或者間接的調控[92],導致基因存在一因多效的現(xiàn)象比較普遍。因此,在水稻種子營養(yǎng)物質遺傳育種中能夠大范圍應用的功能基因還比較少見,且這些功能基因中往往還需要發(fā)育特異性、組織特異性或誘導型表達的啟動子來驅動其表達,才會對水稻種子中營養(yǎng)物質的合成與積累有利。
長期以來,人們能否接受營養(yǎng)強化型的稻米及其食品一直是全球討論的熱點問題。盡管迄今為止并沒有觀察到轉基因食品對人類健康和生態(tài)環(huán)境產生不利的影響,但是營養(yǎng)強化型的稻米及其食品商業(yè)化生產應用還需時日。近十幾年來,基于序列特異性核酸酶的基因組編輯技術發(fā)展極為迅速,已成為水稻遺傳改良最有效的新工具之一[130-131]。特別是CRISPR/Cas9技術具有操作簡單、成本低、誘導效率高以及能夠獲得可穩(wěn)定遺傳的后代基因組編輯植株。CRISPR/Cas9技術可以實現(xiàn)針對基因組內不同位置的基因同時進行修飾與編輯[131-132],故已經廣泛應用于水稻營養(yǎng)物質合成代謝相關的研究之中[133-134]。因此,以CRISPR/Cas9技術為代表的基因組編輯技術將在水稻種子營養(yǎng)物質遺傳改良及其新品種培育的進程中發(fā)揮著越來越重要的作用,并會大大加快稻米品質的遺傳改良。
參考文獻
[1] Kusano M,Yang Z,Okazaki Y,et al. Using metabolomic approaches to explore chemical diversity in rice[J]. Molecular Plant,2015,8(1):58-67.
[2] Tian Z,Qian Q,Liu Q,et al. Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities[J]. Proceedings of the National Academy of Sciences of the United States of America,2009,106(51):21 760-2 1765.
[3] Peng B,Kong H L,Li Y B,et al. OsAAP6 functions as an important regulator of grain protein content and nutritional quality in rice[J]. Nature Communications,2014,5:4847.
[4] 程式華. 中國超級稻育種技術創(chuàng)新與應用[J]. 中國農業(yè)科學,2016,49(2):205-206.
[5] Yun P,Zhu Y,Wu B,et al. Genetic mapping and confirmation of quantitative trait loci for grain chalkiness in rice[J]. Molecular Breeding,2016,36(12):162.
[6] Bhullar N K,Gruissem W. Nutritional enhancement of rice for human health: the contribution of biotechnology[J]. Biotechnology Advances,2013,31(1):50.
[7] Peng B,Wang L,F(xiàn)an C,et al. Comparative mapping of chalkiness components in rice using five populations across two environments[J]. BMC Genetics,2014,15:49.
[8] Chen J,Zhang J,Liu H,et al. Retraction notice to: molecular strategies in manipulation of the starch synthesis pathway for improving storage starch content in plants[J]. Plant Physiology & Biochemistry,2012,61(6):1-8.
[9] 彭 波,孫艷芳,李琪瑞,等. 水稻堊白性狀的遺傳研究進展[J]. 信陽師范學院學報(自然科學版),2016,29(2):304-312.
[10] Daygon V D,Prakash S,Calingacion M,et al. Understanding the jasmine phenotype of rice through metabolite profiling and sensory evaluation[J]. Metabolomics,2016,12(4):1-15.
[11] Fitzgerald M A,Mccouch S R,Hall R D. Not just a grain of rice: the quest for quality[J]. Trends in Plant Science,2009,14(3):133-139.
[12] He Y,Wang S,Ding Y. Identification of novel glutelin subunits and a comparison of glutelin composition between japonica and indica rice (Oryza sativa L.)[J]. Journal of Cereal Science,2013,57(3):362-371.
[13] 彭 波,龐瑞華,孫艷芳,等. 水稻種子淀粉合成及其調控研究[J]. 江西農業(yè)學報,2016,28(6):15-21.
