王靈站 王立群 王俊梅 于廣海 畢伏龍
(1 內(nèi)蒙古民族大學(xué)醫(yī)學(xué)院人體解剖學(xué)教研室,通遼 028042;2 通遼職業(yè)學(xué)院藥品食品系,通遼 028000)
骨骼肌約占人體質(zhì)量的40%~50%。但在25周歲之后,其總質(zhì)量以每10年3%~10%的速度丟失,逐漸損害人的運(yùn)動功能而降低老年人的生活質(zhì)量[1]。骨骼肌隨年齡增長而發(fā)生的質(zhì)量和功能的進(jìn)行性減退,被稱為骨骼肌減少癥(sarcopenia)[2]。骨骼肌減少癥的形成是多因素共同作用的結(jié)果,衰老、疾病、機(jī)體炎性因子水平異常、細(xì)胞氧化應(yīng)激水平升高、體力活動減少、營養(yǎng)不良、相關(guān)激素分泌不足等諸多因素均參與其中[3]。
大量研究證明,一定數(shù)量和功能正常的線粒體在維持骨骼肌纖維結(jié)構(gòu)和功能的完整性中起核心作用。而隨年齡增長,骨骼肌纖維線粒體的生物合成及肌球蛋白重鏈(肌肉收縮的關(guān)鍵蛋白)等多種蛋白質(zhì)的合成速度均呈下降趨勢[4-5]。同時,通過微點(diǎn)陣分析人、大鼠和猴骨骼肌標(biāo)本內(nèi)的轉(zhuǎn)錄本(transcript)顯示,老年骨骼肌中編碼脂肪酸和線粒體代謝的轉(zhuǎn)錄本較青年期明顯減少[6-8],表明衰老會損害線粒體的功能,而線粒體又可藉線粒體關(guān)聯(lián)膜(mitochondria-associated membrane,MAM)與內(nèi)質(zhì)網(wǎng)(ER)相互聯(lián)系與影響。現(xiàn)總結(jié)文獻(xiàn)中線粒體及內(nèi)質(zhì)網(wǎng)功能變化與骨骼肌減少癥發(fā)生的聯(lián)系,并對二甲雙胍通過線粒體及內(nèi)質(zhì)網(wǎng)干預(yù)骨骼肌減少癥形成的研究情況做一綜述。
線粒體是一個復(fù)雜、多能的細(xì)胞器,其在細(xì)胞內(nèi)的的配布隨線粒體的融合與裂變而發(fā)生變化,該動態(tài)變化可使不同線粒體共享其重要組分,如線粒體DNA(mtDNA),也可移除或降解其受損組分。線粒體融合與裂變的動態(tài)平衡受幾個具有GTP酶活性的蛋白精確調(diào)控:動力相關(guān)蛋白-1 (dynamin-related protein 1,Drp1)和 線粒體裂變因子(mitochondrial fission factor,Mff)管控線粒體裂變,其中,Drp1位于細(xì)胞質(zhì)內(nèi),裂變過程中將與線粒體外膜上的受體蛋白Mff、MID51、MID49以及Fis1結(jié)合;而線粒體融合蛋白-1和-2(mitofusins-1 and -2,Mfn1,Mfn2)及視神經(jīng)萎縮蛋白-1(optic atrophy 1,Opa1)調(diào)控其融合過程,線粒體外膜融合由Mfn1和Mfn2介導(dǎo),其內(nèi)膜融合由Opa1負(fù)責(zé)[9]。Mfn1和Mfn2雙基因敲除小鼠的骨骼肌纖維萎縮明顯,線粒體出現(xiàn)功能障礙,并伴以線粒體代償性增生、mtDNA數(shù)量減少和點(diǎn)突變積累及其基因組缺失[10]。同時,在細(xì)胞凋亡過程中,也伴以線粒體的融合和裂變活動失衡。通過Drp1過表達(dá)或抑制Mfn或/和Opa1,會增加細(xì)胞對凋亡誘導(dǎo)的易感性,同時在應(yīng)激情況下細(xì)胞也更脆弱,提示線粒體裂變可能為細(xì)胞凋亡的前奏[11],尤其對于神經(jīng)元[12]。而Mfn2在神經(jīng)元線粒體的軸突運(yùn)輸和定位中亦不可或缺[13],神經(jīng)元線粒體裂變和融合的平衡失調(diào)與神經(jīng)退行性病變的早期病理變化密切相關(guān)[14]。此外,Mfn2還存在于MAM上。
