袁瑾懿, 徐曉剛, 胡付品, 郭 燕, 楊 洋, 董 棟, 徐慶慶, 丁百興, 王明貴
肺炎克雷伯菌是臨床最重要的條件致病菌之一,可導(dǎo)致肺部感染、尿路感染、血流感染、化膿性肝膿腫、眼內(nèi)炎、腦膜炎等多種感染性疾病,重則威脅生命[1-2]。其耐藥率逐年升高,尤其多重耐藥菌株日益增多,已成為全球關(guān)注焦點(diǎn)[3]。
多位點(diǎn)序列分型(multilocus sequence typing,MLST)是最常用的細(xì)菌基因分型方法之一,肺炎克雷伯菌的MLST方法最初建立于2005年[4],后被廣泛用于對(duì)肺炎克雷伯菌臨床菌株耐藥性、毒力等的特征分析和分子流行病學(xué)研究[5]。
ST11為我國(guó)肺炎克雷伯菌臨床株中最主要型別,ST15、23和29型等亦多見[6-7]。ST11型肺炎克雷伯菌為常見耐藥克隆,已有產(chǎn)碳青霉烯酶(KPC-2和VIM-1等)、超廣譜β內(nèi)酰胺酶(CTX-M和SHV等)和16S rRNA甲基化酶的ST11型肺炎克雷伯菌在世界各地流行[8-10]。除β內(nèi)酰胺酶和16S rRNA甲基化酶外,ST11型肺炎克雷伯菌還常同時(shí)存在喹諾酮耐藥決定區(qū)(QRDR)突變、并攜帶質(zhì)粒介導(dǎo)喹諾酮耐藥基因,故常呈多重耐藥[11]。ST11型多重耐藥肺炎克雷伯菌近年在中國(guó)廣泛傳播[12-14]。不同于歐美國(guó)家以ST258型為主[15],我國(guó)碳青霉烯類耐藥肺炎克雷伯菌主要為ST11型、其次為ST15型[16-17]。我國(guó)替加環(huán)素耐藥肺炎克雷伯菌株也是以ST11和ST15型為主[18-19]。
為了解復(fù)旦大學(xué)附屬華山醫(yī)院臨床分離肺炎克雷伯菌基本情況,本研究收集2010年本院臨床分離肺炎克雷伯菌112株進(jìn)行耐藥性及分子流行病學(xué)分析,以期對(duì)本院肺炎克雷伯菌耐藥克隆傳播的防控及抗菌治療提供理論依據(jù)。
1.1.1 菌株來(lái)源 連續(xù)收集2010年3-5月我院臨床分離的肺炎克雷伯菌,按常規(guī)方法進(jìn)行菌種鑒定,剔除同一患者同一部位重復(fù)分離菌株,共獲得112株。質(zhì)控菌株大腸埃希菌ATCC 25922為本研究所臨床微生物室保存菌株。
1.1.2 病史資料 采集患者住院期間的病史資料,包括性別、年齡、科室、標(biāo)本來(lái)源和菌株分離時(shí)間等資料。
1.1.3 主要試劑 藥敏試驗(yàn)所用萘啶酸為Sigma-Alorich公司產(chǎn)品(純度≥98%),余抗菌藥物粉劑來(lái)自中國(guó)藥品生物制品檢定所標(biāo)準(zhǔn)品或?qū)φ掌?,PCR相關(guān)試劑均為大連TaKaRa公司產(chǎn)品。
1.2.1 瓊脂稀釋法測(cè)定抗菌藥敏感性 按照美國(guó)臨床與實(shí)驗(yàn)室標(biāo)準(zhǔn)化協(xié)會(huì)(CLSI)文件[20]推薦的瓊脂稀釋法測(cè)定抗菌藥物對(duì)受試菌株的MIC。替加環(huán)素按照美國(guó)FDA規(guī)定的折點(diǎn)(http://www.pfizerpro.com/hcp/tygacil)判定耐藥、中介和敏感,其他抗菌藥物按照2017年CLSI規(guī)定的折點(diǎn)判定(其中萘啶酸和諾氟沙星采用尿液分離菌標(biāo)準(zhǔn))。
1.2.2 MLST 分型根據(jù)http://bigsdb.pasteur.fr/klebsiella/klebsiella.html網(wǎng)站提示設(shè)計(jì)引物并對(duì)部分菌株進(jìn)行PCR擴(kuò)增,產(chǎn)物送杰里生物科技公司測(cè)序,測(cè)序結(jié)果提交該網(wǎng)站進(jìn)行分析,并使用eBURST V3在線軟件(http://eburst.mlst.net/)進(jìn)行聚類分析。
