王子騰,耿元波
(1 中國科學院地理科學與資源研究所,北京 100101;2 中國科學院大學,北京 100049)
鋅 (Zn) 是人體必需的微量營養(yǎng)元素,對人體健康至關重要,是僅次于鐵的第二大微量元素[1]。研究表明,缺Zn嚴重危害人體健康,會影響人體正常發(fā)育[2–3];使人體更易受到致病菌的入侵,更易患病[4];降低人體耐受氧化脅迫的能力[5]。例如在中東地區(qū),由于缺Zn而導致的侏儒癥患者都于25歲之前死于并發(fā)的感染[6]。研究發(fā)現(xiàn),成年人每天需要通過飲食攝入15~25 mg的Zn,兒童需要5~7 mg,糧食作物可食部分的Zn含量要達到40~50 mg/kg才能滿足人體正常生命活動的需求[7–8]。據(jù)此,世界上約一半人口飲食中Zn的攝入不足[9]。在發(fā)展中國家,糧食作物是主要的食物來源,但是糧食作物的可食部分Zn含量普遍比較低,尤其是種植在缺Zn土壤中[10]。據(jù)統(tǒng)計,全球至少60%的耕地土壤Zn等微量元素含量不足,50%的人口健康受到影響[11]。目前,農(nóng)業(yè)生產(chǎn)上主要通過施用Zn肥的方式來提高糧食作物可食部分的Zn含量,但是施用的Zn肥其表觀利用率都不高,尤其是施加到土壤中的無機Zn肥受到土壤理化性質(zhì) (如pH、有機質(zhì)含量等) 的影響,有效性普遍比較低[12–13]。此外,施Zn肥增加了農(nóng)戶的成本,如果沒有產(chǎn)量優(yōu)勢或者不能降低成本將很難大面積推廣[14]。本文擬探討主要糧食作物的產(chǎn)量、籽粒部分的Zn含量、Zn分配對Zn肥施用的響應,發(fā)現(xiàn)問題并提出切實可行的改善措施,展望研究前景,為今后的相關研究提供理論依據(jù)。
糧食作物主要是指小麥、水稻、玉米等農(nóng)作物。小麥大約占糧食總產(chǎn)量的30%[15],小麥籽粒中的Zn含量在20~30 mg/kg之間,美國、北歐等發(fā)達國家小麥籽粒的平均Zn含量為28.7 mg/kg左右[16],中國的在24~33 mg/kg之間[17],在發(fā)展中國家由于土壤缺Zn,加上農(nóng)戶不注重Zn肥的施用,小麥籽粒的Zn含量會低至 7~11 mg/kg之間[18];水稻供給了全球人口21%的能量與蛋白質(zhì),90%的水稻種植在東亞、南亞、東南亞等發(fā)展中國家[19],水稻籽粒的Zn含量在20 mg/kg左右[20–21];玉米是繼小麥、水稻之后人類最主要的食物,在非洲的一些國家,如埃及和南非等,玉米是主要的食物來源,即使在發(fā)達國家,玉米也是日常食物中不可或缺的一部分[20],玉米籽粒的Zn含量約為20 mg/kg左右[22],在缺Zn土壤中,會低至13 mg/kg左右[23],不同國家主要糧食作物籽粒Zn含量詳細數(shù)據(jù)見表1。通過分析可以看出,主要糧食作物籽粒部分的Zn含量普遍低于40~50 mg/kg,達不到人體對Zn元素的需求。
造成糧食作物Zn含量不足的原因主要有兩方面:一方面是糧食作物對于土壤Zn含量的變化非常敏感,其產(chǎn)量與品質(zhì)易受到土壤缺Zn的影響[24];另一方面是用于種植糧食作物的耕地,微量營養(yǎng)元素Zn普遍缺乏[25]。據(jù)估計目前占全球50%的用于種植糧食作物的耕地缺Zn[26–27],Zn的有效性也比較低[28],從而導致糧食作物可食部分的Zn含量普遍不足,并且這種情況在發(fā)展中國家呈惡化趨勢[29]。此外,糧食作物中植酸的含量比較高,植酸可以與Zn在胃腸道形成絡合物或者沉淀,從而影響人體對于Zn的吸收[30–31]。研究發(fā)現(xiàn),如果飲食中P∶Zn <12,則認為基本上不會存在Zn攝入不足的情況;如果飲食中P∶Zn > 18,則認為人體Zn攝入不足[32]。簡言之,以糧食作物為主食的人較易出現(xiàn)缺Zn狀況,目前主要利用補施Zn肥這一農(nóng)藝措施來提高糧食作物的Zn含量,如土施Zn肥、葉面噴施Zn肥等。
表 1 不同國家主要糧食作物籽粒Zn含量 (mg/kg, DW)Table 1 Zn contents of main food crops in different countries
主要糧食作物小麥、水稻和玉米的產(chǎn)量會因為土壤缺Zn而顯著下降,補施Zn肥后其產(chǎn)量會明顯提升[83–84]。因為Zn不僅是葉綠體的組成成分[85],而且會對碳酸酐酶 (催化光合作用過程中可逆的CO2水合反應) 的活性產(chǎn)生影響[86],所以缺Zn會導致葉綠體合成受阻,碳酸酐酶活性降低,光合速率下降,最終使農(nóng)作物減產(chǎn)。對于小麥來講,不同的Zn肥施用方式均可以增加小麥產(chǎn)量 (圖1)。如Yilmaz等[87]研究發(fā)現(xiàn),在缺Zn土壤中,小麥產(chǎn)量很低,不同的補施Zn肥措施均可以顯著提高其產(chǎn)量,在土施Zn肥措施下,小麥的產(chǎn)量最高,達到了2042 kg/hm2,與不施Zn肥相比產(chǎn)量提高了262%,與葉噴Zn肥相比提高了約63%。葉噴Zn肥的增產(chǎn)效果顯著低于土施Zn肥,一方面是由于在本研究中土施Zn肥的施Zn量為23 kg/hm2,而葉噴Zn肥為440 g/hm2,施用量差異極大;另一方面是由于根系Zn的吸收對于小麥的增產(chǎn)效果要優(yōu)于葉噴Zn肥[88]。然而也有研究發(fā)現(xiàn),補施Zn肥后小麥的產(chǎn)量與不施Zn肥相比沒有顯著差異[89]。這種結(jié)果可能是由土壤Zn含量所決定的,例如Yilmaz等的研究區(qū)域,農(nóng)田土壤有效Zn含量為0.12 mg/kg,顯著低于農(nóng)田土壤缺Zn臨界值0.5 mg/kg[90],屬于極度缺Zn土壤,已經(jīng)對小麥產(chǎn)量造成了顯著的減產(chǎn)效應,補施Zn肥后,小麥產(chǎn)量顯著提高,這與郝明德等[91]18年長期施用Zn肥的研究一致,補施Zn肥后小麥有明顯的增產(chǎn)效應;然而也有一些研究區(qū)域,農(nóng)田土壤有效Zn含量雖然不高,但是并沒有達到使小麥減產(chǎn)的水平,因而補施Zn肥后并沒有明顯的增產(chǎn)效果[92]。與小麥一樣,有研究表明補施Zn肥對于水稻有明顯的增產(chǎn)作用 (圖2),從圖2中可以看出,水稻產(chǎn)量隨著施Zn量的增加先上升后下降。產(chǎn)量下降是由于過量的
Zn會對水稻產(chǎn)生毒害作用[93–94],例如Kumar等[95]研究發(fā)現(xiàn),過量的Zn會降低水稻Fe和Ca等元素的吸收量,并降低產(chǎn)量。然而,也有研究表明施用Zn肥后,水稻產(chǎn)量變化不顯著[40],造成這種現(xiàn)象的原因與小麥類似,所選取的試驗地農(nóng)田土壤有效Zn的背景值比較高,Zn不是作物生長的限制因子。此外,馮緒猛等[96]研究發(fā)現(xiàn),與小麥一樣,土施Zn肥的水稻籽粒產(chǎn)量明顯高于葉噴Zn肥,說明土施Zn肥的增產(chǎn)效果要優(yōu)于葉噴Zn肥。對于玉米來講,補施Zn肥也會顯著增加其產(chǎn)量,尤其是在缺Zn土壤中[41,79]。Liu等[48]研究發(fā)現(xiàn),玉米產(chǎn)量會隨著施Zn量的增加先上升,后趨于平穩(wěn),說明在施Zn超過一定量之后,Zn將不再是玉米生長的限制因子,增加施Zn量對于玉米就沒有顯著的增產(chǎn)作用 (圖3)。與小麥、水稻不同的是,以往的研究[41,48,78–79,97]都表明玉米產(chǎn)量會隨著施Zn量的增加而增加,一方面是因為玉米對于Zn肥的響應很高,產(chǎn)量潛力很大[98],另一方面可能是由于被研究的用于種植玉米的農(nóng)田土壤嚴重缺Zn,Zn已成為玉米產(chǎn)量的主要限制因子之一。