MAM指線粒體外膜與ER膜距離10~25nm的相對區(qū),藉兩者膜上的脂類和蛋白質(zhì)兩細(xì)胞器于此處橋接。MAM富集鈣轉(zhuǎn)運(yùn)蛋白和離子通道,Ca2+在MAM的雙向流動使線粒體和ER的功能密切相關(guān)。于此,源于ER的信號可經(jīng)Ca2+介導(dǎo)影響線粒體的三羧酸循環(huán)過程和電子傳遞鏈(electron transport chain,ETC)復(fù)合體活性,從而調(diào)控線粒體ATP的產(chǎn)量,而線粒體生成的ATP反過來又可支持ER的蛋白質(zhì)合成。同時,ER通過肌質(zhì)/內(nèi)質(zhì)網(wǎng)上的鈣泵維持細(xì)胞內(nèi)的鈣平衡,并依細(xì)胞的能量需求來調(diào)控線粒體的活動[15,16]。另外,MAM還是線粒體和ER協(xié)同完成諸如自噬、炎性體(inflammasome)生成、受損線粒體清除和啟動細(xì)胞凋亡等活動的平臺。炎性體是一多分子復(fù)合物,負(fù)責(zé)促炎細(xì)胞因子的處理和釋放。其中,調(diào)控IL1和IL18激活的NLRP3(Nod-like receptor 3)首先定位于ER,一旦激活即移位于MAM。而NLRP3的激活物之一即為活性氧(ROS),線粒體和內(nèi)質(zhì)網(wǎng)又恰為細(xì)胞內(nèi)2個主要的ROS產(chǎn)生部位,MAM也就成為ROS富集的特殊場所,炎性體可于此處被活化[17],而炎性細(xì)胞因子水平升高也是促使骨骼肌減少癥發(fā)生的重要誘因之一。此外,ER小管通過ER相關(guān)蛋白inverted formin 2 (INF2)誘導(dǎo)的肌動蛋白聚合作用來調(diào)控線粒體縊痕(constriction)的形成。另外,肌動蛋白聚合作用還可促進(jìn)線粒體外膜上Drp1復(fù)合體的組裝,進(jìn)而誘導(dǎo)線粒體縊痕形成及其最終的裂變,這均說明線粒體和ER互作在線粒體裂變過程中起重要作用[18]。
MAM處的Mfn2可調(diào)控線粒體和ER的互作。在Mfn2基因敲除小鼠胚胎成纖維細(xì)胞,其MAM增加,對鈣超負(fù)載(overload)所致的細(xì)胞死亡易感性增加,提示Mfn2可能作為約束蛋白(tethering protein)的拮抗物,在潛在危害存在的前提下,可阻止2個細(xì)胞器之間的過度關(guān)聯(lián)[19]。而且,Mfn2還可通過PTEN-induced kinase 1 (PINK1)/Parkin信號通路參與激活線粒體自噬(mitophagy)[20]。在健康細(xì)胞,線粒體外膜中的水平很低,Parkin則存在于細(xì)胞質(zhì)內(nèi)。線粒體自噬起始于PINK1在受損線粒體外膜上的積聚,其可磷酸化Mfn2,磷酸化的Mfn2作為激活受體使原位于細(xì)胞質(zhì)內(nèi)的Parkin轉(zhuǎn)位于受損線粒體外膜上。PINK1/Parkin繼而通過蛋白泛素化促進(jìn)線粒體自噬,致受損線粒體碎裂,隨即被microtubule-associated proteins 1 light chain 3 (LC3)介導(dǎo)的自噬體吞食而形成線粒體自噬體(mitophagosome),后者再與溶酶體融合,在核周特定部位形成線粒體自噬溶酶體(mitophagolysosome)[21]。細(xì)胞內(nèi)的LC3有2個亞型:細(xì)胞質(zhì)內(nèi)為LC3-Ⅰ亞型,其磷脂化即形成具有膜結(jié)合特性的LC3-Ⅱ亞型,后者僅存在于自噬體膜上。Parkin在心肌和肝細(xì)胞線粒體的轉(zhuǎn)位過程可受細(xì)胞質(zhì)內(nèi)p53抑制,而在轉(zhuǎn)基因ob/ob小鼠模型(非酒精性脂肪肝模型),二甲雙胍能夠拮抗肝細(xì)胞質(zhì)內(nèi)p53對Parkin的轉(zhuǎn)位抑制作用,加速M(fèi)fn的降解,從而增強(qiáng)促細(xì)胞存活的線粒體自噬功能[22-23],而線粒體自噬也是其在細(xì)胞基本狀態(tài)下完成自身更新所必需的生理過程[24]。線粒體膜電位喪失是其自噬啟動的主要誘因,其自噬可及時移除受損的線粒體并防止過量ROS的產(chǎn)生,該過程除受PINK1/Parkin調(diào)控外,線粒體外膜上的Nix和Bnip3蛋白也參與其中[25-27]。在骨骼肌纖維,線粒體自噬功能障礙可出現(xiàn)氧化應(yīng)激反應(yīng)增強(qiáng)、線粒體功能異常、肌纖維丟失、骨骼肌收縮力量下降和NMJ退變,提示線粒體自噬在維持肌纖維、NMJ及線粒體自身結(jié)構(gòu)和功能完整性中起重要作用[28]。此外,脫神經(jīng)支配的骨骼肌纖維其線粒體內(nèi)ROS明顯增加,并與脫神經(jīng)支配所致的肌纖維萎縮相關(guān)[29]。