[14] Hyun D Y,Lee G A,Kang M J,et al. Development of low-temperature germinability markers for evaluation of rice (Oryza sativa L.) germplasm[J]. Molecular Breeding,2015,35(4):1-16.
[15] Duan M,Sun S S. Profiling the expression of genes controlling rice grain quality[J]. Plant Molecular Biology,2005,59(1):165-178.
[16] Cao Z Z,Zhang Q F,Wei K S,et al. Response of some key enzyme activities involved in nitrogen metabolism to high temperature at filling stage and its relation to storage protein accu-mulation in rice grain[J]. Acta Agronomica Sinica, 2012,38(1): 99-106.
[17] Yang F,Chen Y,Tong C,et al. Association mapping of starch physicochemical properties with starch synthesis-related gene markers in non-waxy rice (Oryza sativa L.)[J]. Molecular Breeding,2014,34(4):1 747-1 763.
[18] Jiang L,Yu X,Qi X,et al. Multigene engineering of starch biosynthesis in maize endosperm increases the total starch content and the proportion of amylose[J]. Transgenic Research,2013,22(6):1 133.
[19] Zhou W,Wang X,Zhou D,et al. Overexpression of the 16-kDa α-amylase/trypsin inhibitor RAG2 improves grain yield and quality of rice[J]. Plant Biotechnology Journal,2017,15(5):568.
[20] Wilson S A,Roberts S C. Metabolic engineering approaches for production of biochemicals in food and medicinal plants[J]. Current Opinion in Biotechnology,2014,26(7):174.
[21] Hansson S O,Joelsson K. Crop biotechnology for the environment[J]. Journal of Agricultural & Environmental Ethics,2013,26(4):759-770.
[22] Yu H,Wang T. Proteomic dissection of endosperm starch granule associated proteins reveals a network coordinating starch biosynthesis and amino acid metabolism and glycolysis in rice endosperms[J]. Frontiers in Plant Science,2016,7:707.
[23] Wang J C,Xu H,Zhu Y,et al. OsbZIP58, a basic leucine zipper transcription factor, regulates starch biosynthesis in rice endosperm[J]. Journal of Experimental Botany,2013,64(11):3 453-3 466.
[24] Bao J,Jin L,Xiao P,et al. Starch physicochemical properties and their associations with microsatellite alleles of starch-synthesizing genes in a rice RIL population[J]. Journal of Agricultural & Food Chemistry,2008,56(5):1 589-1 594.
[25] Cai H,Chen Y,Zhang M,et al. A novel gRAS transcription factor, zmGRAS20, regulates starch biosynthesis in rice endosperm[J]. Physiology & Molecular Biology of Plants,2017,23(1):143-154.
[26] Pfister B,Zeeman S C. Formation of starch in plant cells[J]. Cellular & Molecular Life Sciences,2016,73(14):2 781-2 807.
[27] Yu H,Wang T. Proteomic dissection of endosperm starch granule associated proteins reveals a network coordinating starch biosynthesis and amino acid metabolism and glycolysis in rice endosperms[J]. Frontiers in Plant Science,2016,7:707.
[28] Fujita N. Starch biosynthesis in rice endosperm[J]. Agri-bioscience Monographs,2014,4(1):1-18.
[29] Miao H,Sun P,Liu Q,et al. Soluble starch synthase III-1 in amylopectin metabolism of banana fruit: characterization, expression, enzyme activity, and functional analyses[J]. Frontiers in Plant Science,2017,8:454.
[30] Thitisaksakul M,Jiménez R C,Arias M C,et al. Effects of environmental factors on cereal starch biosynthesis and composition[J]. Journal of Cereal Science,2012,56(1):67-80.
[31] Li H,Prakash S,Nicholson T M,et al. The importance of amylose and amylopectin fine structure for textural properties of cooked rice grains[J]. Food Chemistry,2016,196:702-711.
[32] Pandey M K,Rani N S,Madhav M S,et al. Different isoforms of starch-synthesizing enzymes controlling amylose and amylopectin content in rice (Oryza sativa L.)[J]. Biotechnology Advances,2012,30(6):1 697-1 706.
