崔濟(jì)東, 韓小雷,2, 龔渙鈞, 季 靜
(1. 華南理工大學(xué) 土木與交通學(xué)院, 廣東 廣州 510640; 2. 華南理工大學(xué) 亞熱帶建筑科學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室, 廣東 廣州 510640)
柱作為重要的抗側(cè)力構(gòu)件,其變形性能對(duì)建筑結(jié)構(gòu)的整體抗震性能有著重要的影響.我國(guó)《建筑抗震設(shè)計(jì)規(guī)范》(GB 50011—2010)[1]雖然引入了性能化的抗震設(shè)計(jì)思想,但是在構(gòu)件抗震性能評(píng)估上依然采用以承載能力驗(yàn)算為主的評(píng)估方法,構(gòu)件在罕遇地震作用下的變形需求主要由相關(guān)的構(gòu)造措施來保證,并且沒有給出構(gòu)件的變形性能指標(biāo)限值,因此無法進(jìn)行構(gòu)件層次損傷的定量評(píng)估.雖然國(guó)內(nèi)外很多文獻(xiàn)[2-11]對(duì)鋼筋混凝土(RC)柱的變形性能指標(biāo)限值進(jìn)行了研究,但是這些研究成果主要集中在彎控RC柱上,對(duì)RC柱的破壞形態(tài)劃分方法及非彎控RC柱的變形性能指標(biāo)限值研究較少,這些均不利于建立系統(tǒng)的RC柱變形性能指標(biāo)限值體系.
本文基于收集的469個(gè)矩形RC柱試驗(yàn)數(shù)據(jù),對(duì)RC柱的破壞形態(tài)影響因素進(jìn)行分析,并提出RC柱的破壞形態(tài)劃分方法.根據(jù)我國(guó)現(xiàn)行規(guī)范,對(duì)RC柱的性能狀態(tài)進(jìn)行劃分,并基于構(gòu)件的力-位移角骨架曲線的3個(gè)關(guān)鍵性能點(diǎn)(屈服點(diǎn)、承載力退化20%點(diǎn)及喪失承載能力點(diǎn))提出RC柱各性能狀態(tài)變形指標(biāo)限值的統(tǒng)一確定方法.在此基礎(chǔ)上,結(jié)合469個(gè)RC柱試驗(yàn)結(jié)果的回歸分析,建立RC柱的變形性能指標(biāo)限值,并對(duì)該變形性能指標(biāo)限值體系進(jìn)行易損性評(píng)估,檢驗(yàn)變形性能指標(biāo)限值的準(zhǔn)確性、離散性和超越概率.最后,進(jìn)行了11個(gè)RC柱的低周往復(fù)荷載試驗(yàn),利用試驗(yàn)結(jié)果進(jìn)一步對(duì)提出的變形性能指標(biāo)限值進(jìn)行驗(yàn)證.
為進(jìn)行RC柱的變形性能指標(biāo)限值研究,從公開發(fā)表的文獻(xiàn)收集了國(guó)內(nèi)外469個(gè)RC柱試件低周往復(fù)荷載試驗(yàn)數(shù)據(jù),提取了各試件的關(guān)鍵參數(shù)并匯編成數(shù)據(jù)庫(kù).數(shù)據(jù)庫(kù)中所有試件試驗(yàn)過程中位移均為逐級(jí)增大直至試驗(yàn)停止,大部分試件均施加軸壓力,對(duì)于施加軸壓力的試件,整個(gè)試驗(yàn)過程中,軸壓力保持恒定.
數(shù)據(jù)庫(kù)中試件的主要加載模式如圖1所示.圖中,N為試驗(yàn)軸壓力,La為試件的等效懸臂高度,數(shù)據(jù)庫(kù)中記錄的力-位移數(shù)據(jù)為等效懸臂桿件的力V和位移Δ.
a懸臂式b雙曲率式c雙簡(jiǎn)支式
圖1RC柱試件側(cè)向加載模式
Fig.1LateralloadingpatternofRCcolumnspecimen
以下給出該數(shù)據(jù)庫(kù)的數(shù)據(jù)來源及主要參數(shù)分布,如表1所示.其中,fck為混凝土的試驗(yàn)軸心抗壓強(qiáng)度標(biāo)準(zhǔn)值,λ為試件剪跨比,定義為L(zhǎng)a與加載方向柱的截面高度之比,ρt為加載方向柱的面積配箍率,βv為柱的配箍特征值,αβv為柱的有效配箍特征值,n為試驗(yàn)軸壓比,V/fckbh0為名義剪壓比,m為彎剪比.柱的面積配箍率ρt按《混凝土結(jié)構(gòu)設(shè)計(jì)規(guī)范》(GB 50010—2010)[12](以下簡(jiǎn)稱2010《混規(guī)》)的定義計(jì)算,α為有效約束系數(shù),按Mander模型[13]計(jì)算.試驗(yàn)軸壓比n、彎剪比m、名義剪壓比V/fckbh0、配箍特征值βv的計(jì)算式如下所示:
(1)
(2)
(3)
(4)
式中:V為Mn/La和Vn中的較小值;Ac為柱的全截面面積;Mn和Vn分別為按2010《混規(guī)》6.2節(jié)及6.3.12節(jié)計(jì)算的加載方向柱的抗彎和抗剪承載能力,計(jì)算時(shí)鋼筋的強(qiáng)度取試驗(yàn)屈服強(qiáng)度的平均值,混凝土強(qiáng)度取標(biāo)準(zhǔn)值;b為垂直加載方向柱的截面寬度;h0為加載方向柱的有效截面高度;fy為箍筋的實(shí)測(cè)屈服強(qiáng)度平均值;ρv為柱的體積配箍率.
RC柱的破壞形態(tài)通??煞譃閺澢茐?、彎剪破壞和剪切破壞[14],RC柱的破壞形態(tài)不同,其變形能力的影響參數(shù)也不一樣.為此,在進(jìn)行RC柱的變形性能指標(biāo)限值研究前,先對(duì)RC柱的破壞形態(tài)劃分方法進(jìn)行研究.分析收集的469個(gè)RC柱試件的破壞形態(tài)與試件剪跨比λ、試驗(yàn)軸壓比n、彎剪比m、名義剪壓比V/fckbh0、柱的配箍特征值βv、加載方向柱的面積配箍率ρt的關(guān)系,最終確定能夠較好區(qū)分RC柱破壞形態(tài)的主要參數(shù)有剪跨比λ和彎剪比m.總體上,剪跨比越大,構(gòu)件越趨向于彎曲破壞,彎剪比越大,構(gòu)件越趨向于剪切破壞.以剪跨比和彎剪比為參數(shù),提出RC柱的破壞形態(tài)劃分準(zhǔn)則,如表2所示.
表2的劃分準(zhǔn)則與收集的469個(gè)RC柱試件破壞形態(tài)的關(guān)系如圖2所示,詳細(xì)統(tǒng)計(jì)結(jié)果如表3所示.如表3所示,試驗(yàn)發(fā)生彎曲破壞的試件87.15%被劃分為彎控,試驗(yàn)發(fā)生剪切破壞的試件84.62%被劃分為剪控,試驗(yàn)發(fā)生彎剪破壞的試件35.29%被劃分為彎控,37.65%被劃分為彎剪控,27.06%被劃分為剪控.由此可見,表2的RC柱破壞形態(tài)劃分方法合理,對(duì)彎曲破壞及剪切破壞2種破壞機(jī)制截然不同的破壞形態(tài)具有較高的判別率.