衰老對人體基礎(chǔ)蛋白質(zhì)合成與分解沒有明顯影響,但在相同氨基酸飲食和同等運(yùn)動強(qiáng)度下,青年人和老年人的蛋白同化效率卻不同,老年人出現(xiàn)蛋白同化抵抗(anabolic resistance),即蛋白質(zhì)合成能力下降,而內(nèi)質(zhì)網(wǎng)應(yīng)激(endoplasmic reticulum stress,ERs)可通過抑制mTORC1活性而抑制蛋白質(zhì)合成,從而導(dǎo)致蛋白同化抵抗[30]。
ER既是細(xì)胞內(nèi)負(fù)責(zé)蛋白質(zhì)生物合成、折疊、組裝和修飾的細(xì)胞器,又是細(xì)胞內(nèi)Ca2+的主要儲存庫,并負(fù)責(zé)脂肪的合成。ERs指由于ROS、伴侶蛋白水平和Ca2+濃度降低、磷脂耗竭、膽固醇蓄積及葡萄糖剝奪等因素誘發(fā),導(dǎo)致錯誤折疊的蛋白質(zhì)在ER內(nèi)積聚的狀態(tài)[31]。ERs先誘發(fā)未折疊蛋白反應(yīng)(unfolded protein response,UPR),UPR繼而激活3個主要的蛋白降解酶傳感因子:PKR樣ER激酶(PKR-like ER kinase,PERK)、轉(zhuǎn)錄活化因子6(activating transcription factor 6,ATF6)和肌醇依賴酶1α(inositol-requiring enzyme 1,IRE1α)。PERK、ATF6和IRE1α均為內(nèi)質(zhì)網(wǎng)膜上的跨膜轉(zhuǎn)導(dǎo)蛋白,三者的ER腔內(nèi)面結(jié)構(gòu)域感知ER的蛋白折疊情況,細(xì)胞質(zhì)面結(jié)構(gòu)域則與調(diào)控轉(zhuǎn)錄或/和翻譯的分子相關(guān)聯(lián)。正常生理狀態(tài)下,PERK、ATF6和IRE1α的ER腔內(nèi)結(jié)構(gòu)域均與伴侶蛋白免疫球蛋白重鏈結(jié)合蛋白(immunoglobulin heavy-chain binding protein,BiP),又稱葡萄糖相關(guān)蛋白-78(glucose-related protein 78,GRP78)結(jié)合。在內(nèi)質(zhì)網(wǎng)出現(xiàn)UPR時,三者與GRP78分離而激活并分別活化3條信號轉(zhuǎn)導(dǎo)通路,發(fā)揮抑制蛋白質(zhì)翻譯、增強(qiáng)氧化還原反應(yīng)和分子監(jiān)控蛋白生成及上調(diào)蛋白降解酶水平的作用,解離的GRP78則與ER內(nèi)錯誤折疊的蛋白結(jié)合。通常,PERK和ATF6激活的轉(zhuǎn)導(dǎo)通路早于IRE1α,前兩者促使ER發(fā)生針對蛋白折疊錯誤的順應(yīng)性反應(yīng)(adaptational responses),而IRE1α的激活則發(fā)揮雙重作用,既可促細(xì)胞存活,又可促細(xì)胞凋亡。GRP78是內(nèi)質(zhì)網(wǎng)穩(wěn)態(tài)的重要調(diào)節(jié)因子,激活的PERK可磷酰化真核起始因子2α(eukaryotic initiation factor 2,eIF2α),后者通過降低翻譯起始速率而緩解ER的工作負(fù)荷,兩者為內(nèi)質(zhì)網(wǎng)應(yīng)激的重要生物標(biāo)記[32]。但是,持續(xù)的ERs則通過C/EBP 同源蛋白(C/EBP homologous protein,CHOP)和凋亡信號調(diào)節(jié)激酶1(apoptosis signal-regulating kinase-1,ASK1)級聯(lián)而誘導(dǎo)細(xì)胞凋亡[33],脫神經(jīng)支配小鼠骨骼肌CHOP蛋白表達(dá)增加,提示脫神經(jīng)支配可導(dǎo)致肌纖維發(fā)生ERs[34]。此外,ERs還可通過促進(jìn)胞吞作用而加速NMJ處乙酰膽堿受體的降解,從而影響NMJ的穩(wěn)定[35]。而衰老過程中呈現(xiàn)的氧化應(yīng)激水平上升,毒性修飾、錯誤折疊和聚合蛋白蓄積,鈣穩(wěn)態(tài)破壞以及整體水平的蛋白合成障礙,均提示在衰老進(jìn)程中有ERs的參與[36]。