[33] 金正勛,同拉嘎,李 丹,等. 灌漿成熟期氮素營養(yǎng)對水稻增產及淀粉品質的影響[J]. 東北農業(yè)大學學報,2017,48(4):1-6.
[34] Lee S K,Hwang S K,Han M,et al. Identification of the ADP-glucose pyrophosphorylase isoforms essential for starch synthesis in the leaf and seed endosperm of rice (Oryza sativa L.)[J]. Plant Molecular Biology,2007,65(4):531-546.
[35] Tanamachi K,Miyazaki M,Matsuo K,et al. Differential responses to high temperature during maturation in heat-stress-tolerant cultivars of Japonica rice[J]. Plant Production Science,2016,19(2):1-9.
[36] Ohdan T,F(xiàn)rancisco P J T,Hirose T,et al. Expression profiling of genes involved in starch synthesis in sink and source organs of rice[J]. Journal of Experimental Botany,2005,56(422):3 229-3 244.
[37] Volkert K,Debast S,Voll L M,et al. Loss of the two major leaf isoforms of sucrose-phosphate synthase in arabidopsis thaliana limits sucrose synthesis and nocturnal starch degradation but does not alter carbon partitioning during photosynthesis[J]. Journal of Experimental Botany,2014,65(18):5 217-5 229.
[38] Tuncel A,Kawaguchi J,Ihara Y,et al. The rice endosperm ADP-glucose pyrophosphorylase large subunit is essential for optimal catalysis and allosteric regulation of the heterotetrameric enzyme[J]. Plant & Cell Physiology,2014,55(6):1 169-1 183.
[39] Luo Y,Zakaria S,Basyah B,et al. Marker-assisted breeding of Indonesia local rice variety siputeh for semi-dwarf phonetype, good grain quality and disease resistance to bacterial blight[J]. Rice,2014,7(1):1-8.
[40] Wang Z,Zheng F,Shen G,et al. The amylose content in rice endosperm is related to the post-transcriptional regulation of the waxy gene[J]. Plant Journal for Cell & Molecular Biology,1995,7(4):613-622.
[41] Zhang C,Zhu L,Shao K,et al. Toward underlying reasons for rice starches having low viscosity and high amylose: physiochemical and structural characteristics[J]. Journal of the Science of Food & Agriculture,2013,93(7):1 543-1 551.
[42] Fu J,Xu Y,Chen L,et al. Changes in enzyme activities involved in starch synthesis and hormone concentrations in superior and inferior spikelets and their association with grain filling of super rice[J]. Rice Science,2013,20(2):120-128.
[43] Kharabian M A,Waters D L,Reinke R F,et al. Discovery of polymorphisms in starch-related genes in rice germplasm by amplification of pooled DNA and deeply parallel sequencing [J]. Plant Biotechnology Journal,2011,9(9):1 074-1 085
[44] Zhang G,Cheng Z,Zhang X,et al. Double repression of soluble starch synthase genes SSIIa and SSIIIa in rice (Oryza sativa L.) uncovers interactive effects on the physicochemical properties of starch[J]. Genome,2011,54(6):448-459.
[45] Kamiya K. Theoretical study on the reaction mechanism of adenylate kinase by QM/MM method [J]. Plant Journal,2017,61(6):1 067-1 091.
[46] Stitt M,Zeeman S C. Starch turnover: pathways, regulation and role in growth[J]. Current Opinion in Plant Biology,2012,15(3):282-292.
[47] Li Z,Cheng Y,Cui J,et al. Comparative transcriptome analysis reveals carbohydrate and lipid metabolism blocks in Brassica napus L. male sterility induced by the chemical hybridization agent monosulfuron ester sodium[J]. BMC Genomics,2015,16(1):206.
[48] Nakamura Y,Utsumi Y,Sawada T,et al. Characterization of the reactions of starch branching enzymes from rice endosperm[J]. Plant and Cell Physiology,2010,51(50):776-794.
[49] Silver D M,K?tting O,Moorhead G B G. Phosphoglucan phosphatase function sheds light on starch degradation[J]. Trends in Plant Science,2014,19(7):471-478.