1.2.3 耐藥基因檢測(cè) 參考文獻(xiàn)設(shè)計(jì)引物并對(duì)部分菌株P(guān)CR擴(kuò)增檢測(cè)16S rRNA甲基化酶armA、rmtB、rmtD基因[21]、gyrA和parCQRDR[22]、多重耐藥外排泵oqxAB基因[23]、質(zhì)粒介導(dǎo)喹諾酮耐藥元件qnrA、qnrB、qnrC、qnrD、qnrS、aac(6')-lbcr和qepA基因[24-29]、β內(nèi)酰胺酶基因blaCTX-M1組、2組、9組和8/25/26組[30-31]、blaSHV和blaTEM和碳青霉烯酶blaKPC[32]。
1.2.4 統(tǒng)計(jì)學(xué)方法 采用IBM SPSS statistics 20軟件進(jìn)行統(tǒng)計(jì)分析,計(jì)數(shù)資料組間比較采用χ2檢驗(yàn)或Fisher's exact test,P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
112株肺炎克雷伯菌臨床株主要來(lái)源于痰標(biāo)本(76株,67.9%),19.6%來(lái)源于尿標(biāo)本(22株),血培養(yǎng)(5株)和其他無(wú)菌體液(4株)標(biāo)本共占8.0%。
94.6%(106株)的受試菌株分離自住院患者,共涉及11個(gè)科室,其中老年科(25/106,23.6%)、腦外科(23/106,21.7%)、康復(fù)科(19/106,17.9%)和ICU(12/106,11.3%)為主要科室來(lái)源,綜合病房、普外科、感染科、神經(jīng)內(nèi)科、內(nèi)分泌科、腎內(nèi)科、消化科、骨科等亦有分布。
受試肺炎克雷伯菌對(duì)喹諾酮類耐藥程度高(表 1)。
表1 112株肺炎克雷伯菌臨床株對(duì)常用喹諾酮類的藥敏試驗(yàn)結(jié)果Table 1 Susceptibility profile of 112 K. pneumoniae strains to the commonly used quinolones
受試菌株在環(huán)丙沙星各MIC層均有分布,故根據(jù)該藥MIC分層,選取代表性菌株48株進(jìn)行MLST。選擇菌株包括全部15株環(huán)丙沙星MIC≥128 mg/L菌株、13株MIC≤0.015 mg/L菌株中的9株、以及其間各MIC梯度分別1~4株。
48株肺炎克雷伯菌臨床株進(jìn)行MLST分析,結(jié)果歸為4個(gè)克隆復(fù)合體(CC)、22個(gè)ST型:最常見的為CC1型(均為ST11),CC2~CC4型各含2~3株臨床株,余菌株不屬于任何CC型。值得注意的是,僅次于ST11型(15株),18.8%受試肺炎克雷伯菌為ST494型(9株),余ST型各含1~2株受試株。
環(huán)丙沙星敏感率下降菌株中存在克隆傳播趨勢(shì):CC1(ST 11)、CC4(ST15和ST655)和ST494菌株均對(duì)環(huán)丙沙星不敏感(MIC分別為16~>128 mg/L、4~128 mg/L和2~8 mg/L),以上各ST型菌株共占環(huán)丙沙星不敏感菌株86.2%(25/29)。而19株敏感菌株分屬17個(gè)ST分型,未呈現(xiàn)明顯克隆集中現(xiàn)象。
2.4.1 臨床背景 ST分型共發(fā)現(xiàn)9株ST494型菌株,均分離自不同患者;標(biāo)本來(lái)源于痰(7株)、尿和傷口分泌物;3株分離自同一病區(qū),3株分離自腦外科3個(gè)不同病區(qū),ICU、骨科和腎內(nèi)科各分離1株。
2.4.2 耐藥表型 ST494型菌株對(duì)慶大霉素、萘啶酸、頭孢他啶、頭孢噻肟均耐藥;但對(duì)四環(huán)素、替加環(huán)素均敏感。比較ST494型、ST11型和非ST494/11型3組菌株對(duì)受試常用抗菌藥物的敏感率,結(jié)果有顯著差異:ST11型菌株對(duì)氟喹諾酮類的耐藥率顯著高于ST494型和非ST494/11型菌株;ST11型菌株對(duì)阿米卡星和β內(nèi)酰胺類的耐藥率也高于非ST494/11型菌株、而與ST494型菌株無(wú)明顯差異;ST11型菌株對(duì)替加環(huán)素和四環(huán)素的耐藥率與非ST494/11型無(wú)顯著差異、而對(duì)四環(huán)素的耐藥率高于ST494型菌株(P=0.006);ST494型菌株對(duì)受試氨基糖苷類、喹諾酮類、β內(nèi)酰胺類藥物敏感率均低于非ST494/11菌株(表2)。