線粒體的生物合成需要PGC-1α(PPAR-γ coactivator-1α)和PGC-1β來協(xié)調(diào)細(xì)胞核內(nèi)和線粒體自身基因組的活動,兩者對于維持線粒體正常功能至關(guān)重要。PGC-1α和PGC-1β雙基因敲除小鼠較PGC-1α或PGC-1β單基因敲除小鼠的運(yùn)動能力下降更顯著,其骨骼肌纖維線粒體出現(xiàn)嚴(yán)重功能障礙,小鼠在運(yùn)動過程中肌糖原儲備迅速耗竭,小鼠過早出現(xiàn)運(yùn)動疲勞[37]。而且,PGC-1α和PGC-1β還可以estrogen-related receptor (ERRα)依賴模式激活Mfn1和Mfn2基因表達(dá),維持線粒體穩(wěn)態(tài)[38],其中PGC-1α還可調(diào)控脫神經(jīng)支配骨骼肌纖維的線粒體自噬[39]。
二甲雙胍一直廣泛用于控制Ⅱ型糖尿病患者的血糖,但其還可以通過抑制線粒體復(fù)合物Ⅰ活性而升高線粒體內(nèi)AMP/ATP比,進(jìn)而誘導(dǎo)AMPK的變構(gòu)激活。AMPK是細(xì)胞能量代謝穩(wěn)態(tài)的關(guān)鍵調(diào)節(jié)因子。在骨骼肌內(nèi),AMPK可通過促進(jìn)葡萄糖轉(zhuǎn)運(yùn)蛋白4(glucose transporter 4,GLUT4)的遷移而增強(qiáng)葡萄糖攝取、脂肪酸氧化和線粒體合成,而且,AMPK依賴性的PGC-1α磷酸化在誘導(dǎo)PGC-1α轉(zhuǎn)錄啟動子和多個PGC-1α目的基因的轉(zhuǎn)錄中均必不可少,從而上調(diào)PGC-1α的表達(dá)和活性[40]。而且,AMPK活化還可抑制不同因素誘導(dǎo)、不同組織細(xì)胞內(nèi)的ERs[41-43]。同時,AMPK還可通過活化peroxisome-proliferator-activated recepto (PPAR)-α/PGC-1α影響線粒體功能及其生物合成[44],并可降低細(xì)胞ROS水平和NADPH氧化酶4的表達(dá)[45]。ROS包括超氧化物、H2O2、過氧亞硝酸鹽、超氧化物、羥自由基等,其生成源于NADPH氧化酶或黃嘌呤氧化酶激活、一氧化氮合酶解偶聯(lián)或線粒體在氧化磷酸化過程中的電子泄漏。由于其不穩(wěn)定性,ROS可損害細(xì)胞內(nèi)的蛋白質(zhì)和脂類,并可能激活細(xì)胞內(nèi)的許多信號通路。細(xì)胞內(nèi)異常的ROS水平亦可損害細(xì)胞器的功能,尤其是線粒體和內(nèi)質(zhì)網(wǎng)。
二甲雙胍可抑制線粒體呼吸鏈復(fù)合物I活性,而復(fù)合物I恰為電子傳遞過程中產(chǎn)生超氧化物的主要環(huán)節(jié),因此可減少ROS的產(chǎn)生。但在神經(jīng)母細(xì)胞瘤細(xì)胞,二甲雙胍卻呈劑量依賴性誘導(dǎo)ROS產(chǎn)生而導(dǎo)致其線粒體功能障礙[46]。另外,在小鼠飼料中添加1.0%(w/w)二甲雙胍的實(shí)驗(yàn)顯示,其可降低腦組織抗氧化通路調(diào)節(jié)因子Nrf2及神經(jīng)營養(yǎng)因子的表達(dá)[47],而Nrf2的低表達(dá)與小鼠壽命縮短相關(guān),但0.1%(w/w)二甲雙胍飼料添加卻可以上調(diào)小鼠肝細(xì)胞Nrf2表達(dá)[48]。磷酸化的Nrf2轉(zhuǎn)入細(xì)胞核,激活抗氧化劑應(yīng)答元件(antioxidant response element,ARE),后者可激活抗氧化劑的基因轉(zhuǎn)錄,如SOD、過氧化氫酶、谷胱甘肽過氧化酶等[49]。由此可見,二甲雙胍的作用具有劑量依賴和組織特異性。研究還表明,實(shí)驗(yàn)小鼠接受二甲雙胍干預(yù)的起始年齡對其壽命延長作用也不同,3月齡干預(yù)小鼠壽命延長最多,9月齡其次,15月齡無延長[50]。