圖 1 不同施Zn肥處理對小麥產(chǎn)量的影響Fig. 1 Effects of different Zn application methods on wheat yields
圖 2 不同施鋅量對水稻產(chǎn)量的影響Fig. 2 Effects of Zn application rates on rice yields
圖 3 不同施鋅量對玉米產(chǎn)量的影響[48]Fig. 3 Effects of different Zn application rates on maize yields[48]
補施Zn肥對于提高小麥籽粒的Zn含量有明顯的效果[104],產(chǎn)量與品質(zhì)得到明顯改善。Maqsood等[105]研究發(fā)現(xiàn),土施Zn肥后,小麥籽粒的Zn含量由34.9 mg/kg增加到69.93 mg/kg,這與陸新春等[106]、曹玉賢等[107]、Yilmaz等[87]的研究結(jié)果基本一致,土施Zn肥可明顯提高小麥籽粒的Zn含量。Wojtkowiak等[108]研究發(fā)現(xiàn),土壤有效Zn含量與小麥籽粒Zn含量之間的決定系數(shù)達到了0.9105,存在極顯著的相關關系。但是直接向土壤中施用Zn肥會受到土壤理化性質(zhì)的影響[109–110],Zn的利用效率比較低,例如土壤中磷酸鹽含量會顯著影響Zn的有效性,研究發(fā)現(xiàn)土壤中磷酸鹽含量越高,被土壤吸附固定的Zn就越多[111]。葉噴Zn肥可以顯著提高Zn的表觀利用率,并且葉噴Zn肥處理下的小麥Zn含量也明顯高于土施Zn肥[112]。Zheng等[39]在7個國家的23個試驗點進行了相關研究,發(fā)現(xiàn)葉噴Zn肥均顯著提高了Zn在小麥籽粒中的含量,平均增幅為84%,而土施Zn肥僅為12%,Kutman等[113]和Cakmak等[100]也有類似的研究結(jié)果。Zheng等[39]在研究中還發(fā)現(xiàn),不同的小麥品種對于Zn肥的響應存在差別,小麥籽粒中Zn含量在30~60 mg/kg之間不等,因此在品種的選擇上要優(yōu)先考慮對于Zn肥響應較高的類型,提高Zn肥利用率。此外,元素之間存在競爭或者協(xié)同的作用,例如,Stepien等[67]研究發(fā)現(xiàn),與只施Zn肥相比,同時用含有Cu、Zn、Mn的微肥葉噴小麥能夠最大幅度的提高小麥籽粒的Zn含量,說明其他微量元素的補充促進了小麥對于Zn的吸收與富集。Zhang等[114]研究發(fā)現(xiàn),施肥過程中P與Zn會有拮抗作用,在一定量之后,Zn在小麥籽粒中的含量會隨著P的增加而逐漸降低。買文選等[115]通過研究發(fā)現(xiàn),補施Zn肥會降低小麥籽粒的植酸含量,提高小麥籽粒中Zn的生物有效性。雖然葉噴Zn肥可以顯著提高小麥籽粒中的Zn含量,但是葉噴Zn肥增加了小麥種植的成本,增產(chǎn)效益也不如土施Zn肥,所以需要去降低施肥成本,增加收益。研究發(fā)現(xiàn)小麥種植為防治病蟲災害 (如蚜蟲),需要噴灑農(nóng)藥[116],Ram等[38]通過田間試驗發(fā)現(xiàn),將Zn肥和農(nóng)藥一起葉噴與只噴Zn肥相比,小麥籽粒中的Zn含量無顯著差異。研究還發(fā)現(xiàn),將農(nóng)藥與Zn肥一次性葉噴到小麥上與分兩次相比,每公頃小麥的凈收入增加了118美元,例如中國作為主要的小麥種植國家,種植面積達到了2400萬公頃,則每年農(nóng)民的凈收入可以增加接近29億美元[117]。
通過土施Zn肥,稻田施Zn量在2.5、5.5、7.5 kg/hm2的情況下與不施Zn肥相比,水稻籽粒Zn含量分別提高了0.9%、8.5%、16.4%[27]。Zn在水稻中的富集量明顯提高,但是要使水稻中的Zn含量達到要求,至少施用Zn肥 (以ZnSO4·7H2O計)25 kg/hm2,這對于農(nóng)戶來講,生產(chǎn)成本很高,很難實現(xiàn)[118]。Shivay 等[44]將包膜尿素 (含 ZnSO4·7H2O) 土施到土壤中,在低施用量 (0.5% ZnSO4·7H2O) 的情況下,可以顯著提高Zn肥的表觀利用率,達到了17.6%,但是產(chǎn)量不高,水稻籽粒中的Zn含量也比較低;如果要使Zn的富集量達到要求,就要增加Zn的投入量(2.0% ZnSO4·7H2O),但是Zn的表觀利用效率下降到12%。Shivay等[119]通過另一研究發(fā)現(xiàn),隨著施Zn量的增加 (施Zn量在1.3~9.1 kg/hm2之間),第一年其表觀利用率從16.4%下降到8.3%,第二年從17%下降到10.6%。因此土施Zn肥雖然可以提高水稻籽粒中的Zn含量,但是施用的Zn肥量太大,Zn的表觀利用效率太低,約為10%[44],這主要是因為施加到土壤中的Zn肥受到了土壤理化性質(zhì)的影響,其有效性顯著降低,研究發(fā)現(xiàn)葉噴Zn肥是克服這一缺點的有效途徑[120–121]。與土施Zn肥相比,葉噴Zn肥的農(nóng)學效益是其10倍,即用0.2% ZnSO4·7H2O的Zn肥葉噴水稻就可以達到用2% ZnSO4·7H2O的Zn肥土施到土壤中水稻籽粒Zn含量的水平,明顯提高了Zn的表觀利用率[43]。Phattarakul等[40]研究發(fā)現(xiàn),在排除了土壤理化性質(zhì)、管理措施等對Zn在水稻中含量的影響,葉噴Zn肥對于水稻籽粒中Zn含量的提高效果比土施Zn肥增加了66%。Wissuwa等[77]通過研究也發(fā)現(xiàn),無論哪一種水稻類型,葉噴Zn肥與土施Zn肥相比都能夠顯著增加水稻籽粒中的Zn含量。但是與小麥一樣,葉噴Zn肥的增產(chǎn)效益不如土施Zn肥,增加了農(nóng)戶的成本,一方面可以通過土施Zn肥與葉噴Zn肥的耦合進行互補,另一方面可以通過與其它農(nóng)藝措施相結(jié)合來降低成本,以增加收益[38]。土施Zn肥與葉噴Zn肥的耦合與只葉噴Zn肥相比,水稻籽粒產(chǎn)量平均提高了約2.1%,Zn含量平均提高了約4.0%,增加了農(nóng)戶凈收益[40]。此外,不同的水稻類型對于Zn肥的響應是不同的,Saha等[122]研究了不同水稻品種在富Zn方面的差異,不同的水稻品種即使在同一施肥模式下,其產(chǎn)量與Zn含量也不同,并發(fā)現(xiàn)‘GB1’(品種來自于印度的阿薩姆) 水稻品種在一次基肥、兩次追肥的模式下,其Zn含量與產(chǎn)量均優(yōu)于其它品種。因此針對不同的水稻類型,在兼顧產(chǎn)量的前提下要優(yōu)先選用高富Zn的品種。
與小麥、水稻一樣,土施Zn肥與葉噴Zn肥不僅都可以提高玉米籽粒中的Zn含量[123],還可以提高玉米的產(chǎn)量[98]。Harris等[66]通過研究發(fā)現(xiàn),與不施Zn肥相比,在施Zn量為2.75 kg/hm2情況下,Zn在玉米籽粒中的富集量提高了18.0%;在施Zn量5.5 kg/hm2的情況下,富集量提高了39.8%。通過土施Zn肥,玉米籽粒中的Zn含量明顯提高,但是施加的Zn肥量太大,Zn肥的有效性偏低。在發(fā)展中國家補施Zn肥增加了農(nóng)戶的生產(chǎn)成本,降低了農(nóng)戶施Zn肥的積極性,例如在巴基斯坦,不超過5%的農(nóng)戶施用Zn肥[124]。Manzeke等[78]依據(jù)津巴布韋當?shù)氐膶嶋H情況,將秸稈 (實際施Zn量430 g/hm2)、畜禽糞便 (實際施Zn量113 g/hm2) 等作為含Zn有機肥與NPK肥一起施入到土壤中,與只施用NPK肥相比,玉米籽粒中的Zn含量分別提高了64.3%和50%,同時也提高了玉米的產(chǎn)量。這是因為畜禽糞便中含有豐富的有機Zn,不僅提供了農(nóng)作物生長所必需的微量營養(yǎng)元素Zn,而且提升了土壤肥力[110]。