圖2 破壞形態(tài)與剪跨比、彎剪比關(guān)系
試件數(shù)量文獻(xiàn)fck/MPaλρt/%nβvαβvmV/fckbh0187[15]17.10~76.321.37~5.430.07~2.170~0.930.02~0.680~0.510.13~2.070.022~0.1754[16]25.07~27.314.320.07~0.280.09~0.100.02~0.060~0.040.46~0.630.033~0.0358[17]10.33~23.375.490.26~0.620.23~0.240.18~0.300.08~0.180.19~0.270.035~0.0442[18]22.69~22.941.85~2.660.13~0.180.12~0.210.070.02~0.031.31~1.340.083~0.1139[19]34.35~37.324.30~4.320.37~0.500.29~0.440.11~0.140.07~0.100.40~0.460.045~0.0482[20]22.80~26.903.230.380.10~0.300.09~0.100.05~0.060.51~0.530.055~0.0564[21]22.42~29.872.31~3.230.710.10~0.300.16~0.220.11~0.150.29~0.540.036~0.0935[22]22.19~23.334.350.45~1.120.350.14~0.360.05~0.170.25~0.440.056~0.0584[23]22.88~29.114.190.70~0.860~0.350.17~0.450.10~0.300.14~0.390.029~0.0584[24]21.58~31.244.15~4.190.34~0.540~0.350.13~0.290.06~0.180.25~0.410.028~0.0824[25]14.363.23~3.240.42~0.690.13~0.620.20~0.270.08~0.100.36~0.440.070~0.08022[26]26.30~50.801.61~2.690.24~0.470.04~0.200.06~0.170.03~0.080.55~0.910.046~0.14124[27]41.911.54~5.820.33~0.660.20~0.490.06~0.130.02~0.060.28~1.240.030~0.1354[28]44.80~47.203.111.66~2.980.46~0.590.31~0.570.15~0.390.37~0.580.114~0.1249[29]56.09~62.193.23~3.270.34~0.950.35~0.510.06~0.130.03~0.080.49~0.900.058~0.07710[30]57.89~72.164.330.55~0.880.34~0.450.17~0.370.11~0.280.24~0.340.042~0.0476[31]56.68~85.332.781.14~1.680.30~0.540.10~0.150.07~0.100.48~0.580.051~0.07111[32]50.98~56.383.07~3.400.25~0.900.32~0.550.03~0.110.01~0.060.68~1.180.058~0.08011[33]23.71~46.441.60~7.550.47~1.350.25~0.630.08~0.300.02~0.140.20~1.030.028~0.14310[34]57.51~73.801.67~2.230.39~1.060.43~0.650.14~0.430.10~0.340.47~0.900.088~0.1176[35]46.141.67~4.460.75~1.340.470.18~0.340.11~0.230.28~0.820.047~0.1244[36]67.574.31~4.361.68~2.680.15~0.230.25~0.400.12~0.250.16~0.300.032~0.0445[37]53.91~68.614.080.68~1.350.22~0.530.12~0.720.08~0.440.12~0.410.039~0.04712[38]51.17~69.623.760.48~1.650.24~0.520.05~0.240.02~0.140.26~0.510.035~0.0434[39]19.99~22.504.30~4.350.29~0.590.350.17~0.380.06~0.260.26~0.400.057~0.0652[40]44.275.010.67~0.840.17~0.430.11~0.140.07~0.090.36~0.380.036~0.0431[41]31.161.631.000.420.300.200.810.1706[42]30.48~31.313.451.42~2.150.18~0.500.37~0.640.24~0.420.24~0.360.067~0.0786[43]32.07~42.533.540.67~1.750.10~0.240.17~0.380.03~0.110.30~0.500.056~0.0772[44]40.63~41.651.620.60~0.800.46~0.470.19~0.240.11~0.160.63~0.730.118~0.1196[45]27.443.570.38~0.750.12~0.490.16~0.320.07~0.210.34~0.510.059~0.0722[46]28.883.910.880.40~0.600.310.230.25~0.270.051~0.0551[47]29.642.490.880.610.250.190.420.0794[48]31.165.20~5.220.40~0.540.30~0.410.15~0.210.05~0.080.33~0.420.043~0.05510[49]32.60~48.154.68~4.690.43~0.790.06~0.080.12~0.260.09~0.190.15~0.250.020~0.04015[50]21.96~24.783.41~3.420.11~0.320.24~0.480.04~0.120.01~0.040.36~0.670.045~0.0571[51]56.192.380.760.420.110.070.700.0752[52]35.64~42.534.36~4.370.650.03~0.040.12~0.150.10~0.120.27~0.370.025~0.0391[53]26.482.730.900.240.420.300.340.0851[54]26.481.910.900.240.420.300.460.1211[55]37.084.000.670.150.170.080.280.0352[56]30.933.280.340.01~0.170.070.010.53~0.720.04~0.0631[57]31.314.430.340.320.090.050.600.06210[58]42.004.690.95~1.560.38~0.470.23~0.380.12~0.270.48~0.700.104~0.1091[59]55.022.130.500.150.070.031.160.0811[60]22.952.550.190.580.160.091.050.11722[7]27.252.52~3.000.60~1.100.35~0.450.17~0.370.07~0.200.39~0.820.083~0.111
表2 RC柱的破壞形態(tài)劃分準(zhǔn)則
表3 RC柱的破壞形態(tài)劃分統(tǒng)計(jì)結(jié)果
我國(guó)《高層建筑混凝土結(jié)構(gòu)技術(shù)規(guī)程》(JGJ 3—2010)[61](以下簡(jiǎn)稱2010《高規(guī)》)將構(gòu)件的損傷狀態(tài)劃分為5個(gè)等級(jí):無損壞、輕微損壞、輕度損壞、中度損壞、較嚴(yán)重?fù)p壞.其中,具有較為明確物理意義的是“無損壞”及“較嚴(yán)重?fù)p壞”狀態(tài).對(duì)于“無損壞”狀態(tài),可以認(rèn)為在該狀態(tài)下,構(gòu)件基本保持彈性,該狀態(tài)的極限為構(gòu)件屈服;對(duì)于“較嚴(yán)重?fù)p壞”狀態(tài),2010《高規(guī)》附錄指出,結(jié)構(gòu)在罕遇地震作用下,滿足第五性能水準(zhǔn)時(shí),有較嚴(yán)重的損壞,但不至于倒塌或發(fā)生危及生命的嚴(yán)重?fù)p壞.由于構(gòu)件的倒塌嚴(yán)重危及生命財(cái)產(chǎn)安全,因此可認(rèn)為“較嚴(yán)重?fù)p壞”狀態(tài)的極限為承載力退化20%,在該狀態(tài)下構(gòu)件未倒塌,仍能承載,未完全失去抗側(cè)力;為方便結(jié)構(gòu)的抗倒塌能力評(píng)估,與文獻(xiàn)[8]的思路類似,在第5個(gè)構(gòu)件損傷狀態(tài)后增加“嚴(yán)重?fù)p壞”狀態(tài)和“倒塌”狀態(tài).其中,構(gòu)件“嚴(yán)重?fù)p壞”狀態(tài)的極限是構(gòu)件喪失承載能力(軸向承載能力或側(cè)向承載能力),發(fā)生倒塌.