骨骼肌減少癥所呈現(xiàn)的肌纖維萎縮,提示蛋白質(zhì)的合成和分解代謝失衡。蛋白質(zhì)的代謝受多個信號通路影響,其中最為重要的是胰島素對mammalian target of rapamycin (mTOR)/serine/threonine kinase (STK)信號通路的調(diào)控[51]。mTOR包括mTOR complex 1 (mTORC1)和mTOR complex 2 (mTORC2)2個復(fù)合物。mTORC1主要調(diào)控脂類和蛋白質(zhì)的合成及應(yīng)激反應(yīng)通路,如自噬,mTORC1的上游重要調(diào)節(jié)因子為TSC1/TSC2 (tuberous sclerosis 1 and 2),下游被磷酸化底物有S6激酶(S6 kinase,S6K)、eIF4E結(jié)合蛋白(eIF4E binding protein,4EBP)和Unc-51-like kinase 1 (ULK1)。其中,ULK1是自噬的啟動酶,激活的mTORC1通過磷酸化ULK1抑制自噬。此外,活化的mTORC1還可通過磷酸化ULK1的正調(diào)節(jié)分子autophagy-related protein 13 (ATG13)和autophagy/beclin-1 regulator 1 (AMBRA1)而抑制自噬。mTORC2調(diào)節(jié)胰島素信號通路和細(xì)胞骨架的構(gòu)建,下游被磷酸化底物有Akt(即PKB)、protein kinase Cα (PKCα)和serum and glucocorticoid-induced protein kinase (SGK1)[52]。在正常生理狀態(tài)下,有絲分裂原、生長因子、營養(yǎng)素(尤其是氨基酸)等可增強(qiáng)mTOR通路的活動,參與細(xì)胞生長、增殖、發(fā)育、記憶、血管發(fā)生、自噬和免疫應(yīng)答等生理過程,但其過度活化卻與早衰相關(guān),而其活動的輕度抑制則可延長芽殖釀酒酵母菌、黑腹果蠅、Caenorhabditis elegans線蟲和小鼠等實(shí)驗(yàn)動物的壽命。二甲雙胍可通過活化AMPK進(jìn)而磷酸化TSC2或直接磷酸化mTORC1的Raptor亞基抑制mTORC1的激活[53],這一方面抑制蛋白質(zhì)的合成,另一方面可促進(jìn)自噬,兩者的微妙平衡在二甲雙胍干預(yù)的監(jiān)測過程中需格外注意(圖1)。
圖1 二甲雙胍對骨骼肌減少癥的干預(yù)作用
衰老骨骼肌的結(jié)構(gòu)與青年期相比會發(fā)生肌纖維數(shù)量減少、肌纖維萎縮變小以及運(yùn)動單位重組等變化,導(dǎo)致骨骼肌機(jī)能下降。骨骼肌的這種變化使老年人更易并發(fā)其他疾病,容易跌倒以致骨折,嚴(yán)重時直接導(dǎo)致老年人喪失獨(dú)立活動能力。而目前已知能夠延緩骨骼肌減少癥進(jìn)展的有效干預(yù)措施是抗阻運(yùn)動(resistant exercise)和熱量(飲食)限制(caloric restriction or dietary restriction)[54],由于受個體時間、體能、身體健康狀況及飲食習(xí)慣等客觀條件限制,多數(shù)人很難將上述兩個干預(yù)手段持之以恒地付諸實(shí)施。當(dāng)前,我國人口老齡化無論從增長速度還是比重都超過了世界老齡化的平均水平,并已提前進(jìn)入老齡化社會。而且,當(dāng)我國經(jīng)濟(jì)發(fā)展水平尚處于世界中下水平時,老齡化程度卻己進(jìn)入了發(fā)達(dá)國家的行列,呈現(xiàn)“未富先老”的特征,老齡化的加速對經(jīng)濟(jì)、社會都將產(chǎn)生巨大的壓力。因此,探索和研究能夠替代抗阻運(yùn)動和熱量(飲食)限制,延緩骨骼肌減少癥形成的干預(yù)方法具有重要的實(shí)際應(yīng)用價值。
參 考 文 獻(xiàn)
[1] Morley J E,Abbatecola A M,Argiles J M,et al.Sarcopenia with limited mobility:an international consensus[J].J Am Med Dir Assoc,2011,12(6):403-409.