大量研究表明,施Zn肥可以顯著提高主要糧食作物Zn含量,緩解農(nóng)作物缺Zn情況,并能夠增加產(chǎn)量[125–126]。但是農(nóng)作物有特定的吸收分配機制,Zn元素正常情況下由根部吸收,經(jīng)過木質(zhì)部和韌皮部的運輸,才能夠在農(nóng)作物的可食部位進行富集[127]。例如,Jiang等[128]通過同位素示蹤的方法發(fā)現(xiàn),水稻可食部分的Zn元素主要來自于根部的吸收,葉噴Zn肥大約50%的Zn元素留在了葉子里,另外的50%的分配到了其他有機體中,很少一部分被分配到谷粒當中。與水稻不同的是,小麥籽粒中的Zn還可以由葉子里的Zn重新分配進行補充[129]。通過施肥途徑施加的Zn元素是否能夠更多的在糧食作物可食部位分配,也是科學研究關注的熱點。
對于小麥,Maqsood等[105]研究了巴基斯坦的12個小麥品種后發(fā)現(xiàn),向土壤中施用Zn肥對于小麥籽粒及秸稈的Zn含量均有顯著的提升作用,在秸稈中Zn的平均含量為41.54 mg/kg,在小麥籽粒中Zn的平均含量為58.92 mg/kg,與不施Zn肥相比分別提高了17.7%,22.1%。Li等[130]研究了葉噴Zn肥對小麥籽粒、白面粉、麩皮中Zn含量的影響,發(fā)現(xiàn)施用Zn肥后,Zn含量與不施Zn肥相比分別提高了92.5%、64.8%、77%,并且麩皮中的Zn含量最高為74.0 mg/kg,其次是小麥籽粒,為42.2 mg/kg,最低為白面粉,Zn含量為13.3 mg/kg。這與Zhang等[131]的研究結(jié)果一致,Zn在麥麩、小麥籽粒、白面粉中的含量是逐漸遞減的 (圖4)。在中國,小麥主要吃的是白面粉,所占的比重超過了85%[132],補施Zn肥雖能顯著增加小麥籽粒的Zn含量,但是作為主要消耗品的白面粉,其Zn含量仍然比較低。對于水稻來講,Phattarakul等[40]研究發(fā)現(xiàn),通過土施Zn肥,Zn在精米中的含量為16.2 mg/kg,與稻谷、糙米相比Zn含量分別下降了15.3%、22.1%;通過葉噴Zn肥,Zn在精米中的含量為17.7 mg/kg,分別下降了45.2%、27.5%;通過土施Zn肥與葉噴Zn肥結(jié)合的方式,Zn在精米中的含量為18.4 mg/kg,分別下降了47.0%、27.8% (圖5)。這與相關研究的結(jié)果基本一致,發(fā)現(xiàn)補施Zn肥后稻谷中含Zn總量占水稻總Zn吸收量的比值為18.22%[44],Zn在精米中的富集量與稻谷相比下降明顯,約為12%[20]。綜上所述,白面、精米等細糧的Zn含量與麥麩、糙米等粗糧相比具有很大的差異,因此在日常的飲食中應該增加粗糧的攝入量,彌補細糧Zn含量不足的狀況。何宇納等[133]研究中國成年人粗雜糧攝入水平時也發(fā)現(xiàn),高粗糧攝入水平的群體其每日的攝Zn量顯著高于低粗糧攝入水平的群體。
圖 4 噴施不同鋅肥小麥籽粒不同組分的Zn含量[35]Fig. 4 Zn contents in different grain parts of wheat sprayed with different Zn fertilizers[35]
圖 5 不同施鋅方式下水稻籽粒不同組分的Zn含量[40]Fig. 5 Zn contents in different grain parts of rice affected by Zn fertilization mode [40]
補施Zn肥可以提高糧食作物可食部分的Zn含量,增加作物的產(chǎn)量,但是兩種施肥措施都存在缺陷:Zn在人們主要消費的白面粉和精米中的含量很少;施用較高量的Zn肥雖提高了主要糧食作物的的Zn含量,但是在土壤有效Zn含量處于中等偏下水平的土壤上,主要糧食作物的產(chǎn)量對Zn肥的響應不明顯,甚至過高的施Zn量會使農(nóng)作物減產(chǎn),加上Zn肥的價格比較高,讓農(nóng)戶難以接受;Zn肥的利用率很低,尤其是盲目的大量施用Zn肥會造成浪費,并使土壤遭受潛在的Zn污染[134];肥料中的各營養(yǎng)元素之間存在交互作用,Zn與其它營養(yǎng)元素之間存在競爭或者協(xié)同作用,影響Zn肥的吸收;不同的農(nóng)作物品種對于Zn肥的響應具有較大差異,富Zn量較高的品種,其產(chǎn)量偏低,產(chǎn)量較高的品種,其富Zn量達不到要求,產(chǎn)量與Zn含量難以同時達標。
針對國內(nèi)外研究現(xiàn)狀及存在的一系列問題,今后的研究可重點關注:1) 深入開展與Zn元素在肥–土–作物系統(tǒng)中吸收分配機制相關的研究,清楚掌握Zn元素在肥–土–作物系統(tǒng)中的富集與分配規(guī)律,同時建立全國范圍內(nèi)主要農(nóng)田土壤的Zn數(shù)據(jù)庫,構建產(chǎn)量、富Zn量與Zn肥之間的響應模型,為通過施肥途徑改善糧食作物缺Zn狀況提供有力的理論依據(jù),避免不必要的浪費與污染或者施Zn肥不足,實現(xiàn)精準施肥。2) 加大新型廉價肥料技術的研發(fā)力度,降低肥料制作成本,尋找其他廉價替代品,例如畜禽糞便、污泥堆肥等,降低補施Zn肥的成本,與其它農(nóng)藝措施相結(jié)合,提高產(chǎn)量,增加農(nóng)戶的凈收益。3) 進一步探索改善土壤理化性質(zhì)的有效措施,例如,pH、土壤有機質(zhì)和離子強度等,降低土壤對Zn的固定能力,提高Zn肥對于農(nóng)作物的有效性及其肥效的持久性,也可以通過添加其它物質(zhì),如生物質(zhì)炭等。研究表明生物質(zhì)炭不僅含有一定量的微量元素[135],能夠增加土壤保水保肥的能力[136],而且還可以促進作物根系的生長,提高作物的養(yǎng)分吸收能力[137],今后可進行生物質(zhì)炭與Zn的耦合研究。4) 加強系統(tǒng)研究,綜合考慮多種營養(yǎng)元素對糧食作物產(chǎn)量與品質(zhì)的影響,探明微量元素、常量元素之間的交互作用,找到最佳投入量與最佳配比,整體提升糧食作物的營養(yǎng)價值。5) 對小麥、水稻、玉米等主要糧食作物的品種進行篩選,在兼顧產(chǎn)量優(yōu)勢的前提下,選出對施Zn肥高響應的品種或通過雜交與基因工程育種技術來獲得對Zn肥高產(chǎn)量與高富
Zn量響應的品種類型。6) 加強主要糧食作物富Zn的分子生物學機制研究,例如研究[138–140]發(fā)現(xiàn)ZIP轉(zhuǎn)運蛋白起到了將Zn轉(zhuǎn)入到根細胞的轉(zhuǎn)運子作用,增加了糧食作物對Zn的吸收富集能力,今后可在分子水平上對與Zn的吸收、富集及轉(zhuǎn)運相關的基因進行鑒定和篩選,并可通過基因工程育種技術和雜交技術等進行品種改良。
[1]Jurowski K, Szewczyk B, Nowak G, et al. Biological consequences of zinc deficiency in the pathomechanisms of selected diseases[J].Journal of Biological Inorganic Chemistry, 2014, 19(7): 1069–1079.
[2]Black R E, Allen L H, Bhutta Z A, et al. Maternal and child undernutrition 1 - maternal and child undernutrition: Global and regional exposures and health consequences[J]. Lancet, 2008,371(9608): 243–260.