課題組前期研究[62]發(fā)現(xiàn),塑性位移角能較好地反映構(gòu)件的破壞程度,為此本文以塑性位移角為變形指標(biāo),將RC柱的抗震性能狀態(tài)劃分為“無損壞”、“輕微損壞”、“輕度損壞”、“中度損壞”、“較嚴(yán)重?fù)p壞”、“嚴(yán)重?fù)p壞”及“倒塌”等7個(gè)等級(jí),并基于構(gòu)件的力-位移角骨架曲線確定各性能狀態(tài)的變形限值,如圖3所示.其中,前6個(gè)性能狀態(tài)的極限對(duì)應(yīng)6個(gè)性能點(diǎn),“無損壞”、“較嚴(yán)重?fù)p壞”及“嚴(yán)重?fù)p壞”是構(gòu)件的3個(gè)關(guān)鍵性能狀態(tài).圖3中,橫坐標(biāo)為懸臂構(gòu)件的位移角,縱坐標(biāo)為構(gòu)件的側(cè)向力,Vmax為峰值承載力,θ1、θ2、θ3、θ4、θ5和θ6分別表示“無損壞”、“輕微損壞”、“輕度損壞”、“中度損壞”、“較嚴(yán)重?fù)p壞”、“嚴(yán)重?fù)p壞”狀態(tài)的總位移角限值.“無損壞”狀態(tài)的位移角限值定義為名義屈服位移角[63-64].
如圖3所示,經(jīng)過原點(diǎn)及0.7Vmax點(diǎn)的割線與過峰值承載力Vmax的水平直線相交于一點(diǎn),從交點(diǎn)處作一豎直線,該豎直線與構(gòu)件的力-位移角骨架曲線的交點(diǎn)即為名義屈服點(diǎn),名義屈服點(diǎn)的位移角θ1即為性能點(diǎn)1的位移角限值.在該狀態(tài)下,構(gòu)件處于基本彈性,受拉縱筋未屈服,產(chǎn)生細(xì)微裂縫,裂縫寬度一般不大于0.5 mm[14].“較嚴(yán)重?fù)p壞”狀態(tài)的位移角限值θ5p取為承載力退化20%的塑性位移角,在該狀態(tài)下,部分構(gòu)件縱筋壓屈或拉斷,箍筋脫鉤失效,混凝土保護(hù)層壓碎嚴(yán)重[14].“嚴(yán)重?fù)p壞”狀態(tài)的位移角限值θ6p取為試件喪失軸向承載能力點(diǎn)的塑性位移角,若構(gòu)件在試驗(yàn)過程中未發(fā)生喪失軸向承載能力破壞或不承受軸向荷載,則取側(cè)向承載能力下降50%點(diǎn)對(duì)應(yīng)的塑性位移角.“輕微損壞”、“輕度損壞”和“中度損壞”的塑性位移角限值分別取為“較嚴(yán)重?fù)p壞”塑性位移角限值的0.25、0.50和0.75倍,相應(yīng)的破壞現(xiàn)象可參考課題組前期試驗(yàn)研究[14].
圖3 RC柱的性能狀態(tài)及位移角限值
將本文RC柱性能狀態(tài)的劃分標(biāo)準(zhǔn)進(jìn)行總結(jié),如表4所示.由表4可知,只需根據(jù)柱的頂點(diǎn)力-位移角骨架曲線獲得“無損壞”、“較嚴(yán)重?fù)p壞”及“嚴(yán)重?fù)p壞”3個(gè)關(guān)鍵性能狀態(tài)的總位移角θ1、θ5和θ6,便可根據(jù)表4的方法獲得6個(gè)性能狀態(tài)的位移角限值.
表4 RC柱各性能狀態(tài)的破壞現(xiàn)象及位移角限值
為建立系統(tǒng)的RC柱變形性能指標(biāo)限值體系,本文采用以下具體步驟:① 選定各性能點(diǎn)位移角限值的目標(biāo)超越概率;② 采用多組不同的參數(shù)對(duì)彎控、彎剪控及剪控RC柱“無損壞”、“較嚴(yán)重?fù)p壞”及“嚴(yán)重?fù)p壞”3個(gè)關(guān)鍵性能狀態(tài)的位移角限值進(jìn)行回歸分析,選取位移角限值的控制參數(shù)及回歸公式;③ 采用易損性分析方法,評(píng)估第②步選定的回歸公式的超越概率,并對(duì)回歸公式進(jìn)行調(diào)整,獲得具有目標(biāo)超越概率的回歸公式,以調(diào)整后的公式初步建立RC柱各性能狀態(tài)的位移角限值;④ 采用易損性分析方法,對(duì)第③步確定的位移角限值進(jìn)行評(píng)估,若位移角限值的超越概率不大于第①步設(shè)定的目標(biāo)超越概率,則位移角限值滿足要求,否則對(duì)位移角限值再次進(jìn)行調(diào)整,直到滿足要求為止.
美國(guó)性能評(píng)估規(guī)范ASCE/SEI 41-13[65]給出的彎控RC梁、柱的變形指標(biāo)體系中,塑性變形參數(shù)a的目標(biāo)超越概率不大于35%,塑性變形參數(shù)b的目標(biāo)超越概率不大于15%.由于塑性變形參數(shù)a與本文性能點(diǎn)5的塑性變形限值概念相似,塑性變形參數(shù)b與本文性能點(diǎn)6的塑性變形限值概念相似,因此本文位移角限值的超越概率統(tǒng)一按以下原則選?。孩?對(duì)于性能1(“無損壞”狀態(tài))的位移角限值,超越概率不大于35%,即保證率不小于65%;② 對(duì)于性能5(“較嚴(yán)重?fù)p壞”狀態(tài))的位移角限值,超越概率不大于35%,即保證率不小于65%;③ 對(duì)于性能6(“嚴(yán)重?fù)p壞”狀態(tài))的位移角限值,超越概率不大于15%,即保證率不小于85%;④ 性能2(“輕微損壞”狀態(tài))、性能3(“輕度損壞”狀態(tài))及性能4(“中度損壞”狀態(tài))的位移角限值按本文第3節(jié)的原則由性能5的位移角限值三等分得到.