[2] Rosenberg I H.Sarcopenia:origins and clinical relevance[J].J Nutr,1997,127(Suppl 5):990S-991S.
[3] Theou O,Jones G R,Overend T J,et al.An exploration of the association between frailty and muscle fatigue[J].Appl Physiol Nutr Metab,2008,33(4):651-665.
[4] Nair K S.Aging muscle[J].Am J Clin Nutr,2005,81(5):953-963.
[5] Irving B A,Robinson M M,Nair K S.Age effect on myocellular remodeling:response to exercise and nutrition in humans[J].Ageing Res Rev,2012,11(3):374-389.
[6] Melov S,Tarnopolsky M A,Beckman K,et al.Resistance exercise reverses aging in human skeletal muscle[J].PLoS One,2007,2(5):e465.
[7] Kayo T,Allison D B,Weindruch R,et al.Influences of aging and caloric restriction on the transcriptional profile of skeletal muscle from rhesus monkeys[J].Proc Natl Acad Sci U S A,2001,98(9):5093-5098.
[8] Ibebunjo C,Chick J M,Kendall T,et al.Genomic and proteomic profiling reveals reduced mitochondrial function and disruption of the neuromuscular junction driving rat sarcopenia[J].Mol Cell Biol,2013,33(2):194-212.
[9] Pernas L Scorrano L.Mito-morphosis:mitochondrial fusion,fission,and cristae remodeling as key mediators of cellular function[J].Annu Rev Physiol,2016:78:505-531.
[10] Chen H,Vermulst M,Wang Y E,et al.Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations[J].Cell,2010,141(2):280-289.
[11] Frank S,Gaume B,Bergmann-Leitner E S,et al.The role of dynamin-related protein 1,a mediator of mitochondrial fission,in apoptosis[J].Dev Cell,2001,1(4):515-525.
[12] Chiang H,Ohno N,Hsieh Y L,et al.Mitochondrial fission augments capsaicin-induced axonal degeneration[J].Acta Neuropathol,2015,129(1):81-96.
[13] Misko A L,Sasaki Y,Tuck E,et al.Mitofusin 2 mutations disrupt axonal mitochondrial positioning and promote axon degeneration[J].J Neurosci,2012,32(12):4145-4155.