[50] Kahar U M,Ng C L,Chan K G,et al. Characterization of a type I pullulanase from anoxybacillus, sp. SK3-4 reveals an unusual substrate hydrolysis[J]. Applied Microbiology & Biotechnology,2016,100(14):6 291-6 307.
[51] Fujita N,Toyosawa Y,Utsumi Y,et al. Characterization of pullulanase (PUL)-deficient mutants of rice (Oryza sativa L.) and the function of PUL on starch biosynthesis in the developing rice endosperm[J]. Journal of Experimental Botany,2009,60(3):1 009-1 023.
[52] Sun W,Zhou Q,Yao Y,et al. Identification of genomic regions and the isoamylase gene for reduced grain chalkiness in rice[J]. PLoS One,2015,10(3):e0122013.
[53] Takemoto-Kuno Y,Mitsueda H,Suzuki K,et al. qAC2, a novel QTL that interacts with Wx, and controls the low amylose content in rice (Oryza sativa L.)[J]. Theoretical and Applied Genetics,2015,128(4):563-573.
[54] Zeng D,Yan M,Wang Y,et al. Du1, encoding a novel Prp1 protein regulates starch biosynthesis through affecting the splicing of Wxb pre-mRNAs in rice (Oryza sativa L.)[J]. Plant Molecular Biology,2007,65:501-509.
[55] Fu F F,Xue H W. Coexpression analysis identifies Rice Starch Regulator 1, a rice AP2/EREBP family transcription factor, as a novel rice starch biosynthesis regulator[J]. Plant Physiology,2010,154(2):927-938.
[56] Wu J,Zhu C, Pang J, et al. OsLOL1, a C2C2-type zinc finger protein, interacts with OsbZIP58 to promote seed germination through the modulation of gibberellin biosynthesis in Oryza sativa[J]. Plant Journal for Cell & Molecular Biology,2015, 80(6):1 118-1 130.
[57] Chen H,Dai X J,Gu Z Y. OsbZIP33 is an ABA-dependent enhancer of drought tolerance in rice[J]. Crop Science,2015, 55(4):1673.
[58] Bojjireddy N,Guzmanhernandez M L,Reinhard N R,et al. EFR3s are palmitoylated plasma membrane proteins that control responsiveness to G protein-coupled receptors[J]. Journal of Cell Science, 2015, 128(1): 118-128.
[59] Juliano B O. Physico-Chemical properties of starch and protein and relation to grain quality and nutritional value of rice[J]. IRRI Rice Breeding,1972: 389-405.
[60] Raubenheimer D, Simpson S J. Nutritional ecology and human health[J]. Annual Review of Nutrition,2016,36(1): 603-626.
[61] She K C, Kusano H , Koizumi K, et al. A novel factor FLOURY ENDOSPERM2 is involved in regulation of rice grain sizeand starch quality[J]. Plant Cell, 22:3 280-3 294.
[62] Ren Y, Wang Y, Liu F, et al. GLUTELIN PRECURSOR ACCUMULATION3 encodes a regulator of post-Golgi vesicular traffic essential for vacuolar protein sorting in rice endosperm[J]. Plant Cell, 2014, 26(1):410-425.
[63] Kawakatsu T, Takaiwa F. Cereal seed storage protein synthesis: fundamental processes for recombinant protein production in cereal grains[J]. Plant Biotechnology Journal, 2010, 8(9): 939-953.
[64] 彭 波, 孫艷芳, 龐瑞華, 等. 水稻種子蛋白質含量遺傳研究進展[J]. 南方農業(yè)學報,2017,48(3):401-407.
[65] Yoon U H, Lee J, Hahn J H, et al. Structural and expression analysis of prolamin genes in Oryza sativa L[J]. Plant Biotechnology Reports, 2012, 6(3):251-262.
[66] Adachi T, Izumi H, Yamada T, et al. Gene structure and expression of rice seed allergenic proteins belonging to the alpha-amylase/trypsin inhibitor family[J]. Plant Molecular Biology,1993,21(2):239-248.