根據(jù)表4獲得的469個(gè)RC柱試件“無損壞”、“較嚴(yán)重?fù)p壞”及“嚴(yán)重?fù)p壞”3個(gè)關(guān)鍵性能狀態(tài)的位移角限值θ1、θ5p和θ6p,將469個(gè)柱試驗(yàn)數(shù)據(jù)按表3的劃分準(zhǔn)則分為彎控組、彎剪控組及剪控組,以試驗(yàn)軸壓比n、彎剪比m、名義剪壓比V/fckbh0、柱的配箍特征值βv、柱的有效配箍特征值αβv、加載方向柱的面積配箍率ρt這6個(gè)參數(shù)的不同組合,分別建立彎控組、彎剪控組及剪控組RC柱試件θ1、θ5p和θ6p的回歸公式,并從中選取相關(guān)性最強(qiáng)的回歸公式,用于初步確立RC柱的位移角限值.對(duì)于彎控RC柱,以n、V/fckbh0和αβv為控制參數(shù);對(duì)于彎剪控RC柱,以n、m和ρt為控制參數(shù);對(duì)于剪控RC柱,以n和ρt為控制參數(shù).最終,彎控、彎剪控及剪控RC柱的回歸公式選取如下所示:
(1) 彎控RC柱的位移角限值回歸公式
0.002 4αβv
(5)
0.058 7αβv
(6)
0.084 8αβv
(7)
(2) 彎剪控RC柱的位移角限值回歸公式
θ1=0.008 3-0.007 9n+0.185 8ρt
(8)
θ5p=0.039 6-0.049 7n-0.016 6m+2.829 4ρt
(9)
θ6p=0.048 4-0.058 5n-0.019 5m+3.149 8ρt
(10)
(3) 剪控RC柱的位移角限值回歸公式
θ1=0.006 5-0.005 6n+0.246 3ρt
(11)
θ5p=0.011 5-0.022 4n+2.388 5ρt
(12)
θ6p=0.015 5-0.026 6n+2.978 2ρt
(13)
采用ATC-58[66]建議的易損性分析方法,評(píng)估回歸公式的超越概率,獲得具有目標(biāo)超越概率的回歸公式.具體思路是:根據(jù)表4,確定469個(gè)RC柱試件“無損壞”、“較嚴(yán)重?fù)p壞”及“嚴(yán)重?fù)p壞”性能狀態(tài)的試驗(yàn)位移角限值(試驗(yàn)值),并與按4.2節(jié)選取的各組位移角限值回歸公式計(jì)算的變形限值(計(jì)算值)作比,建立位移角限值的試驗(yàn)值與計(jì)算值比值的累積概率分布曲線,通過累積概率分布和擬合的對(duì)數(shù)正態(tài)分布曲線,可獲得回歸公式的超越概率.若超越概率與目標(biāo)超越概率相差較大,則對(duì)回歸公式進(jìn)行調(diào)整,對(duì)調(diào)整后的公式進(jìn)行同樣的評(píng)估,獲得具有目標(biāo)超越概率的回歸公式.
圖4為彎控RC柱“無損壞”狀態(tài)位移角限值回歸公式的易損性曲線.由圖4可見,按式(5)計(jì)算的θ1的超越概率為57.64%(見圖4a),調(diào)整為0.80倍后超越概率接近目標(biāo)超越概率的35%(見圖4b).按同樣的方法,可獲得其余各組回歸公式的超越概率及調(diào)整后具有目標(biāo)超越概率的回歸公式,如表5所示.
a 1.0倍計(jì)算值
b 0.80倍計(jì)算值
分組不同性能狀態(tài)下超越概率無損壞較嚴(yán)重?fù)p壞嚴(yán)重?fù)p壞彎控組57.64%(式(5))35%(0.80倍式(5))52.44%(式(6))35%(0.80倍式(6))55.55%(式(7))15%(0.70倍式(7))彎剪控組58.56%(式(8))35%(0.83倍式(8))56.01%(式(9))35%(0.87倍式(9))55.93%(式(10))15%(0.71倍式(10))剪控組58.56%(式(11))35%(0.82倍式(11))56.01%(式(12))35%(0.55倍式(12))55.93%(式(13))15%(0.55倍式(13))
利用表5給出的調(diào)整后具有目標(biāo)超越概率的回歸公式建立RC柱的位移角限值,并進(jìn)行調(diào)整,得到最終RC柱的位移角限值,如表6~8所示.表中“無損壞”性能狀態(tài)的位移角限值為總位移角,其余性能狀態(tài)的位移角限值為塑性位移角.
表6 彎控RC柱位移角限值
表7 彎剪控RC柱位移角限值
表8 剪控RC柱位移角限值
為驗(yàn)證表6~8的合理性,進(jìn)行指標(biāo)限值的分組易損性評(píng)估,將收集的469個(gè)RC柱試驗(yàn)數(shù)據(jù)按表3的破壞形態(tài),考慮表6~8中控制參數(shù)(試驗(yàn)軸壓比n、柱的有效配箍特征值αβv、名義剪壓比V/fckbh0、加載方向柱的面積配箍率ρt和彎剪比m)的主要?jiǎng)澐謪^(qū)間,劃分為多個(gè)小組,如表9所示.
表9 RC柱試件分組
由于本文RC柱“輕微損壞”、“輕度損壞”和“中度損壞”的位移角限值是通過均分法得到的,所以本文只對(duì)“無損壞”、“較嚴(yán)重?fù)p壞”和“嚴(yán)重?fù)p壞”3個(gè)關(guān)鍵性能狀態(tài)的位移角限值進(jìn)行評(píng)估.將收集的469個(gè)RC柱試件3個(gè)關(guān)鍵性能狀態(tài)的試驗(yàn)位移角限值與按表6~8計(jì)算的位移角限值相比,比值記作“位移角限值冗余度”.其中,位移角限值的準(zhǔn)確性通過冗余度的平均值評(píng)估,冗余度的平均值越接近1,指標(biāo)限值越準(zhǔn)確;位移角限值的離散性通過冗余度的標(biāo)準(zhǔn)差評(píng)估;位移角限值的超越概率通過易損性分析方法建立的冗余度累積分布曲線及擬合對(duì)數(shù)正態(tài)分布曲線進(jìn)行評(píng)估.表9中各組數(shù)據(jù)位移角限值的評(píng)估結(jié)果如表10所示.需要注意的是,由于部分分組的試件數(shù)量比較小,評(píng)估的超越概率可能不夠合理,這里為了統(tǒng)一,均一并給出.
由表10得到以下結(jié)果:
(1) 彎控組、彎剪控組及剪控組性能狀態(tài)1位移角限值的超越概率不高于35%,且均低于30%,滿足目標(biāo)超越概率要求;彎控組、彎剪控組及剪控組性能狀態(tài)5的塑性位移角限值在全局參數(shù)范圍內(nèi)的超越概率分別為26.65%、16.80%和14.47%,小于35%,除個(gè)別小組的超越概率略大于35%外,大部分小組的超越概率均低于30%,總體上滿足目標(biāo)超越概率要求;彎控組、彎剪控組及剪控組性能狀態(tài)6的塑性位移角限值在全局參數(shù)范圍內(nèi)的超越概率分別為15.55%、13.70%和10.51%,除個(gè)別小組的超越概率略大于15%外,大部分小組的超越概率均低于15%,總體上滿足目標(biāo)超越概率要求.
(2) 彎控組和彎剪控組3個(gè)關(guān)鍵性能狀態(tài)的位移角限值冗余度平均值除個(gè)別小組略大于1.5外,總體均在1.5左右,即位移角限值的計(jì)算值與試驗(yàn)值的比值在0.67左右(1/1.5=0.67),說明本文給出的彎控和彎剪控RC柱的位移角限值比較接近試驗(yàn)值,準(zhǔn)確性較高;剪控組3個(gè)關(guān)鍵性能狀態(tài)的位移角限值冗余度平均值總體在2.0左右,說明本文給出的剪控RC柱的位移角限值偏安全.