表2 ST494型、ST11型與非ST494/11型肺炎克雷伯菌臨床株對(duì)抗菌藥物敏感性Table 2 Susceptibility of K. pneumoniae strains - antimicrobial agents in terms of ST494, ST11 and non-ST494/11
表2(續(xù))Table 2(continued)
2.4.3 耐藥基因 5株對(duì)阿米卡星、慶大霉素高度耐藥(MIC均>256 mg/L)的菌株均攜帶armA基因,9株ST494型菌株均未檢出rmtB、rmtD基因。
9株ST494型肺炎克雷伯菌臨床株gyrA的QRDR均存在單位點(diǎn)突變,其中8株為S83Y、1株為S83I,praC的QRDR未發(fā)現(xiàn)有意義點(diǎn)突變。受檢肺炎克雷伯菌均攜帶多藥外排泵基因oqxAB,根據(jù)既往文獻(xiàn)[23],考慮為染色體攜帶。對(duì)9株ST494型肺炎克雷伯菌進(jìn)行質(zhì)粒介導(dǎo)喹諾酮耐藥基因篩查,其中3株同時(shí)攜帶qnrD和aac(6')-lb-cr基因,1株攜帶aac(6')-lb-cr基因,未檢出qnrA、qnrS、qnrB、qnrC或qepA基因。
9株均同時(shí)攜帶blaCTX-M1組、blaSHV和blaTEM基因,其中2株同時(shí)產(chǎn)blaKPC酶,這2株菌對(duì)哌拉西林-他唑巴坦、美羅培南耐藥。
肺炎克雷伯菌臨床株對(duì)常用抗菌藥耐藥物日益嚴(yán)重,使臨床抗感染治療面臨極大挑戰(zhàn)。我院分離肺炎克雷伯菌臨床株對(duì)環(huán)丙沙星敏感率為28.6%,遠(yuǎn)低于同期CHINET數(shù)據(jù)[33]。經(jīng)MLST分析提示,我院分離環(huán)丙沙星不敏感肺炎克雷伯菌臨床株中存在克隆傳播趨勢(shì):CC1(ST11)、CC4(ST15和ST655)以及ST494菌株共占環(huán)丙沙星不敏感菌株的86.2%。既往報(bào)道ST494型菌株僅在產(chǎn)KPC酶肺炎克雷伯菌臨床株被發(fā)現(xiàn),占受試菌株0.5%(2/378)~5.7%(2/35)[34-35]。而本研究發(fā)現(xiàn)ST494型菌株占受試臨床株18.9%,居于第2位。ST494型成為臨床分離肺炎克雷伯菌主要克隆之一,這一現(xiàn)象為我院特有。這或可解釋我院肺炎克雷伯菌菌株對(duì)氟喹諾酮類敏感率甚低這一現(xiàn)象。當(dāng)然,本研究菌株僅為短期內(nèi)集中收集,可能存在選擇偏倚,有待更大規(guī)模研究佐證。
為了解ST494型菌株對(duì)我院肺炎克雷伯菌臨床株耐藥性影響,對(duì)其進(jìn)行進(jìn)一步分析,發(fā)現(xiàn)除對(duì)替加環(huán)素和四環(huán)素100%敏感、美羅培南敏感率78%外,其對(duì)常用抗菌藥物敏感率均低于50%。ST494型菌株均攜帶blaCTX-M1組、blaSHV和blaTEM等多種β內(nèi)酰胺酶基因,因而對(duì)所有頭孢菌素均耐藥;其中22.2%菌株同時(shí)產(chǎn)KPC酶,導(dǎo)致對(duì)碳青霉烯類耐藥;ST494型菌株均存在gyrA的QRDR單位點(diǎn)突變,均攜帶oqxAB基因,部分?jǐn)y帶qnrD和aac-(6')-lb-cr,導(dǎo)致對(duì)喹諾酮類敏感率下降;對(duì)氨基糖苷類耐藥率高達(dá)56%~100%,產(chǎn)16S rRNA甲基化酶armA是其主因。有意思的是,ST494型肺炎克雷伯菌不僅對(duì)替加環(huán)素均敏感,而且對(duì)四環(huán)素也有很高敏感率,MIC僅2~4 mg/L。