[3]Gibson R S, Manger M S, Krittaphol W, et al. Does zinc deficiency play a role in stunting among primary school children in NE Thailand?[J]. British Journal of Nutrition, 2007, 97(1): 167–175.
[4]Shankar A H, Prasad A S. Zinc and immune function: The biological basis of altered resistance to infection[J]. American Journal of Clinical Nutrition, 1998, 68(2): 447S–463S.
[5]Fang Y Z, Yang S, Wu G Y. Free radicals, antioxidants, and nutrition[J]. Nutrition, 2002, 18(10): 872–879.
[6]Prasad A S. Discovery of human zinc deficiency: Its impact on human health and disease[J]. Advances in Nutrition, 2013, 4(2):176–190.
[7]SCF. Report of the scientific committee on food the revision of essential requirements of infant formulae and follow–on formulae(adopted on 4 April 2003)[R]. Brussels, Belgium: European commission health and consumer protection directorate-general,scientific committee on food (SCF); 2003.
[8]Tapiero H, Tew K D. Trace elements in human physiology and pathology: Zinc and metallothioneins[J]. Biomedicine &Pharmacotherapy, 2003, 57(9): 399–411.
[9]Brown K H, Wuehler S E, Peerson J M. The importance of zinc in human nutrition and estimation of the global prevalence of zinc deficiency[J]. Food & Nutrition Bulletin, 2001, 22(22): 113–125.
[10]Cakmak I. Enrichment of cereal grains with zinc: Agronomic or genetic biofortification?[J]. Plant and Soil, 2008, 302(1–2): 1–17.
[11]Cakmak I. Plant nutrition research: Priorities to meet human needs for food in sustainable ways[J]. Plant and Soil, 2002, 247(1): 3–24.
[12]Pardo M T, Guadalix M E. Zinc sorption-desorption by two Andepts: Effect of pH and support medium[J]. European Journal of Soil Science, 1996, 47(2): 257–263.
[13]Zahedifar M, Karimian N, Yasrebi J. Influence of applied zinc and organic matter on zinc desorption kinetics in calcareous soils[J].Archives of Agronomy and Soil Science, 2012, 58(2): 169–178.
[14]Joy E J M, Stein A J, Young S D, et al. Zinc-enriched fertilisers as a potential public health intervention in Africa[J]. Plant and Soil,2015, 389(1–2): 1–24.
[15]Mckevith B. Nutritional aspects of cereals[J]. Nutrition Bulletin,2004, 29(2): 111–142.
[16]Scherz H, Kirchhoff E. Trace elements in foods: Zinc contents of raw foods –a comparison of data originating from different geographical regions of the world[J]. Journal of Food Composition and Analysis, 2006, 19(5): 420–433.
[17]Zhang Y, Song Q, Yan J, et al. Mineral element concentrations in grains of Chinese wheat cultivars[J]. Euphytica, 2010, 174(3):303–313.
[18]Erdal I, Yilmaz A, Taban S, et al. Phytic acid and phosphorus concentrations in seeds of wheat cultivars grown with and without zinc fertilization[J]. Journal of Plant Nutrition, 2002, 25(1):113–127.
[19]FAO. The state of food insecurity in the world: Addressing food insecurity in protracted crises[R]. Rome, Italy: The Food and Agriculture Organization of the United Nations, 2010. 58.
[20]Prasad R, Shivay Y S, Kumar D. Agronomic biofortification of cereal grains with iron and zinc[J]. Advances in Agronomy, 2014,125: 55–91.
[21]Stein A J, Nestel P, Meenakshi J, et al. Plant breeding to control zinc deficiency in India: How cost-effective is biofortification?[J].Public Health Nutrition, 2007, 10(5): 492–501.
[22]White P J, Broadley M R. Biofortification of crops with seven mineral elements often lacking in human diets-iron, zinc, copper,calcium, magnesium, selenium and iodine[J]. New Phytologist,2009, 182(1): 49–84.