(3) 彎控組和彎剪控組3個(gè)關(guān)鍵性能狀態(tài)位移角限值的冗余度標(biāo)準(zhǔn)差在0.5左右,較小,表明本文給出的彎控和彎剪控RC柱的位移角限值離散性較小.剪控組3個(gè)關(guān)鍵性能狀態(tài)位移角限值的冗余度標(biāo)準(zhǔn)差總體在1.0左右,相對(duì)較大.考慮本文剪控RC柱的位移角限值相對(duì)保守,且剪控RC柱位移角限值的超越概率均不高于目標(biāo)超越概率,因此總體上認(rèn)為本文提出的RC柱位移角限值的離散性在可接受范圍內(nèi).
為進(jìn)一步驗(yàn)證本文提出的RC柱位移角限值的合理性,本文考慮表2和表6~8主要參數(shù)的劃分范圍,按不同的試件剪跨比(2.5和4.0)、配箍率(0.14%、0.28%、0.39%和0.78%)和試驗(yàn)軸壓比(0.17、0.34和0.51)設(shè)計(jì)了11個(gè)懸臂RC柱試件,并對(duì)其進(jìn)行低周往復(fù)加載試驗(yàn).試件主要發(fā)生彎剪或彎曲破壞,試件的基本參數(shù)及破壞形態(tài)如表11所示,試件的其他詳細(xì)參數(shù)參見文獻(xiàn)[14].
表11中試件編號(hào)包含試件剪跨比、配箍率及軸壓比信息,如C-2.5-0.14-0.17表示試件剪跨比為2.5,配箍率為0.14%,試驗(yàn)軸壓比為0.17,試驗(yàn)軸壓比按式N/fckAc計(jì)算.
按表6~8計(jì)算11個(gè)RC柱3個(gè)關(guān)鍵性能狀態(tài)(性能狀態(tài)1、性能狀態(tài)5及性能狀態(tài)6)的位移角限值(計(jì)算值)并與根據(jù)試驗(yàn)結(jié)果按表4獲得的位移角限值(試驗(yàn)值)進(jìn)行對(duì)比,結(jié)果如圖5所示,詳細(xì)統(tǒng)計(jì)結(jié)果如表12所示.表12中下標(biāo)“test”表示位移角限值的試驗(yàn)值,下標(biāo)“table”表示位移角限值的計(jì)算值.
表10 RC柱關(guān)鍵性能點(diǎn)位移角限值評(píng)估結(jié)果
表11 RC柱試件主要參數(shù)
圖5 RC柱關(guān)鍵性能狀態(tài)位移角限值計(jì)算值與試驗(yàn)值的比值
Fig.5RatioofcalculatedvaluetotestvalueofRCcolumndriftratiolimitsatkeyperformancestates
由圖5和表12可見,θ1-table/θ1-test、θ5-table/θ5-test及θ6-table/θ6-test的平均值分別為0.60、0.62和0.57,接近于1且小于1,θ1-table/θ1-test、θ5-table/θ5-test及θ6-table/θ6-test的標(biāo)準(zhǔn)差較小,分別為0.13、0.16及0.11,即本文指標(biāo)給出的RC柱3個(gè)關(guān)鍵性能狀態(tài)的位移角限值較接近于真實(shí)值,離散性較小且偏于安全.
表12 位移角計(jì)算值與試驗(yàn)值比值的統(tǒng)計(jì)結(jié)果
(1) 提出以剪跨比和彎剪比為參數(shù)的RC柱破壞形態(tài)劃分方法,該方法判別彎曲破壞及剪切破壞的準(zhǔn)確率分別為87.15%和84.62%.
(2) 將RC柱的抗震性能劃分為“無損壞”、“輕微損壞”、“輕度損壞”、“中度損壞”、“較嚴(yán)重?fù)p壞”、“嚴(yán)重?fù)p壞”及“倒塌”等7個(gè)狀態(tài),并基于構(gòu)件的力-位移角骨架曲線的3個(gè)關(guān)鍵性能點(diǎn)(屈服點(diǎn)、承載力退化20%點(diǎn)及喪失承載能力點(diǎn)),提出RC柱各性能點(diǎn)位移角限值的統(tǒng)一確定方法.
(3) 以軸壓比、名義剪壓比及有效配箍特征值為控制參數(shù)給出彎控RC柱的位移角限值,以軸壓比、彎剪比及配箍率為控制參數(shù)給出彎剪控RC柱的位移角限值,以軸壓比及配箍率為控制參數(shù)給出剪控RC柱的位移角限值,并采用ATC-58建議的易損性分析方法,對(duì)給出的位移角限值進(jìn)行評(píng)估.結(jié)果表明,“無損壞”、“較嚴(yán)重?fù)p壞”及“嚴(yán)重?fù)p壞”3個(gè)關(guān)鍵性能狀態(tài)位移角限值的超越概率總體上分別不大于30%、30%及15%,且位移角限值的準(zhǔn)確性和離散性均在合理范圍內(nèi).
(4) 通過開展的11個(gè)RC柱的擬靜力試驗(yàn),對(duì)本文提出的RC柱位移角限值進(jìn)行驗(yàn)證,結(jié)果表明本文給出的“無損壞”、“較嚴(yán)重?fù)p壞”及“嚴(yán)重?fù)p壞”3個(gè)關(guān)鍵性能狀態(tài)的RC柱位移角限值計(jì)算值與試驗(yàn)值的比值平均在0.60左右,且離散性較小.
參考文獻(xiàn):
[1] 中華人民共和國(guó)住房與城鄉(xiāng)建設(shè)部. GB 50011—2010 建筑抗震設(shè)計(jì)規(guī)范[S]. 北京:中國(guó)建筑工業(yè)出版社, 2010.
Ministry of Housing and Urban-Rural Construction of the People’s Republic of China. GB 50011—2010 Code for seismic design of buildings[S]. Beijing: China Architecture & Building Press, 2010.
[2] SASANI M. Shear strength and deformation capacity models for RC columns[C]∥Proceedings of the 13th World Conference on Earthquake Engineering. Vancouver:[s.n.], 2004.
[3] 蔣歡軍,王斌,呂西林. 鋼筋混凝土梁和柱性能界限狀態(tài)及其變形限值[J]. 建筑結(jié)構(gòu), 2010, 40(1):10.
JIANG Huanjun, WANG Bin, Lü Xilin. Performance limit states and deformation limits of RC beams and columns[J]. Building Structure, 2010, 40(1):10.
[4] ERGUNER K. Analytical examination of performance limits for shear critical reinforced concrete columns[D]. Aakara: Middle East Technical University, 2009.
[5] 熊朝暉,潘德恩. 鋼筋混凝土框架柱側(cè)向變形能力的研究[J]. 地震工程與工程振動(dòng), 2001, 21(2): 103.
XIONG Chaohui, PAN De’en. Study on lateral deformability of reinforced concrete frame columns[J]. Earthquake Engineering and Engineering Vibration, 2001, 21(2): 103.