[67] Nakase M, Hotta H, Adachi T, et al. Cloning of the rice seed alpha-globulin-encoding gene: sequence similarity of the 5'-flanking region to those of the genes encoding wheat high-molecular-weight glutenin and barley D hordein[J]. Gene,1996, 170(2):223-226.
[68] Wang Y,Ren Y,Xi L, et al. OsRab5a regulates endomembrane organization and storage protein trafficking in rice endosperm cells[J]. Plant Journal,2010,64(5):812-824.
[69] Kawakatsu T, Yamamoto M P, Touno S M, et al. Compensation and interaction between RISBZ1 and RPBF during grain filling in rice[J]. Plant Journal,2009,59(6):908-920.
[70] Qu L Q, Xing Y P, Liu W X, et al. Expression pattern and activity of six glutelin gene promoters in transgenic rice[J]. Journal of Experimental Botany,2008,59(9):2 417-2 424.
[71] Bundo M,Montesinos L,Izquierdo E, et al. Production of cecropin a antimicrobial peptide in rice seed endosperm[J]. BMC Plant Biology,2014,14(1):102.
[72] Lou J,Liang C,Yue G,et al. QTL mapping of grain quality traits in rice[J]. Journal of Cereal Science,2009,50(2): 145-151.
[73] 彭 波,孫艷芳,王 燦,等. 近紅外光譜技術在主要糧食作物品質研究中的應用[J]. 信陽師范學院學報(自然科學版), 2017, 30(3): 509-516.
[74] Ye G, Liang S, Wan J. QTL mapping of protein content in rice using single chromosome segment substitution lines[J]. Theoretical and Applied Genetics,2010,121(4):741-750.
[75] Liu X L,Wan X Y, Ma X D,et al. Dissecting the genetic basis for the effect of rice chalkiness, amylose content, protein content,and rapid viscosity analyzer profile characteristics on the eating quality of cooked rice using the chromosome segment substitution line population across eight environments[J]. Genome,2011,54(10):64-80.
[76] Tan Y F, Sun M, Xing Y Z, et al. Mapping quantitative trait loci for milling quality, protein content and color characteristics of rice using a recombinant inbred line population derived from an elite rice hybrid[J]. Theoretical and Applied Genetics,2001, 103(7):1 037-1 045.
[92] Birla D S, Malik K, Sainger M, et al. Progress and challenges in improving the nutritional quality of rice (Oryza sativa L.)[J]. Critical Reviews in Food Science and Nutrition,2017,57(11):2 455-2 481.
[93] Zhu X, Galili G. Increased lysine synthesis coupled with a knockout of its catabolism synergistically boosts lysine content and also transregulates the metabolism of other amino acids in Arabidopsis seeds[J]. Plant Cell,2003,15(4):845-853.
[94] Wakasa K,Hasegawa H,Nemoto H,et al. High-level tryptophan accumulation in seeds of transgenic rice and its limited effects on agronomic traits and seed metabolite profile[J]. Journal of Experimental Botany,2006,57(12):3 069-3 078.
[95] Tan H,Liang W,Hu J,et al. MTR1, Encodes a secretory fasciclin glycoprotein required for male reproductive development in rice[J]. Developmental Cell,2012,22(6):1 127-1 137.
[96] Wakasa K,Widholm J M. A 5-methyltryptophan resistant rice mutant,MTR1,selected in tissue culture[J]. Theoretical and Applied Genetics,1987,74(1):49-54.
[97] Wakasa K,Ishihara A. Metabolic engineering of the tryptophan and phenylalanine biosynthetic pathways in rice[J]. Plant Biotechnology,2010,26(5):523-533.
[98] Schmidt F,De Bona F D,Monteiro F A. Sulfur limitation increases nitrate and amino acid pools in tropical forages[J]. Crop and Pasture Science,2013,64(1):1-5.
[99] Kopriva S,Mugford S G,Matthewman C,et al. Plant sulfate assimilation genes: redundancy versus specialization[J]. Plant Cell Reports,2009,28(12):1 769-1 780.