qnrD基因首先在我國(guó)臨床分離沙門菌中被發(fā)現(xiàn)[26],接合轉(zhuǎn)入該基因能使受體菌環(huán)丙沙星MIC提高32倍(從0.002到0.06 mg/L)。qnrD基因多見于沙門菌屬、變形桿菌屬和大腸埃希菌中,檢出率低于qnrA、qnrB或qnrS。檢索PubMed和EMBASE數(shù)據(jù)庫(kù)發(fā)現(xiàn)僅報(bào)道臨床分離肺炎克雷伯菌攜帶qnrD基因2株:其一來(lái)自我國(guó)某醫(yī)院分離人類尿標(biāo)本菌株,同時(shí)攜帶aac(6')-lb-cr基因[36];另一來(lái)自匈牙利某大學(xué)醫(yī)院血培養(yǎng)標(biāo)本,同時(shí)產(chǎn)ESBL[37]。而本研究在ST494型肺炎克雷伯菌中檢出攜帶qnrD肺炎克雷伯菌臨床株3株,陽(yáng)性率高達(dá)33.3%,或?yàn)樵揝T型肺炎克雷伯菌基因特征之一。
ST494型肺炎克雷伯菌臨床株在我院為常見克隆之一,其對(duì)喹諾酮類、頭孢菌素類、氨基糖苷類、碳青霉烯類等多種常用抗菌藥物均有較高耐藥率,或?yàn)槲以悍窝卓死撞R床株對(duì)喹諾酮類高度耐藥的原因之一;但ST494型菌株對(duì)四環(huán)素、替加環(huán)素均敏感,在替加環(huán)素價(jià)格昂貴且無(wú)口服制劑的現(xiàn)狀下,價(jià)格低廉、生物利用度高、可靜脈/口服序貫使用的四環(huán)素類藥物,如多西環(huán)素、米諾環(huán)素,不失為治療肺炎克雷伯菌感染的良好選擇之一。
[1] BROBERG CA, PALACIOS M, MILLER VL.Klebsiella: a long way to go towards understanding this enigmatic jet-setter[J].F1000 Prime Rep, 2014, 6 :64.
[2] SIU LK, YEH KM, LIN JC, et al.Klebsiella pneumoniaeliver abscess: a new invasive syndrome[J]. Lancet Infect Dis, 2012,12(11):881-887.
[3] TZOUVELEKIS LS, MARKOGIANNAKIS A, PSICHOGIOU M, et al. Carbapenemases inKlebsiella pneumoniaeand otherEnterobacteriaceae: an evolving crisis of global dimensions[J].Clin Microbiol Rev, 2012, 25(4):682-707.
[4] DIANCOURT L, PASSET V, VERHOEF J,et al. Multilocus sequence typing ofKlebsiella pneumoniaenosocomial isolates[J].J Clin Microbiol,2005, 43(8):4178-4182.
[5] GUO C, YANG X, WU Y, et al. MLST-based inference of genetic diversity and population structure of clinicalKlebsiella pneumoniae, China[J]. Sci Rep, 2015, 5 : 7612.
[6] XU X,LI X,LUO M, et al. Molecular characterisations of integrons in clinical isolates ofKlebsiella pneumoniaein a Chinese tertiary hospital[J]. Microb Pathog,2017, 104 : 164-170.