[6] 蔣歡軍,呂西林. 鋼筋混凝土柱對(duì)應(yīng)于各地震損傷狀態(tài)的側(cè)向變形計(jì)算[J]. 地震工程與工程振動(dòng), 2008, 28(2): 44.
JIANG Huanjun, Lü Xilin. Lateral displacement estimation for RC colums in different seismic damage states[J]. Earthquake Engineering and Engineering Vibration, 2008, 28(2): 44.
[7] 關(guān)柱良. CRB550級(jí)鋼筋約束混凝土柱抗震性能研究[D]. 廣州:華南理工大學(xué), 2011.
GUAN Zhuliang. Seismic behavior of concrete columns with CRB550 stirrups[D]. Guangzhou: South China University of Technology, 2011.
[8] 錢稼茹,馮寶銳. 鋼筋混凝土柱彎矩-轉(zhuǎn)角骨架線特征點(diǎn)及性能點(diǎn)轉(zhuǎn)角研究[J]. 建筑結(jié)構(gòu)學(xué)報(bào), 2014, 35(11): 10.
QIAN Jiaru, FENG Baorui. Study on rotation angles at characteristic point and performance point ofM-θskeleton curve for RC columns[J]. Journal of Building Structures, 2014, 35(11): 10.
[9] TELEMACHOS B, PANAGIOTAKOS M N F. Deformations of reinforced concrete members at yielding and ultimate[J]. ACI Structural Journal, 2001, 98(2): 135.
[10] BISKINIS D, FARDIS M N. Deformations at flexural yielding of members with continuous or lap-spliced bars[J]. Structural Concrete, 2010, 11(3): 127.
[11] BISKINIS D, FARDIS M. Flexure-controlled ultimate deformations of members with continuous or lap-spliced bars[J]. Structural Concrete, 2010, 11(2): 93.
[12] 中華人民共和國(guó)住房與城鄉(xiāng)建設(shè)部. GB 50010—2010 混凝土結(jié)構(gòu)設(shè)計(jì)規(guī)范[S]. 北京:中國(guó)建筑工業(yè)出版社, 2010.
Ministry of Housing and Urban-Rural Construction of the People’s Republic of China. GB 50010—2010 Code for design of concrete structures[S]. Beijing: China Architecture & Building Press, 2010.
[13] MANDER J B, PRIESTLEY M J N, PARK R. Theoretical stress-strain model for confined concrete[J]. Journal of Structural Division, ASCE, 1988, 114(8): 1804.
[14] 龔渙鈞. RC梁、柱構(gòu)件變形性能指標(biāo)限值試驗(yàn)研究[D]. 廣州: 華南理工大學(xué), 2016.
GONG Huanjun. Experimental research on deformation limits of RC beam and column[D]. Guangzhou: South China University of Technology, 2016.
[15] BERRY M, PARRISH M, EBERHARD M. PEER structural performance database user’s manual[R]. Berkeley: Pacific Earthquake Engineering Research Center of University of California, 2004.
[16] ONGSUPANKUL S, KANCHANALAI T, KAWASHIMA K. Behavior of reinforced concrete bridge pier columns subjected to moderate seismic load[J]. Science Asia, 2007, 33(2): 175.
[17] ACUN B. Energy based seismic performance assessment of reinforced concrete columns[D]. Ankara: Middle East Technical University, 2010.
[18] LI B, PHAM T P. Seismic behaviour of RC columns with light transverse reinforcement under different loading directions[J]. ACI Structural Journal, 2013, 110(5): 833.
[19] 錢稼茹,馮寶銳. 不同抗震等級(jí)鋼筋混凝土柱抗震性能試驗(yàn)研究[J]. 建筑結(jié)構(gòu)學(xué)報(bào), 2014, 35(7): 105.
QIAN Jiaru, FENG Baorui. Experimental study on seismic behavior of different seismic grade RC columns[J]. Journal of Building Structures, 2014, 35(7): 105.
[20] 張和平. 鋼筋混凝土柱抗震性能試驗(yàn)及優(yōu)化模擬分析[D]. 重慶: 重慶大學(xué), 2012.
ZHANG Heping. Experiment and optimized modeling on seismic performance of RC column[D]. Chongqing : Chongqing University, 2012.
[21] 李楊. 鋼筋混凝土柱非線性變形分解試驗(yàn)及模擬[D]. 重慶: 重慶大學(xué), 2010.
LI Yang. A simulation and test of nonlinear deformation decomposition in reinforced concrete columns [D]. Chongqing: Chongqing University, 2010.
[22] 劉承文. 箍筋約束對(duì)鋼筋混凝土柱抗震性能影響的試驗(yàn)研究[D]. 重慶:重慶大學(xué), 2010.
LIU Chengwen. Experimental studies on the effect of hoops on seismic behavior of reinforced concrete columns[D]. Chongqing: Chongqing University, 2010.
[23] 姚雷. 鋼筋延性對(duì)柱抗震性能影響的試驗(yàn)研究[D]. 重慶:重慶大學(xué), 2011.
YAO Lei. Experimental studies on the effect of ductility properties of reinforcing steel on seismic behavior of columns[D]. Chongqing: Chongqing University, 2011.
[24] 黃揚(yáng). 鋼筋屈曲對(duì)柱抗震性能影響的試驗(yàn)研究[D]. 重慶: 重慶大學(xué), 2012.
HUANG Yang. Experimental studies on the effect of buckling of reinforcing steel on seismic behavior of columns[D]. Chongqing: Chongqing University, 2012.
[25] 舒平. 鋼筋混凝土框架柱抗震性能試驗(yàn)研究及數(shù)值模擬分析[D]. 合肥: 合肥工業(yè)大學(xué), 2010.
SHU Ping. Experimental study and numerical simulation on seismic performance of reinforced concrete frame columns[D]. Hefei: Hefei University of Technology, 2010.
[26] 孫治國(guó),司炳君,王東升,等. 高強(qiáng)箍筋高強(qiáng)混凝土柱抗震性能研究[J]. 工程力學(xué), 2010, 27(5): 128.
SUN Zhiguo, SI Bingjun, WANG Dongsheng,etal. Research on the seismic performance of high-strength concrete columns with high-strength stirrups[J]. Engineering Mechanics, 2010, 27(5): 128.
[27] 馬穎. 鋼筋混凝土柱地震破壞方式及性能研究[D]. 大連: 大連理工大學(xué), 2012.
MA Ying. Study on failure modes and seismic behavior of reinforced concrete columns[D]. Dalian: Dalian University of Technology, 2012.
[28] 李遠(yuǎn)瑛,張德生. 高軸壓比高強(qiáng)混凝土柱抗震性能試驗(yàn)研究[J]. 地震工程與工程振動(dòng), 2014, 34(1): 172.
LI Yuanying, ZHANG Desheng. Test study on seismic performance of high axial compression ratio and high-strength concrete columns[J]. Earthquake Engineering and Engineering Vibration, 2014, 34 (1): 172.
[29] 王曉鋒. 配置高強(qiáng)鋼筋混凝土框架柱抗震性能研究[D]. 北京: 中國(guó)建筑科學(xué)研究院, 2013.