[23]B?nziger M, Long J. The potential for increasing the iron and zinc density of maize through plant-breeding[J]. Food & Nutrition Bulletin, 2000, 21(4): 397–400.
[24]Alloway B J. Soil factors associated with zinc deficiency in crops and humans[J]. Environmental Geochemistry and Health, 2009,31(5): 537–548.
[25]Takkar P N, Walker C D. The distribution and correction of zinc deficiency[M]. Springer Netherlands, 1993.
[26]Cakmak I. Zinc deficiency in wheat in Turkey[M]. Springer Netherlands, 2008.
[27]Shivay Y S, Prasad R, Rahal A. Genotypic variation for productivity, zinc utilization efficiencies, and kernel quality in aromatic rices under low available zinc conditions[J]. Journal of Plant Nutrition, 2010, 33(12): 1835–1848.
[28]Salim R M, Shaikh B Z. Distribution and availability of zinc in soil fractions to wheat on some alkaline calcareous soils[J]. Zeitschrift Fur Pflanzenernahrung Und Bodenkunde, 1988, 151(6): 385–389.
[29]Khoshgoftarmanesh A H, Schulin R, Chaney R L, et al.Micronutrient-efficient genotypes for crop yield and nutritional quality in sustainable agriculture. A review[J]. Agronomy for Sustainable Development, 2010, 30(1): 83–107.
[30]Lawson J A. Comparative quantification of health risks. Global and regional burden of disease attributable to selected major risk factors[J]. Canadian Journal of Public Health, 2006, 97(4): 319.
[31]Prasad A S. Impact of the discovery of human zinc deficiency on health[J]. Journal of the American College of Nutrition, 2009, 28(3):257–265.
[32]Wessells K R, Brown K H. Estimating the global prevalence of zinc deficiency: Results based on zinc availability in national food supplies and the prevalence of stunting[J]. PLoS ONE, 2012, 7(11):e50568.
[33]Murphy K M, Reeves P G, Jones S S. Relationship between yield and mineral nutrient concentrations in historical and modern spring wheat cultivars[J]. Euphytica, 2008, 163(3): 381–390.
[34]Freitas M C, Pacheco A M G, Bacchi M A, et al. Compton suppression instrumental neutron activation analysis performance in determining trace-and minor-element contents in foodstuff[J].Journal of Radioanalytical and Nuclear Chemistry, 2008, 276(1):149–156.
[35]Norton G J, Douglas A, Lahner B, et al. Genome wide association mapping of grain arsenic, copper, molybdenum and zinc in rice(Oryza sativa L.) grown at four international field sites[J]. PLoS ONE, 2014, 9(2): e89685.
[36]Codling E E, Mulchi C L, Chaney R L. Grain yield and mineral element composition of maize grown on high phosphorus soils amended with water treatment residual[J]. Journal of Plant Nutrition, 2007, 30(2): 225–240.
[37]Pedersen B, Eggum B O. The influence of milling on the nutritivevalue of flour from cereal-grains.5. Maize[J]. Qualitas Plantarum-Plant Foods for Human Nutrition, 1983, 33(4): 299–311.
[38]Ram H, Rashid A, Zhang W, et al. Biofortification of wheat, rice and common bean by applying foliar zinc fertilizer along with pesticides in seven countries[J]. Plant and Soil, 2016, 403(1–2):389–401.
[39]Zheng L. The distribution of zinc concentration in soils of China[J].Scientia Agricutura Sinica, 1994, 27(1): 30–37.
[40]Phattarakul N, Rerkasem B, Li L J, et al. Biofortification of rice grain with zinc through zinc fertilization in different countries[J].Plant and Soil, 2012, 361(1–2): 131–141.
[41]Hossain M A, Jahiruddin M, Islam M R, et al. The requirement of zinc for improvement of crop yield and mineral nutrition in the maize-mungbean-rice system[J]. Plant & Soil, 2008, 306(1–2):13–22.
[42]Velu G, Singh R, Huertaespino J, et al. Breeding for enhanced zinc and iron concentration in cimmyt spring wheat germplasm[J]. Czech Journal of Genetics and Plant Breeding, 2011, 47(4): S174–S177.
[43]Pooniya V, Shivay Y S. Enrichment of basmati rice grain and straw with zinc and nitrogen through ferti-fortification and summer green manuring under indo-gangetic plains of India[J]. Journal of Plant Nutrition, 2013, 36(1): 91–117.
[44]Shivay Y S, Prasad R. Zinc-coated urea improves productivity and quality of basmati rice (Oryza sativa L.) under zinc stress condition[J]. Journal of Plant Nutrition, 2012, 35(6): 928–951.
[45]Behera S K, Shukla A K, Singh M V, et al. Yield and zinc, copper,manganese and iron concentration in maize (Oryza sativa L.) grown on vertisol as influenced by zinc application from various zinc fertilizers[J]. Journal of Plant Nutrition, 2015, 38(10): 1544–1557.
[46]Saha S, Mandal B, Hazra G C, et al. Can agronomic biofortification of zinc be benign for iron in cereals?[J]. Journal of Cereal Science,2015, 65: 186–191.
[47]Tang J, Zou C, He Z, et al. Mineral element distributions in milling fractions of Chinese wheats[J]. Journal of Cereal Science, 2008,48(3): 821–828.
[48]Liu D Y, Zhang W, Yan P, et al. Soil application of zinc fertilizer could achieve high yield and high grain zinc concentration in maize[J]. Plant and Soil, 2017, 411(1–2): 47–55.
[49]Wang J, Mao H, Zhao H, et al. Different increases in maize and wheat grain zinc concentrations caused by soil and foliar applications of zinc in loess plateau, China[J]. Field Crops Research, 2012, 135: 89–96.
[50]Xia H, Zhao J, Sun J, et al. Maize grain concentrations and aboveground shoot acquisition of micronutrients as affected by intercropping with turnip, faba bean, chickpea, and soybean[J].Science China(Life Sciences), 2013, 56(9): 823–834.
[51]Heinemann R J B, Fagundes P L, Pinto E A, et al. Comparative study of nutrient composition of commercial brown, parboiled and milled rice from Brazil[J]. Journal of Food Composition & Analysis,2005, 18(4): 287–296.
[52]Poletti J, Pozebon D, de Fraga M V, et al. Toxic and micronutrient elements in organic, brown and polished rice in Brazil[J]. Food Additives & Contaminants Part B, 2014, 7(1): 63–69.
[53]Martins K V, Dourado–Neto D, Reichardt K, et al. Preliminary studies to characterize the temporal variation of micronutrient composition of the above ground organs of maize and correlated uptake rates[J]. Frontiers in Plant Science, 2017, 8: 14.
[54]Ekholm P, Reinivuo H, Mattila P, et al. Changes in the mineral and trace element contents of cereals, fruits and vegetables in Finland[J].Journal of Food Composition and Analysis, 2007, 20(6): 487–495.
[55]Genc Y, McDonald G K. The potential of synthetic hexaploid wheats to improve zinc efficiency in modern bread wheat[J]. Plant and Soil, 2004, 262(1–2): 23–32.
[56]Ryan M H, Derrick J W, Dann P R. Grain mineral concentrations and yield of wheat grown under organic and conventional management[J]. Journal of the Science of Food and Agriculture,2004, 84(3): 207–216.
[57]Gregorio G B, Senadhira D, Htut H, et al. Breeding for trace mineral density in rice[J]. Food & Nutrition Bulletin, 2000, 21(4):382–386.