[100] Hooghe P,Escamez S,Trouverie J,et al. Sulphur limitation provokes physiological and leaf proteome changes in oilseed rape that lead to perturbation of sulphur, carbon and oxidative metabolisms[J]. BMC Plant Biology,2013,13(1):23.
[101] Sílvia T, Markus W, Beier M P, et al. Characterization of the serine acetyltransferase gene family of vitis viniferauncovers differences in regulation of OAS synthesis in woody plants[J]. Frontiers in Plant Science, 2015, 6:74.
[102] Darabi M,Izadidarbandi A,Masoudinejad A,et al. Erratum to:bioinformatics study of the 3-hydroxy-3-methylglotaryl-coenzyme a reductase (HMGR) gene in gramineae[J]. Molecular Biology Reports,2012, 39(9):8 925-8 935.
[103] Ying G E, Bai X, Cai H, et al. Genetic engineering for enhancement of methionine in legume plants[J]. Journal of Northeast Agricultural University, 2009, 40(2):127-133.
[104] Shen Y,Jia Q L,Liu M Z,et al. Genome-wide characterization and phylogenetic and expression analyses of the caleosin gene family in soybean, common bean and barrel medic[J]. Archives of Biological Sciences,2016,68(3):575-585.
[105] Nguyen H C,Hoefgen R,Hesse H. Improving the nutritive value of rice seeds:Elevation of cysteine and methionine contents in rice plants by ectopic expression of a bacterial serine acetyltransferase[J]. Journal of Experimental Botany,2012, 63(16):5 991-6 001.
[106] Xu H, Wei Y, Zhu Y, et al. Antisense suppression of LOX3 gene expression in rice endosperm enhances seed longevity[J]. Plant Biotechnology Journal,2015,13(4):526-539.
[107] Goufo P, Kratz S, Rosa E A S, et al. Effect of elevated carbon dioxide concentration on rice quality: nutritive value, color, milling,cooking,and eating qualities[J]. Cereal Chemistry,2014,91:513-521.
[108] Shao Y,Bao J. Polyphenols in whole rice grain: genetic diversity and health benefits[J]. Food Chemistry,2015,180:86-97.
[109] Lado J,Zacarías L,Rodrigo M J,Regulation of carotenoid biosynthesis during fruit development[J]. Subcellular Biochemistry, 2016,79:161-198.
[110] Huang J,Cai M, Long Q,et al. OsLOX2,a rice type I lipoxygenase, confers opposite effects on seed germination and longevity[J]. Transgenic Research,2014,23(4):643-655.
[111] Gayen D,Ali N,Sarkar S N,et al. Down-regulation of lipoxygenase gene reduces degradation of carotenoids of golden rice during storage[J]. Planta,2015,242(1):353-363.
[112] Wysoczański T, Soko?awysoczańska E,P?kala J, et al. Omega-3 fatty acids and their role in central nervous system-a review[J]. Current Medicinal Chemistry,2016,23(8):816-831.
[113] Puaschitz N G,Strand E,Dierkes J,et al. Dietary intake of saturated fat is not associated with risk of coronary events or mortality in patients with established coronary artery disease[J]. Journal of Nutrition, 2015,145(2): 299-305.
[114] Sun Q,Jiang L, Qin Z,et al. Characterization of three novel desaturases involved in the delta-6 desaturation pathways for polyunsaturated fatty acid biosynthesis from phytophthora infestans[J]. Applied Microbiology & Biotechnology,2013, 97(17):7 689-7 697.
[115] Liu H L,Yin Z J,Xiao L,et al. Identification and evaluation of ω-3 fatty acid desaturase genes for hyperfortifying α-linolenic acid in transgenic rice seed[J]. Journal of Experimental Botany,2012,63(8):3 279-3 287.
[116] Chodok P,Cove D J,Quatrano R S,et al. Metabolic engineering and oil supplementation of physcomitrella patens for activation of C22 polyunsaturated fatty acid production[J]. Journal of the American Oil Chemists Society,2012,89(3): 465-476.