WANG Xiaofeng. Study on seismic behavior of concrete frame columns with high-yield-strength rebars[D]. Beijing: China Academy of Building Research, 2013.
[30] 史慶軒,楊坤,白力更,等. 高強(qiáng)箍筋約束高強(qiáng)混凝土柱抗震性能試驗(yàn)研究[J]. 土木工程學(xué)報(bào), 2011, 44(12): 9.
SHI Qingxuan, YANG Kun, BAI Ligeng,etal. Experiments on seismic behavior of high-strength concrete columns confined with high-strength stirrups[J]. China Civil Engineering Journal, 2011, 44(12): 9.
[31] 呂西林,張國(guó)軍,陳紹林. 高軸壓比高強(qiáng)混凝土足尺框架柱抗震性能研究[J]. 建筑結(jié)構(gòu)學(xué)報(bào), 2009, 30(3): 20.
Lü Xilin, ZHANG Guojun, CHEN Shaolin. Research on seismic behavior of full-scale high-strength concrete frame columns with high axial compression ratios[J]. Journal of Building Structures, 2009, 30(3): 20.
[32] 葉列平,丁大鈞,程文瀼. 高強(qiáng)砼框架柱抗震性能的試驗(yàn)研究[J]. 建筑結(jié)構(gòu)學(xué)報(bào), 1992, 13(4): 41.
YE Lieping, DING Dajun, CHENG Wenrang. Experimental research on earthquake resistance behavior of high-strength concrete frame columns[J]. Journal of Building Structures, 1992, 13(4): 41.
[33] 張國(guó)軍. 大型火力發(fā)電廠高強(qiáng)混凝土框架柱的抗震性能研究[D]. 西安: 西安建筑科技大學(xué), 2003.
ZHANG Guojun. Research on seismic behavior of high strength reinforced concrete frame columns in large-scale thermal power plants[D]. Xi’an: Xi’an University of Architecture and Technology, 2003.
[34] 史慶軒,楊文星,王秋維,等. 高強(qiáng)箍筋高強(qiáng)混凝土短柱抗震性能試驗(yàn)研究[J]. 建筑結(jié)構(gòu)學(xué)報(bào), 2012, 33(9): 49.
SHI Qingxuan, YANG Wenxing, WANG Qiuwei,etal. Experimental research on seismic behavior of high-strength concrete short columns with high-strength stirrups[J]. Journal of Building Structures, 2012, 33(9): 49.
[35] 史慶軒,王朋,田園,等. 高強(qiáng)箍筋約束高強(qiáng)混凝土短柱抗震性能試驗(yàn)研究[J]. 土木工程學(xué)報(bào), 2014, 47(8): 1.
SHI Qingxuan, WANG Peng, TIAN Yuan,etal. Experimental study on seismic behavior of high-strength concrete short columns confined with high-strength stirrups[J]. China Civil Engineering Journal, 2014, 47(8): 1.
[36] 竇志明. 高強(qiáng)混凝土柱的抗震性能研究[D]. 廣州: 廣州大學(xué), 2012.
DOU Zhiming. Research on seismic performance of high-strength concrete column[D]. Guangzhou: Guangzhou University, 2012.
[37] 陳鑫. 配有高強(qiáng)鋼筋高強(qiáng)混凝土框架結(jié)構(gòu)抗震性能試驗(yàn)研究[D]. 大連: 大連理工大學(xué), 2012.
CHEN Xin. Experimental study on seismic performance of high-strength concrete frame structure reinforced with high-strength rebars[D]. Dalian: Dalian University of Technology, 2012.
[38] 張志遠(yuǎn),蔡紹懷,顧維平. 高強(qiáng)混凝土柱抗震性能與配箍率關(guān)系的試驗(yàn)研究[J]. 建筑科學(xué), 1993(1): 12.
ZHANG Zhiyuan, CAI Shaohuai, GU Weiping. Influence of volumetric ratio of stirrup on a seismatic behavior of high strength concrete columns[J]. Building Science, 1993(1): 12.
[39] 鄧艷青. HRB500鋼筋混凝土柱的抗震性能試驗(yàn)研究[D]. 重慶: 重慶大學(xué), 2010.
DENG Yanqing. Experimental studies on seismic behavior of HRB500 RC columns[D]. Chongqing: Chongqing University, 2010.
[40] 王建. 套筒漿錨連接鋼筋混凝土柱抗震性能試驗(yàn)研究[D]. 西安: 西安建筑科技大學(xué), 2013.
WANG Jian. Experimental research on seismic behavior of reinforced concrete columns assembled by grout-filled sleeve and mechanical connection [D]. Xi’an: Xi’an University of Architecture and Technology, 2013.
[41] 尹齊. 低周往復(fù)荷載作用下混凝土短柱抗剪性能試驗(yàn)研究[D]. 湘潭: 湘潭大學(xué), 2014.
YIN Qi. Experimental study on shear resistance of concrete short columns under low cyclic loading[D]. Xiangtan: Xiangtan University, 2014.
[42] 郭子雄,呂西林. 低周反復(fù)荷載下高軸壓比RC框架柱的研究[J]. 建筑結(jié)構(gòu), 1999(4): 19.
GUO Zixiong, Lü Xilin. Research on RC frame columns with high axial compression ratios under low cyclic loading[J]. Building Structure, 1999(4): 19.
[43] 劉金升,蘇小卒,趙勇. 配500 MPa細(xì)晶鋼筋混凝土柱低周反復(fù)荷載試驗(yàn)[J]. 結(jié)構(gòu)工程師, 2009, 25(3): 135.
LIU Jinsheng, SU Xiaozu, ZHAO Yong. Experiment on concrete columns reinforced with 500 MPa fine-grained rebar under low cycle reversed loading[J]. Structural Engineers, 2009, 25(3): 135.
[44] 劉偉. 鋼筋混凝土構(gòu)造配筋短柱抗震性能研究[D]. 重慶: 重慶大學(xué), 2013.
LIU Wei. Seismic behavior of reinforced concrete short columns with minimum reinforcements [D]. Chongqing: Chongqing University, 2013.
[45] 梁書亭,丁大鈞,陸勤. 鋼筋混凝土復(fù)合配箍柱鉸的延性和抗震耗能試驗(yàn)研究[J]. 工業(yè)建筑, 1994(11): 16.
LIANG Shuting, DING Dajun, LU Qin. Experimental study of earthquake-resistant energy-dissipation and ductility of reinforced concrete column hinge with composite stirrups[J]. Industrial Construction, 1994(11): 16.
[46] 解詠平,賈磊. 高軸壓比鋼筋混凝土柱受力性能試驗(yàn)研究[J]. 建筑結(jié)構(gòu), 2014, 44(15): 61.
XIE Yongping, JIA Lei. Experiment study on the mechanical performance of reinforced concrete columns under high axial compression ratio[J]. Building Structure, 2014, 44(15): 61.
[47] 解詠平,李振寶,杜修力,等. 高軸壓比足尺鋼筋混凝土短柱抗震性能研究[J]. 世界地震工程, 2014, 30(2): 148.
XIE Yongping, LI Zhenbao, DU Xiuli,etal. Seismic behavior of full-scale reinforced concrete short columns with high axial compression ratio[J]. World Earthquake Engineering, 2014, 30(2): 148.