[58]Baize D, Bellanger L, Tomassone R. Relationships between concentrations of trace metals in wheat grains and soil[J].Agronomy for Sustainable Development, 2009, 29(2): 297–312.
[59]Oury F X, Leenhardt F, Remesy C, et al. Genetic variability and stability of grain magnesium, zinc and iron concentrations in bread wheat[J]. European Journal of Agronomy, 2006, 25(2): 177–185.
[60]Broadhurst C L, Chaney R L, Davis A P, et al. Growth and cadmium phytoextraction by Swiss chard, maize, rice, noccaea caerulescens, and alyssum murale in pH adjusted biosolids amended soils[J]. International Journal of Phytoremediation, 2015, 17(1):25–39.
[61]Stipesevic B, Jug D, Jug I, et al. Winter wheat and soybean zinc uptake in different soil tillage systems[J]. Cereal Research Communications, 2009, 37(2): 305–310.
[62]Svecnjak Z, Jenel M, Bujan M, et al. Trace element concentrations in the grain of wheat cultivars as affected by nitrogen fertilization[J]. Agricultural and Food Science, 2013, 22(4):445–451.
[63]Kovacevic V, Brkic I, Simic D, et al. The role of genotypes on phosphorus, zinc, manganese and iron status and their relations in leaves of maize on hydromorphic soil[J]. Plant Soil and Environment, 2004, 50(12): 535–539.
[64]Vragolovic A, Simic D, Buhinicek I, et al. Lack of association for iron and zinc concentrations between leaf and grain of maize genotypes grown on two soil types[J]. Cereal Research Communications, 2007, 35(2): 1313–1316.
[65]Calderini D F, Ortiz–Monasterio I. Are synthetic hexaploids a means of increasing grain element concentrations in wheat?[J].Euphytica, 2003, 134(2): 169–178.
[66]Harris D, Rashid A, Miraj G, et al. 'On-farm' seed priming with zinc sulphate solution -A cost effective way to increase the maize yields of resource-poor farmers[J]. Field Crops Research, 2007, 102(2):119–127.
[67]Stepien A, Wojtkowiak K. Effect of foliar application of Cu, Zn,and Mn on yield and quality indicators of winter wheat grain[J].Chilean Journal of Agricultural Research, 2016, 76(2): 220–227.
[68]Suchowilska E, Wiwart M, Kandler W, et al. A comparison of macro- and microelement concentrations in the whole grain of four triticum species[J]. Plant Soil and Environment, 2012, 58(3):141–147.
[69]Le?niewicz A, Kretowicz M, Wierzbicka K, et al. Inorganic micronutrients in food products of plant origin used for breakfast in Poland[J]. International Journal of Environmental Analytical Chemistry, 2009, 89(8–12): 621–634.
[70]Hu X Z, Zheng J M, Li X P, et al. Chemical composition and sensory characteristics of oat flakes: A comparative study of naked oat flakes from China and hulled oat flakes from western countries[J]. Journal of Cereal Science, 2014, 60(2): 297–301.
[71]Pedersen B, Eggum B O. The influence of milling on the nutritivevalue of flour from cereal-grains.2. Wheat[J]. Plant Foods for Human Nutrition, 1983, 33(1): 51–61.
[72]Hamner K, Kirchmann H. Trace element concentrations in cereal grain of long-term field trials with organic fertilizer in Sweden[J].Nutrient Cycling in Agroecosystems, 2015, 103(3): 347–358.
[73]Hamner K, Weih M, Eriksson J, et al. Influence of nitrogen supply on macro- and micronutrient accumulation during growth of winter wheat[J]. Field Crops Research, 2017, 213: 118–129.
[74]Kirchmann H, Mattsson L, Eriksson J. Trace element concentration in wheat grain: Results from the Swedish long-term soil fertility experiments and national monitoring program[J]. Environmental Geochemistry and Health, 2009, 31(5): 561–571.
[75]Tattibayeva D, Nebot C, Miranda J M, et al. A study on toxic and essential elements in wheat grain from the Republic of Kazakhstan[J]. Environmental Science and Pollution Research,2016, 23(6): 5527–5537.
[76]Graham R, Senadhira D, Beebe S, et al. Breeding for micronutrient density in edible portions of staple food crops: Conventional approaches[J]. Field Crops Research, 1999, 60(1–2): 57–80.
[77]Wissuwa M, Ismail A M, Graham R D. Rice grain zinc concentrations as affected by genotype, native soil-zinc availability,and zinc fertilization[J]. Plant and Soil, 2008, 306(1–2): 37–48.
[78]Manzeke G M, Mapfumo P, Mtambanengwe F, et al. Soil fertility management effects on maize productivity and grain zinc content in smallholder farming systems of Zimbabwe[J]. Plant & Soil, 2012,361(1–2): 57–69.
[79]Manzeke G M, Mtambanengwe F, Nezomba H, et al. Zinc fertilization influence on maize productivity and grain nutritional quality under integrated soil fertility management in Zimbabwe[J].Field Crops Research, 2014, 166: 128–136.
[80]Oikeh S O, Menkir A, Maziya–Dixon B, et al. Genotypic differences in concentration and bioavailability of kernel-iron in tropical maize varieties grown under field conditions[J]. Journal of Plant Nutrition, 2003, 26(10–11): 2307–2319.
[81]Joy E J M, Broadley M R, Young S D, et al. Soil type influences crop mineral composition in Malawi[J]. Science of the Total Environment, 2015, 505: 587–595.
[82]van Jaarsveld P J, Faber M, van Stuijvenberg M E. Vitamin a, iron,and zinc content of fortified maize meal and bread at the household level in 4 areas of South Africa[J]. Food & Nutrition Bulletin, 2015,36(3): 315–326.
[83]Alloway B J. Micronutrient deficiencies in global crop production[M]. Springer Netherlands, 2008.
[84]王孝忠, 田娣, 鄒春琴. 鋅肥不同施用方式及施用量對我國主要糧食作物增產(chǎn)效果的影響[J]. 植物營養(yǎng)與肥料學報, 2014, 20(4):998–1004.Wang X Z, Tian D, Zou C Q. Yield responses of the main cereal crops to the application approaches and rates of zinc fertilizer in China[J]. Journal of Plant Nutrition and Fertitizer, 2014, 20(4):998–1004.
[85]王振林, 沈成國, 余松烈. 小麥供鋅狀況對葉片結(jié)構及葉綠體超微結(jié)構的影響[J]. 作物學報, 1993, 19(6): 553–557+579–580.Wang Z L, Shen C G, Yu S L. Effects of zinc supply on leaf structure and chloroplast ultrastructure in wheat[J]. Acta Agronomica Sinica, 1993, 19(6): 553–557+579–580.
[86]Guliev N M, Bairamov S M, Aliev D A. Functional organization of carbonic anhydrase in higher plants[J]. Soviet Plant Physiology,1992, 39(4): 537–544.
[87]Yilmaz A, Ekiz H, Torun B, et al. Effect of different zinc application methods on grain yield and zinc concentration in wheat cultivars grown on zinc-deficient calcareous soils[J]. Journal of Plant Nutrition, 1997, 20(4–5): 461–471.
[88]Haslett B S, Reid R J, Rengel Z. Zinc mobility in wheat: Uptake and distribution of zinc applied to leaves or roots[J]. Annals of Botany,2001, 87(3): 379–386.