[117] Chen Y,Meesapyodsuk D,Qiu X. Transgenic production of omega-3 very long chain polyunsaturated fatty acids in plants: accomplishment and challenge[J]. Biocatalysis and Agricultural Biotechnology,2014,3(1):38-43.
[118] Cheah T W,Ismail I,Sidek N M,et al. Biosynthesis of very long polyunsaturated omega-3 and omega-6 fatty acids in transgenic Japonica rice (Oryza sativa L)[J]. Australian Journal of Crop Science,2013,7(9):1 227-1 234.
[119] Bhattacharya S, Chattopadhyaya B, Koduru L, et al. Heterologous expression of brassica juncea, microsomal ω-3 desaturase gene (BjFad3) improves the nutritionally desirable ω-6: ω-3 fatty acid ratio in rice bran oil[J]. Plant Cell Tissue and Organ Culture,2014,119(1):117-129.
[120] Liu L,Waters D L,Rose T J, et al. Phospholipids in rice: significance in grain quality and health benefits: a review[J]. Food Chemistry,2013,139(1):1 133-1 145.
[121] Choi N,Lee J S,Kwak J,et al. Production of biodiesel from acid oil via a two-step enzymatic transesterification[J]. Journal of Oleo Science,2016,65(11):913-921.
[122] Yin Z J,Liu H L,Dong X B,et al. Increasing α-linolenic acid content in rice bran by embryo-specific expression of ω3/Δ15-desaturase gene[J]. Molecular Breeding,2014,33(4):987-996.
[123] Bogdanov I V,Shenkarev Z O,F(xiàn)inkina E I,et al. A novel lipid transfer protein from the pea pisum sativum: isolation, recombinant expression, solution structure, antifungal activity, lipid binding, and allergenic properties[J]. BMC Plant Biology,2016,16(1):107.
[124] Wang X,Zhou W,Lu Z,et al. A lipid transfer protein,OsLTPL36,is essential for seed development and seed quality in rice[J]. Plant Science,2015,239:200-208.
[125] Biselli C,Bagnaresi P,Cavalluzzo D, et al. Deep sequencing transcriptional fingerprinting of rice kernels for dissecting grain quality traits[J]. BMC Genomics,2015,16:1 091.
[126] Farré G,Blancquaert D,Capell T,et al. Engineering complex metabolic pathways in plants[J]. Annual Review of Plant Biology,2014,65(1):187-223.
[127] Zhang Z, Zhao H, Tang J,et al. A proteomic study on molecular mechanism of poor grain-filling of rice (Oryza sativa L.) Inferior spikelets[J]. PLoS One,2014,9:e89140.
[128] Degenkolbe T,Do P T, Kopka J,et al. Identification of drought tolerance markers in a diverse population of rice cultivars by expression and metabolite profiling[J]. PLoS One,2013,8:e63637.
[129] Maruyama K,Yamaguchi-Shinozaki K. Integrated analysis of the effects of cold and dehydration on rice metabolites, phytohormones,and gene transcripts[J]. Plant Physiology, 2014,164(4):1 759-1 771.
[130] Samanta M K,Dey A,Gayen S. CRISPR/Cas9: an advanced tool for editing plant genomes[J]. Transgenic Research,2016, 25(5):561-573.
[131] Liu H,Ding Y D,Zhou Y Q,et al. CRISPR-P 2.0: an improved CRISPR-Cas9 tool for genome editing in plants[J]. Molecular Plant,2017,10(3):530-532.
[132] Xu R F,Wei P C,Yang J B. Use of CRISPR/Cas genome editing technology for targeted mutagenesis in rice[J]. Methods in Molecular Biology,2017,1498:33-40.
[133] Li X,Zhou W,Ren Y,et al. High-efficiency breeding of early-maturing rice cultivars via CRISPR/Cas9- mediated genome editing[J]. Journal of Genetics and Genomics,2017,44(3):175-178.
[134] Sun Y,Jiao G,Liu Z,et al. Generation of high-amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes[J]. Frontiers in Plant Science,2017,8:298.