[14] Shirendeb U,Reddy A P,Manczak M,et al.Abnormal mitochondrial dynamics,mitochondrial loss and mutant huntingtin oligomers in Huntington’s disease:implications for selective neuronal damage[J].Hum Mol Genet,2011,20(7):1438-1455.
[15] Bravo R,Gutierrez T,Paredes F,et al.Endoplasmic reticulum:ER stress regulates mitochondrial bioenergetics[J].Int J Biochem Cell Biol,2012,44 (1):16-20.
[16] Szabadkai G,Duchen M R.Mitochondria:the hub of cellular Ca2+signaling[J].Physiology,2008,23:84-94.
[17] Marchi S,Patergnani S,Pinton P.The endoplasmic reticulum-mitochondria connection:one touch,multiple functions[J].Biochim Biophys Acta,2014,1837 (4):461-469.
[18] Korobova F,Ramabhadran V,Higgs H N.An actin-dependent step in mitochondrial fission mediated by the ER-associated formin INF2[J].Science,2013,339 (6118):464-467.
[19] Filadi R,Greotti E,Turacchio G,et al.Mitofusin 2 ablation increases endoplasmic reticulum-mitochondria coupling[J].Proc Natl Acad Sci U S A,2015,112(17):E2174-E2181.
[20] Chen Y,Dorn G W 2nd.PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria[J].Science,2013,340(6131):471-475.
[21] Amadoro G,Corsetti V,Florenzano F,et al.Morphological and bioenergetic demands underlying the mitophagy in post-mitotic neurons:pink-parkin pathway[J].Front Aging Neurosci,2014,6:18.
[22] Hoshino A,Mita Y,Okawa Y,et al.Cytosolic p53 inhibits Parkin-mediated mitophagy and promotes mitochondrial dysfunction in the mouse heart[J].Nat Commun,2013,4:2308.
[23] Song Y M,Lee W K,Lee Y H,et al.Metformin restores parkin-mediated mitophagy,suppressed by cytosolic p53[J].Int J Mol Sci,2016,17(1):E122.
[24] Sandoval H,Thiagarajan P,Dasgupta S K,et al.Essential role for Nix in autophagic maturation of erythroid cells[J].Nature,2008,454(7201):232-235.
[25] Koyano F,Okatsu K,Kosako H,et al.Ubiquitin is phosphorylated by PINK1 to activate parkin[J].Nature,2014,510(7503):162-166.
[26] Lazarou M,Sliter D A,Kane L A,et al.The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy[J].Nature,2015,524(7565):309-314.
[27] Hanna R A,Quinsay M N,Orogo A M,et al.Microtubule-associated protein 1 light chain 3 (LC3) interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy[J].J Biol Chem,2012,287(23):19094-19104.
[28] Carnio S,LoVerso F,Baraibar M A,et al.Autophagy impairment in muscle induces neuromuscular junction degeneration and precocious aging[J].Cell Rep,2014,8(5):1509-1521.
[29] Muller F L,Song W,Jang Y C,et al.Denervation-induced skeletal muscle atrophy is associated with increased mitochondrial ROS production[J].Am J Physiol Regul Integr Comp Physiol,2007,293(3):R1159-R1168.
[30] Breen L,Phillips S M.Interactions between exercise and nutrition to prevent muscle waste during ageing[J].Br J Clin Pharmacol,2013,75(3):708-715.
[31] Cybulsky A V.Endoplasmic reticulum stress in proteinuric kidney disease[J].Kidney Int,2010,77(3):187-193.
[32] Schr?der M,Kaufman R J.ER stress and the unfolded protein response[J].Mutat Res,2005,569(1-2):29-63.
[33] Xu C,Bailly-Maitre B,Reed J C.Endoplasmic reticulum stress:cell life and death decisions[J].J Clin Invest,2005,115(10):2656-2664.
[34] Yu Z,Wang A M,Adachi H,et al.Macroautophagy is regulated by the UPR-mediator CHOP and accentuates the phenotype of SBMA mice[J].PLoS Genetics,2011,7(10):e1002321.
[35] Du A,Huang S,Zhao X,et al.Endoplasmic reticulum stress contributes to acetylcholine receptor degradation by promoting endocytosis in skeletal muscle cells[J].J Neuroimmunol,2016,290:109-114.