[89]賈舟, 陳艷龍, 趙愛青, 等. 硫酸鋅和EDTA-Zn不同施用方法對第二季小麥籽粒鋅和土壤鋅有效性的影響[J]. 植物營養(yǎng)與肥料學報, 2016, 22(6): 1595–1602.Jia Z, Chen Y L, Zhao A Q, et al. Effects of different application method of ZnSO4and EDTA-Zn on wheat grain zinc biofortification and soil zinc availability in the next year[J]. Journal of Plant Nutrition and Fertitizer, 2016, 22(6): 1595–1602.
[90]劉錚. 我國土壤中鋅含量的分布規(guī)律[J]. 中國農(nóng)業(yè)科學, 1994,27(1): 30–37.Liu Z. The distribution of zinc concentration in soils of China[J].Scientia Agricutura Sinica, 1994, 27(1): 30–37.
[91]郝明德, 魏孝榮, 黨廷輝. 旱地小麥長期施用鋅肥的增產(chǎn)作用及土壤效應[J]. 植物營養(yǎng)與肥料學報, 2003, 9(3): 377–380.Hao M D, Wei X R, Dang T H. Effect of long term applying zinc fertilier on wheat yield and content of zinc in dryland[J]. Plant Nutrition and Fertitizer Science, 2003, 9(3): 377–380.
[92]楊月娥, 王森, 王朝輝, 等. 我國主要麥區(qū)小麥籽粒鋅含量對葉噴鋅肥的響應[J]. 植物營養(yǎng)與肥料學報, 2016, 22(3): 579–589.Yang Y E, Wang S, Wang Z H, et al. Response of wheat grain Zn concentration to foliar sprayed Zn in main wheat production regions of China[J]. Journal of Plant Nutrition and Fertitizer, 2016, 22(3):579–589.
[93]Borkert C M, Cox F R, Tucker M R. Zinc and copper toxicity in peanut, soybean, rice, and corn in soil mixtures[J]. Communications in Soil Science and Plant Analysis, 1998, 29(19–20): 2991–3005.
[94]Mortvedt J J. Plant tissue analysis in micronutrients[A]. Mortvedt J J, Cox F R, Shuman L M, Welch R M. Micronutrients in Agriculture (2nd Edition)[M]. Madison, WI: Soil Science Society of America. 1991.
[95]Kumar F N. Influence of micronutrients on dry matter yield and interaction with other nutrients in annual crops[J]. Pesquisa Agropecuária Brasileira, 2002, 37(12): 1765–1772.
[96]馮緒猛, 郭九信, 王玉雯, 等. 鋅肥品種與施用方法對水稻產(chǎn)量和鋅含量的影響[J]. 植物營養(yǎng)與肥料學報, 2016, 22(5): 1329–1338.Feng X M, Guo J X, Wang Y W, et al. Effects of Zn fertilizer types and application methods on grain yield and Zn concentration of rice[J]. Journal of Plant Nutrition and Fertitizer, 2016, 22(5):1329–1338.
[97]Tariq M, Khan M A, Perveen S. Response of maize to applied soil zinc[J]. Asian Journal of Plant Sciences, 2002, 1(4): 476–477.
[98]Potarzycki J, Grzebisz W. Effect of zinc foliar application on grain yield of maize and its yielding components[J]. Plant Soil and Environment, 2009, 55(12): 519–527.
[99]劉敦一, 龐麗麗, 張偉, 等. 鋅肥施用方式對小麥、玉米產(chǎn)量和籽粒鋅含量的影響[J]. 中國土壤與肥料, 2014, (4): 76–80+90.Liu D, Pang L, Zhang W, et al. Effects of different zinc fertilization methods on yield and grain Zn concentration of maize and wheat[J].Soil and Fertilizer Sciences in China, 2014, (4): 76–80+90.
[100]Cakmak I, Kalayci M, Kaya Y, et al. Biofortification and localization of zinc in wheat grain[J]. Journal of Agricultural and Food Chemistry, 2010, 58(16): 9092–9102.
[101]郭九信, 隋標, 商慶銀, 等. 氮鋅互作對水稻產(chǎn)量及籽粒氮、鋅含量的影響[J]. 植物營養(yǎng)與肥料學報, 2012, 18(6): 1336–1342.Guo J, Sui B, Shang Q, et al. Effects of N and Zn interaction on yield and contents of N and Zn in grains of rice[J]. Plant Nutrition and Fertitizer Science, 2012, 18(6): 1336–1342.
[102]Guo J X, Feng X M, Hu X Y, et al. Effects of soil zinc availability,nitrogen fertilizer rate and zinc fertilizer application method on zinc biofortification of rice[J]. Journal of Agricultural Science, 2016,154(4): 584–597.
[103]Shivay Y S, Kumar D, Prasad R, et al. Relative yield and zinc uptake by rice from zinc sulphate and zinc oxide coatings onto urea[J]. Nutrient Cycling in Agroecosystems, 2008, 80(2): 181–188.
[104]陸欣春, 田霄鴻, 楊習文, 等. 氮鋅配施對不同冬小麥品種產(chǎn)量及鋅營養(yǎng)的影響[J]. 中國生態(tài)農(nóng)業(yè)學報, 2010, 18(5): 923–928.Lu X C, Tian X H, Yang X W, et al. Effect of combination use of Zn and N fertilizers on yield and Zn content in winter wheat[J].Chinese Journal of Eco-Agriculture, 2010, 18(5): 923–928.
[105]Maqsood M A, Rahmatullah, Kanwal S, et al. Evaluation of Zn distribution among grain and straw of twelve indigenous wheat(Triticum aestivum L.) genotypes[J]. Pakistan Journal of Botany,2009, 41(1): 225–231.
[106]陸欣春, 田霄鴻, 楊習文, 等. 氮鋅配施對石灰性土壤鋅形態(tài)及肥效的影響[J]. 土壤學報, 2010, 47(6): 1202–1213.Lu X C, Tian X H, Yang X W, et al. Effects of combined application of nitrogen and zinc on zinc fractions and fertilizer efficiency in calcareous soil[J]. Acta Pedologica Sinica, 2010, 47(6):1202–1213.
[107]曹玉賢, 田霄鴻, 楊習文, 等. 土施和噴施鋅肥對冬小麥子粒鋅含量及生物有效性的影響[J]. 植物營養(yǎng)與肥料學報, 2010, 16(6):1394–1401.Cao Y X, Tian X H, Yang X W, et al. Effects of soil and foliar applications of Zn on winter wheat grain Zn concentration and bioavailability[J]. Plant Nutrition and Fertitizer Science, 2010,16(6): 1394–1401.
[108]Wojtkowiak K, Stepien A, Warechowska M, et al. Content of copper, iron, manganese and zinc in typical light brown soil and spring triticale grain depending on a fertilization system[J]. Journal of Elementology, 2014, 19(3): 833–843.
[109]Wang S L, Nan Z R, Zeng J J, et al. Desorption of zinc by the kaolin from Suzhou, China[J]. Applied Clay Science, 2007, 37(3–4):221–225.
[110]Zhang S, Li Z, Yang X. Effects of long-term inorganic and organic fertilization on soil micronutrient status[J]. Communications in Soil Science and Plant Analysis, 2015, 46(14): 1778–1790.
[111]Zhao K, Selim H M. Adsorption-desorption kinetics of Zn in soils:Influence of phosphate[J]. Soil Science, 2010, 175(4): 145–153.
