蔣靜云, 劉曉俊
(上海理工大學(xué) 理學(xué)院,上海 200093)
Nevanlinna[1]在1925年建立了復(fù)平面上關(guān)于亞純函數(shù)的第二基本定理。文獻(xiàn)[2]將其推廣到了復(fù)射影空間中的全純曲線上,得到了相應(yīng)的第二基本定理。2006年,Halburd等[3]證明了有窮級(jí)全純映射涉及差分算子的第二基本定理。
2016年,Cao等[4]證明了在中超級(jí)的亞純映射,取逐點(diǎn)處于N-subgeneral位置的超平面
現(xiàn)考慮用周期移動(dòng)超平面代替超平面,得到定理1。
為差分Wronskian行列式。
這里,證明 因?yàn)橐苿?dòng)超平面在中逐點(diǎn)處于N-subgeneral位置,所以,對(duì)任意
參考文獻(xiàn):
[1]NEVANLINNA R. Zur theorie der meromorphen funktionen[J]. Acta Mathematica, 1925, 46(1/2): 1-99.
[2]RU M. Nevanlinna theory and its relation to Diophantine approximation[M]. Singapore: World Scientific, 2001.
[3]HALBURD R G, KORHONEN R J. Nevanlinna theory for the difference operator[J]. Annales Academiae Scientiarum Fennicae: Mathematica, 2006, 31(2): 463-478.
[4]CAO T B, KORHONEN R. A new version of the second main theorem for meromorphic mappings intersecting hyperplanes in several complex variables[J]. Journal of Mathematical Analysis and Applications, 2016, 444(2):1114-1132.
[5]NOCHKA E I. On the theory of meromorphic curves[J].Doklady Akademii Nauk SSSR, 1983, 269(3): 547-552.
[6]HALBURD R, KORHONEN R, TOHGE K. Holomorphic curves with shift-invariant hyperplane preimages[J].Transactions of the American Mathematical Society, 2014,366(8): 4267-4298.
[7]KORHONEN R. A difference Picard theorem for meromorphic functions of several variables[J].Computational Methods and Function Theory, 2012, 12(1):343-361.
[8]HINKKANEN A. A sharp form of Nevanlinna's second fundamental theorem[J]. Inventiones Mathematicae, 1992,108(1): 549-574.
[9]WONG P, LAW H, WONG P P W. A second main theorem on Pn for difference operator[J]. Science in China Series A: Mathematics, 2009, 52(12): 2751-2758.
[10]楊樂. 值分布論及其新研究[M]. 北京: 科學(xué)出版社, 1982.