[7] XIAO SZ, WANG S, WU WM, et al. The Resistance phenotype and molecular epidemiology ofKlebsiella pneumoniaein bloodstream infections in Shanghai, China, 2012-2015[J]. Front Microbiol, 2017, 8 :250.
[8] HRABáK J, PAPAGIANNITSIS CC, ?TUDENTOVá V,et al. Carbapenemase-producingKlebsiella pneumoniaein the Czech Republic in 2011[J]. Eur Surveill, 2013, 18(45):20626.
[9] HU F, MUNOZ-PRICE LS, DEPASCALE D, et al.Klebsiella pneumoniaesequence type 11 isolate producing RmtG 16S rRNA methyltransferase from a patient in Miami, Florida[J].Antimicrob Agents Chemother, 2014, 58(8):4980-4981.
[10] LI JJ, SHENG ZK, DENG M, et al. Epidemic ofKlebsiella pneumoniaeST11 clone coproducing KPC-2 and 16S rRNA methylase RmtB in a Chinese University Hospital[J]. BMC Infect Dis, 2012, 12 :373.
[11] NAGASAKA Y, KIMURA K, YAMADA K,et al. Genetic profiles of fluoroquinolone-nonsusceptibleKlebsiella pneumoniaeamong cephalosporin-resistantK. pneumonia[J]. Microb Drug Resist, 2015, 21(2):224-233.
[12] BI W, LIU H, DUNSTAN RA, et al. Extensively drugresistantKlebsiella pneumoniaecausing nosocomial bloodstream infections in China: molecular investigation of antibiotic resistance determinants, informing therapy, and clinical outcomes[J]. Front Microbiol, 2017, 8 :1230.
[13] SUN K, CHEN X, LI C, et al. Clonal dissemination of multilocus sequence type 11Klebsiella pneumoniaecarbapenemase-producingK. pneumoniaein a Chinese teaching hospital[J]. Apmis,2015, 123(2):123-127.
[14] JIAO Y, QIN Y, LIU J, et al. Risk factors for carbapenemresistantKlebsiella pneumoniaeinfection/colonization and predictors of mortality: a retrospective study[J]. Pathog Glob Health, 2015, 109(2):68-74.
[15] MUNOZ-PRICE LS1, POIREL L, BONOMO RA, et al.Clinical epidemiology of the global expansion ofKlebsiella pneumoniaecarbapenemases[J]. Lancet Infect Dis, 2013, 13(9):785-796.
[16] QI YAN,WEI ZEQING, JI SHUJUAN, et al. ST11, the dominant clone of KPC-producingKlebsiella pneumoniaein China[J]. J Antimicrob Chemother, 2011, 66(2):307-312.
[17] CHENG L, CAO XL, ZHANG ZF, et al. Clonal dissemination of KPC-2 producingKlebsiella pneumoniaeST11 clone with high prevalence of oqxAB and rmtB in a tertiary hospital in China: results from a 3-year period[J]. Ann Clin Microbiol Antimicrob, 2016,15:1.
[18] ZHONG X, XU H, CHEN D, et al. First emergence of acrAB and oqxAB mediated tigecycline resistance in clinical isolates ofKlebsiella pneumoniaepre-dating the use of tigecycline in a Chinese hospital[J]. PLoS One, 2014, 9(12):e115185.
[19] CHIU SK, CHAN MC, HUANG LY, et al. Tigecycline resistance among carbapenem-resistantKlebsiella Pneumoniae:clinical characteristics and expression levels of efflux pump genes[J]. PLoS One,2017, 12(4): e0175140.
[20] Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing[S]. Twentyseventh informational supplement. CLSI document M100-S25.Wayne, PA : 2017.
[21] ZHOU Y, YU H, GUO Q, et al. Distribution of 16S rRNA methylases among different species of Gram-negative bacilli with high-level resistance to aminoglycosides[J]. Eur J Clin Microbiol Infect Dis, 2010, 29(11):1349-1353.
[22] RODRIGUEZ-MARTINEZ JM, VELASCO C, PASCUAL A,et al. Correlation of quinolone resistance levels and differences in basal and quinolone-induced expression from three qnrA-containing plasmids[J]. Clin Microbiol Infect, 2006, 12(5):440-445.