[48] 葛文杰,張繼文,曹大富,等. HRBF500級(jí)鋼筋混凝土柱抗震性能研究[J]. 工程抗震與加固改造, 2014, 36(2): 112.
GE Wenjie, ZHANG Jiwen, CAO Dafu,etal. Study on the seismic behaviour of HRBF500 RC columns[J]. Earthquake Resistant Engineering and Retrofitting, 2014, 36(2): 112.
[49] 蘇俊省,王君杰,王文彪,等. 配置高強(qiáng)鋼筋的混凝土矩形截面柱抗震性能試驗(yàn)研究[J]. 建筑結(jié)構(gòu)學(xué)報(bào), 2014, 35(11): 20.
SU Junsheng, WANG Junjie, WANG Wenbiao,etal. Comparative experimental research on seismic performance of rectangular concrete columns reinforced with high strength steel[J]. Journal of Building Structures, 2014, 35(11): 20.
[50] 白雪霜,王亞勇,戴國(guó)瑩. 不同構(gòu)造條件下鋼筋混凝土框架柱抗震性能試驗(yàn)研究[J]. 工程抗震與加固改造,2012, 34(3): 76.
BAI Xueshuang, WANG Yayong, DAI Guoying. Experimental research on seismic behavior of reinforced concrete columns with different details[J]. Earthquake Resistant Engineering and Retrofitting, 2012, 34(3): 76.
[51] 李惠,王震宇,吳波. 鋼管高強(qiáng)混凝土疊合柱抗震性能與受力機(jī)理的試驗(yàn)研究[J]. 地震工程與工程振動(dòng), 1999, 19(3): 27.
LI Hui, WANG Zhenyu, WU Bo. Experimental research on mechanism and seismic performance of laminated column with steel tube filled with high-strength concrete[J]. Earthquake Engineering and Engineering Vibration, 1999, 19(3): 27.
[52] 何世欽,安雪暉,OBARA T,等. 配置夾式鋼筋的鋼筋混凝土柱抗震性能試驗(yàn)[J]. 中國(guó)公路學(xué)報(bào), 2008, 21(4): 43.
HE Shiqin, AN Xuehui, OBARA T,etal. Experiment on anti-seismic performance of reinforced concrete columns with clip reinforcement[J]. China Journal of Highway and Transport, 2008, 21(4): 43.
[53] 尹海鵬,曹萬林,張亞齊,等. 不同配筋率的再生混凝土柱抗震性能試驗(yàn)研究[J]. 震災(zāi)防御技術(shù), 2010, 5(1): 99.
YIN Haipeng, CAO Wanlin, ZHANG Yaqi,etal. An experimental study on the seismic behavior of recycled concrete columns with different reinforcement ratio[J]. Technology for Earthquake Disaster Prevention, 2010, 5(1): 99.
[54] 張亞齊. 不同配箍率再生混凝土短柱抗震性能試驗(yàn)研究[J]. 建筑結(jié)構(gòu),2011,41(增1): 272.
ZHANG Yaqi. Experimental study on the seismic behavior of recycled concrete short columns with different stirrup ratios[J]. Building Structure, 2011,41(S1): 272.
[55] 白國(guó)良,劉超,趙洪金,等. 再生混凝土框架柱抗震性能試驗(yàn)研究[J]. 地震工程與工程震動(dòng), 2011, 31(1): 61.
BAI Guoliang, LIU Chao, ZHAO Hongjin,etal. Experimental research on seismic behavior of recycled concrete frame columns[J]. Earthquake Engineering and Engineering Vibration, 2011, 31(1): 61.
[56] 盧錦. 再生混凝土受壓構(gòu)件滯回性能試驗(yàn)研究[D]. 哈爾濱: 哈爾濱工業(yè)大學(xué), 2009.
LU Jin. An experimental research on hysteretic behavior of recycled concrete compression member[D]. Harbin: Harbin Institute of Technology, 2009.
[57] 彭有開,吳徽,高全臣. 再生混凝土長(zhǎng)柱的抗震性能試驗(yàn)研究[J]. 東南大學(xué)學(xué)報(bào)(自然科學(xué)版), 2013,43(3): 576.
PENG Youkai, WU Hui, GAO Quanchen. Experimental study on seismic behavior of recycled concrete slender columns[J]. Journal of Southeast University (Natural Science Edition), 2013,43(3): 576.
[58] 張誠(chéng)紫. 高軸壓比下BCCHSS高強(qiáng)混凝土柱抗震性能試驗(yàn)研究[D]. 泉州: 華僑大學(xué), 2014.
ZHANG Chengzi. Test study on seismic behavior of high strength concrete columns with butt-welded closed composite high strength stirrups under high axial compression ratios [D]. Quanzhou: Huaqiao University, 2014.
[59] 鄧明科,張輝,梁興文,等. 高延性纖維混凝土短柱抗震性能試驗(yàn)研究[J]. 建筑結(jié)構(gòu)學(xué)報(bào), 2015, 36(12): 62.
DENG Mingke, ZHANG Hui, LIANG Xingwen,etal. Experimental study on seismic behavior of high ductile fiber reinforced concrete short column[J]. Journal of Building Structures, 2015, 36(12): 62.
[60] 安康. 內(nèi)藏預(yù)制高強(qiáng)鋼管混凝土芯柱組合柱抗震性能試驗(yàn)研究[D]. 西安: 西安建筑科技大學(xué), 2012.
AN Kang. Experimental study on seismic performance of composite column with embedded precast high-strength concrete filled steel tube core column[D]. Xi’an: Xi’an University of Architecture and Technology, 2012.
[61] 中華人民共和國(guó)住房與城鄉(xiāng)建設(shè)部. JGJ 3—2010 高層建筑混凝土結(jié)構(gòu)技術(shù)規(guī)程[S]. 北京:中國(guó)建筑工業(yè)出版社, 2010.
Ministry of Housing and Urban-Rural Construction of the People’s Republic of China. JGJ 3—2010 Technical specification for concrete structures of tall building[S]. Beijing: China Architecture & Building Press, 2010.
[62] 戚永樂. 基于材料應(yīng)變的RC梁、柱及剪力墻構(gòu)件抗震性能指標(biāo)限值研究[D]. 廣州: 華南理工大學(xué), 2012.
QI Yongle. Research on deformation limits of RC beams, columns and shear walls based on material strain[D]. Guangzhou: South China University of Technology, 2012.
[63] SEZEN H, MOEHLE J P. Shear strength model for lightly reinforced concrete columns[J]. Journal of Structural Engineering, 2004, 130(11): 1692.
[64] GHANNOUM W M, MATAMOROS A B. Nonlinear modeling parameters and acceptance criteria for concrete columns[J]. ACI Special Publication, 2014, SP-297(1): 1.
[65] American Society of Civil Engineers. ASCE/SEI 41-13 Seismic evaluation and retrofit of existing buildings[S]. Reston: American Society of Civil Engineers, 2014.
[66] Applied Technology Council. FEMA P-58 Next-generation seismic performance assessment for buildings, Volume 1: methodology[R]. Washington DC: Federal Emergency Management Agency, 2012.