[36] Puzianowska-Kuznicka M,Kuznicki J.The ER and ageing II:calcium homeostasis[J].Ageing Res Rev,2009,8(3):160-172.
[37] Zechner C,Lai L,Zechner J F,et al.Total skeletal muscle PGC-1 deficiency uncouples mitochondrial derangements from fiber type determination and insulin sensitivity[J].Cell Metab,2010,12(6):633-642.
[38] Soriano F X,Liesa M,Bach D,et al.Evidence for a mitochondrial regulatory pathway defined by peroxisome proliferator-activated receptor-gamma coactivator-1 alpha,estrogen-related receptor-alpha,and mitofusin 2[J].Diabetes,2006,55(6):1783-1791.
[39] Vainshtein A,Desjardins E M,Armani A,et al.PGC-1α modulates denervation-induced mitophagy in skeletal muscle[J].Skelet Muscle,2015,5:9.
[40] J?ger S,Handschin C,St-Pierre J,et al.AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha[J].Proc Natl Acad Sci U S A,2007,104(29),12017-12022.
[41] Terai K,Hiramoto Y,Masaki M,et al.AMP-activated protein kinase protects cardiomyocytes against hypoxic injury through attenuation of endoplasmic reticulum stress[J].Mol Cell Biol,2005,25(21):9554-9575.
[42] Kim D S,Jeong S K,Kim H R,et al.Metformin regulates palmitate-induced apoptosis and ER stress response in HepG2 liver cells[J].Immunopharmacol Immunotoxicol,2010,32(2):251-257.
[43] Thériault J R,Palmer H J,Pittman D D.Inhibition of the unfolded protein response by metformin in renal proximal tubular epithelial cells[J].Biochem Biophys Res Commun,2011,409(3):500-505.
[44] Suwa M,Egashira T,Nakano H,et al.Metformin increases the PGC-1α protein and oxidative enzyme activities possibly via AMPK phosphorylation in skeletal muscle in vivo[J].J Appl Physiol,2006,101(6):1685-1692.
[45] Jia F,Wu C,Chen Z,et al.AMP-activated protein kinase inhibits homocysteine-induced dysfunction and apoptosis in endothelial progenitor cells[J].Cardiovasc Drugs Ther,2011,25(1):21-29.
[46] Picone P,Nuzzo D,Caruana L,et al.Metformin increases APP expression and processing via oxidative stress,mitochondrial dysfunction and NF-κB activation:use of insulin to attenuate metformin’s effect[J].Biochim Biophys Acta,2015,1853 (5):1046-1059.
[47] Allard J S,Perez E J,Fukui K,et al.Prolonged metformin treatment leads to reduced transcription of Nrf2 and neurotrophic factors without cognitive impairment in older C57BL/6J mice[J].Behav Brain Res,2016,301:1-9.
[48] Martin-Montalvo A,Mercken E M,Mitchell S J,et al.,Metformin improves healthspan and lifespan in mice[J].Nat Commun,2013,4:2192.
[49] Huang H C,Nguyen T,Pickett C B.Phosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant response element-mediated transcription[J].J Biol Chem,2002,277(45):42769-42774.
[50] Anisimov V N,Berstein L M,Popovich I G,et al.If started early in life,metformin treatment increases life span and postpones tumors in female SHR mice[J].Aging (Albany NY),2011,3(2):148-157.
[51] Bonaldo P,Sandri M.Cellular and molecular mechanisms of muscle atrophy[J].Dis Model Mech,2013,6(1):25-39.
[52] Huang K,Fingar D C.Growing knowledge of the mTOR signaling network[J].Semin Cell Dev Biol,2014,36:79-90.
[53] Howell J J,Hellberg K,Turner M,et al.Metformin inhibits hepatic mTORC1 signaling via dose-dependent mechanisms involving AMPK and the TSC complex[J].Cell Metab,2017,25(2):463-471.
[54] Bouchard C,Shephard R J,Stephens T,et al.Exercise,fitness,and health:A consensus statement.[M]//Bouchard C,Shephard R J,Stephens T,et al.(Eds.) Exercise,fitness,and health:A consensus of current knowledge.Champaign: Human Kinetics Books,1990:3-28.