[23] YUAN J, XU X, GUO Q,et al. Prevalence of the oqxAB gene complex inKlebsiella pneumoniaeandEscherichia coliclinical isolates[J]. J Antimicrob Chemother, 2012, 67(7):1655-1659.
[24] ROBICSEK A, STRAHILEVITZ J, SAHM DF, et al. qnr prevalence in ceftazidime-resistantEnterobacteriaceaeisolates from the United States[J]. Antimicrob Agents Chemother, 2006,50(8):2872-2874.
[25] NOVAIS A, CANTóN R, VALVERDE A, et al. Dissemination and persistence ofblaCTX-M-9 are linked to class 1 integrons containing CR1 associated with defective transposon derivatives from tn402 located in early antibiotic resistance plasmids of IncHI2, IncP1-α, and IncFI groups[J]. Antimicrob Agents Chemother, 2006, 50(8): 2741-2750.
[26] CAVACO LM, HASMAN H, XIA S, et al.qnrD, a novel gene conferring transferable quinolone resistance in salmonella enterica serovar kentucky and bovismorbificans strains of human origin[J]. Antimicrob Agents Chemother, 2009, 53(2): 603-608.
[27] CATTOIR V, POIREL L, ROTIMI V, et al. Multiplex PCR for detection of plasmid-mediated quinolone resistanceqnrgenes in ESBL-producing enterobacterial isolates[J]. J Antimicrob Chemother, 2007, 60(2):394-397.
[28] PARK CH, ROBICSEK A, JACOBY GA, et al. Prevalence in the United States ofaac(6')-Ib-crencoding a ciprofloxacinmodifying enzyme[J]. Antimicrob Agents Chemother, 2006, 50(11):3953-3955.
[29] WANG M, SAHM DF, JACOBY GA, et al. Emerging plasmidmediated quinolone resistance associated with the qnr gene inKlebsiella pneumoniaeclinical isolates in the United States[J].Antimicrob Agents Chemother, 2004, 48(4):1295-1299.
[30] WOODFORD N, FAGAN EJ, ELLINGTON MJ. Multiplex PCR for rapid detection of genes encoding CTX-M extendedspectrum (beta)-lactamases[J]. J Antimicrob Chemother,2006, 57(1):154-155.
[31] PATRICK RM, ELLEN JB, JAMES HJ, et al. Detection and characterization of antimicrobial resistance genes in pathogenic bacteria[M]//KAMILE RASHEED J, FRANKLIN C, FRED TC. Manual of Clinical Microbiology, 9th ed. American Society for Microbiology, Washington DC, 2007 : 1250-1256.
[32] WANG P, CHEN S, GUO Y, et al. Occurrence of false positive results for the detection of carbapenemases in carbapenemasenegativeEscherichia coliandKlebsiella pneumoniaeisolates[J].PLoS One, 2011, 6(10):e26356.
[33] 胡付品,朱德妹,汪復(fù),等. 2010年中國(guó)CHINET細(xì)菌耐藥性監(jiān)測(cè)[J]. 中國(guó)感染與化療雜志,2011,11(5):321-329.
[34] GIAKKOUPI P, PAPAGIANNITSIS CC, MIRIAGOU V,et al. An update of the evolving epidemic ofblaKPC-2-carryingKlebsiella pneumoniaein Greece (2009-10)[J]. J Antimicrob Chemother, 2011, 66(7):1510-1513.
[35] WANG LH, WEI DD, WAN LG, et al. Diversity of the genetic environment of theblaKPC-2 gene amongKlebsiella pneumoniaeclinical isolates in a Chinese hospital[J]. Microb Drug Resist, 2016, 22(1):15-21.
[36] ZHANG S, SUN J, LIAO XP, et al. Prevalence and plasmid characterization of the qnrD determinant inEnterobacteriaceaeisolated from animals, retail meat products, and humans[J].Microb Drug Resist, 2013, 19(4):331-335.
[37] DOMOKOS J, SZABO D, KOCSIS B, et al. Detection of plasmid-mediated quinolone resistance determinants in ESBL producing enterobacteriaceae strains. Acta Microbiologica et Immunologica Hungarica[C]. Conference: 17th International Congress of the Hungarian Society for Microbiology.Budapest Hungary. Conference Publication: (var. pagings),2015:145.