[112]Cakmak I, Pfeiffer W H, McClafferty B. Biofortification of durum wheat with zinc and iron[J]. Cereal Chemistry, 2010, 87(1): 10–20.
[113]Kutman U B, Yildiz B, Ozturk L, et al. Biofortification of durum wheat with zinc through soil and foliar applications of nitrogen[J].Cereal Chemistry, 2010, 87(1): 1–9.
[114]Zhang W, Liu D, Liu Y, et al. Overuse of phosphorus fertilizer reduces the grain and flour protein contents and zinc bioavailability of winter wheat (Triticum aestivum L.)[J]. Journal of Agricultural and Food Chemistry, 2017, 65(8): 1473–1482.
[115]買文選, 田霄鴻, 陸欣春, 等. 磷鋅肥配施對冬小麥籽粒鋅生物有效性的影響[J]. 中國生態(tài)農(nóng)業(yè)學報, 2011, 19(6): 1243–1249.Mai W X, Tian X H, Lu X C, et al. Effect of Zn and P supply on grain Zn bioavailability in wheat[J]. Chinese Journal of Eco-Agriculture, 2011, 19(6): 1243–1249.
[116]Mushtaq S, Rana S A, Khan H A, et al. Diversity and abundance of family aphididae from selected crops of Faisalabad, Pakistan[J].Pakistan Journal of Agricultural Sciences, 2013, 50(1): 103–109.
[117]Wang X Z, Liu D Y, Zhang W, et al. An effective strategy to improve grain zinc concentration of winter wheat, aphids prevention and farmers' income[J]. Field Crops Research, 2015, 184: 74–79.
[118]Gupta S P, Singh M V, Dixit M L. Deficiency and management of micronutrients[J]. Indian Journal of Fertilizer, 2007, 3: 57–60.
[119]Shivay Y S, Kumar D, Prasad R. Effect of zinc-enriched urea on productivity, zinc uptake and efficiency of an aromatic rice-wheat cropping system[J]. Nutrient Cycling in Agroecosystems, 2008,81(3): 229–243.
[120]Fang Y, Wang L, Xin Z, et al. Effect of foliar application of zinc,selenium, and iron fertilizers on nutrients concentration and yield of rice grain in China[J]. Journal of Agricultural and Food Chemistry,2008, 56(6): 2079–2084.
[121]Yuan L, Wu L H, Yang C L, et al. Effects of iron and zinc foliar applications on rice plants and their grain accumulation and grain nutritional quality[J]. Journal of the Science of Food and Agriculture, 2013, 93(2): 254–261.
[122]Saha S, Chakraborty M, Padhan D, et al. Agronomic biofortification of zinc in rice: Influence of cultivars and zinc application methods on grain yield and zinc bioavailability[J]. Field Crops Research,2017, 210: 52–60.
[123]Fahad S, Hussain S, Saud S, et al. Grain cadmium and zinc concentrations in maize influenced by genotypic variations and zinc fertilization[J]. CLEAN-Soil Air Water, 2015, 43(10): 1433–1440.
[124]FAO. Fertilizer use by crop in Pakistan[A]. FAO. Land and Plant Nutrition Management Service, Land and Water Development Division[C]. Rome, 2004
[125]Grzebisz W, Wronska M, Diatta J B, et al. Effect of zinc foliar application at an early stage of maize growth on patterns of nutrients and dry matter accumulation by the canopy. Part I. Zinc uptake patterns and its redistribution among maize organs[J]. Journal of Elementology, 2008, 13(1): 17–28.
[126]Ram H, Sohu V S, Cakmak I, et al. Agronomic fortification of rice and wheat grains with zinc for nutritional security[J]. Current Science, 2015, 109(6): 1171–1176.
[127]Liliana Garcia–Banuelos M, Pedro Sida–Arreola J, Sanchez E.Biofortification-promising approach to increasing the content of iron and zinc in staple food crops[J]. Journal of Elementology, 2014,19(3): 865–888.
[128]Jiang W, Struik P C, Lingna J, et al. Uptake and distribution of rootapplied or foliar-applied Zn-65 after flowering in aerobic rice[J].Annals of Applied Biology, 2007, 150(3): 383–391.
[129]Pearson J N, Rengel Z. Distribution and remobilization of Zn and Mn during grain development in wheat[J]. Journal of Experimental Botany, 1994, 45(281): 1829–1835.
[130]Li M, Wang S X, Tian X H, et al. Zn distribution and bioavailability in whole grain and grain fractions of winter wheat as affected by applications of soil N and foliar Zn combined with N or P[J].Journal of Cereal Science, 2015, 61: 26–32.
[131]Zhang Y Q, Shi R L, Rezaul K M, et al. Iron and zinc concentrations in grain and flour of winter wheat as affected by foliar application[J]. Journal of Agricultural and Food Chemistry,2010, 58(23): 12268–12274.
[132]Li Q L. The produce and consumption of wheat and wheat flour in China[J]. Flowr Milling, 2006, 5: 9–14.
[133]何宇納, 趙麗云, 于冬梅, 等. 中國成年人粗雜糧攝入水平對膳食營養(yǎng)素的貢獻[J]. 營養(yǎng)學報, 2016, 38(4): 326–331.He Y N, Zhao L Y, Yu D M, et al. The coarse food intake and its impact on dietary nutrients in Chinese adults[J]. Acta Nutrimenta Sinica, 2016, 38(4): 326–331.
[134]王淑英, 于同泉, 王建立, 等. 北京市平谷區(qū)土壤有效微量元素含量的空間變異特性初步研究[J]. 中國農(nóng)業(yè)科學, 2008, 41(1):129–137.Wang S Y, Yu T Q, Wang J L, et al. Preliminary study on spatial variability and distribution of soil available microelements in Pinggu district of Beijing[J]. Scientia Agricultura Sinica, 2008,41(1): 129–137.
[135]Smider B, Singh B. Agronomic performance of a high ash biochar in two contrasting soils[J]. Agriculture Ecosystems & Environment,2014, 191: 99–107.
[136]Herath H, Camps–Arbestain M, Hedley M. Effect of biochar on soil physical properties in two contrasting soils: An alfisol and an andisol[J]. Geoderma, 2013, 209: 188–197.
[137]張偉明, 孟軍, 王嘉宇, 等. 生物炭對水稻根系形態(tài)與生理特性及產(chǎn)量的影響[J]. 作物學報, 2013, 39(8): 1445–1451.Zhang W M, Meng J, Wang J Y, et al. Effect of biochar on root morphological and physiological characteristics and yield in rice[J].Acta Agronomica Sinica, 2013, 39(8): 1445–1451.
[138]Fu X Z, Zhou X, Xing F, et al. Genome-wide identification, cloning and functional analysis of the zinc/iron-regulated transporter-like protein (zip) gene family in trifoliate orange (Poncirus trifoliata L.Raf.[J]. Frontiers in Plant Science, 2017, (8): 588.
[139]Guerinot M L. The zip family of metal transporters[J]. Biochimica Et Biophysica Acta-Biomembranes, 2000, 1465(1–2): 190–198.
[140]汪洪, 金繼運. 植物對鋅吸收運輸及積累的生理與分子機制[J].植物營養(yǎng)與肥料學報, 2009, 15(1): 225–235.Wang H, Jin J Y. The physiological and molecular mechanisms of zinc uptake, transport, and hyperaccumulation in plants:A review[J].Plant Nutrition and Fertitizer Science, 2009, 15(1): 225–235.