扈丹丹 劉肖瑩 李明慧 彭海生
[摘要] 腦膠質(zhì)瘤在臨床治療上是最具挑戰(zhàn)性的疾病之一。雖然外科手術(shù)和多模式輔助治療預(yù)后有所改善,但是腦膠質(zhì)瘤的治療仍然是一個(gè)難題。由于血腦屏障的存在和藥物的毒性和非特異性,運(yùn)用化療藥物治療腦膠質(zhì)瘤的療效仍然特別差,納米載體由于能夠克服這些問題已經(jīng)成為腦膠質(zhì)瘤靶向治療的最佳選擇。過去的十年中,科研人員在腦腫瘤靶向治療方面取得了重大研究進(jìn)展。診療一體的納米載體可同時(shí)對(duì)腫瘤進(jìn)行特異性檢測、治療和后續(xù)監(jiān)測。納米技術(shù)的靶向給藥策略在降低毒性和改善治療效果方面具有獨(dú)特的優(yōu)勢。本文介紹了膠質(zhì)瘤的分類、治療膠質(zhì)瘤的局限性,以及如何應(yīng)用納米粒子靶向膠質(zhì)瘤發(fā)揮治療作用。
[關(guān)鍵詞] 納米技術(shù);腦膠質(zhì)瘤;血腦屏障;脂質(zhì)體;膠束
[中圖分類號(hào)] R739.41 [文獻(xiàn)標(biāo)識(shí)碼] A [文章編號(hào)] 1673-7210(2018)04(c)-0025-03
Advances of nanotechnology in treatment of gliomas
HU Dandan LIU Xiaoying LI Minghui PENG Haisheng
Department of Pharmaceutics, Daqing Campus, Harbin Medical University, Heilongjiang Province, Daqing 163319, China
[Abstract] Brain tumor is one of the most challenging diseases in treatment. Although surgery and multimodal adjuvant therapy serve to the treatment of this disease, treating brain cancer still remains as a challenge. Due to the non-specificity and the potentially toxic of drugs and the blood–brain barrier, the efficiency of drug in treating brain cancer is relatively low, and therefore nanoparticles become an alternative treatment forbrain cancer. During the past decades, there have been great developments in the area of brain tumor treatment adopting brain tumor-targeted method. For example, the nanocarriers can simultaneously carry out specific detection, treatment, and follow-up monitoring of the tumor. New treatment strategies with nanotechnology have some important advantages, for example decreased toxicity and improved therapeutic effect. In this paper, the classification of glioma, the limitations of treating glioma, and how to target glioma using nanoparticles are summarized in detail.
[Key words] Nanotechnology; Glioma; Blood brain barrier; Liposomes; Micelle
世界上每年新增大約有25萬腦腫瘤和其他中樞神經(jīng)系統(tǒng)腫瘤患者,其中約81%的腦膠質(zhì)瘤是最常見、最典型的原發(fā)性腦瘤[1]。根據(jù)膠質(zhì)細(xì)胞的類型進(jìn)行分類,惡性膠質(zhì)瘤是最常見的腦瘤。在成人中,這種疾病的發(fā)病率是(2~3)/10萬,年齡在20~39歲的男性患者發(fā)病率較高[2]。盡管化療、放療和手術(shù)切除能在一定程度上緩解病情,但惡性膠質(zhì)瘤仍然是一種致命的,平均生存期僅為14.6個(gè)月的疾病[3]。在腦膠質(zhì)瘤治療中令人失望的主要原因是藥物攝取的內(nèi)化、細(xì)胞內(nèi)藥物的降解、腫瘤對(duì)化療的敏感性降低以及耐藥細(xì)胞機(jī)制的不清。納米技術(shù)是一種很有前途的腦腫瘤成像和治療工具。納米顆??捎糜诨蛑委煛⒐鈩?dòng)力治療、抗血管生成治療和聯(lián)合生物材料進(jìn)行熱療。納米成像技術(shù)也可用于早期檢測癌細(xì)胞,它還可以重新規(guī)劃術(shù)前和術(shù)中腦瘤的手術(shù)過程[4]。在納米顆粒表面鍵合靶分子能增強(qiáng)其在腫瘤部位的親和力和跨越血腦屏障的能力,這使納米顆粒對(duì)腦癌的診斷和治療更具有可行性[1,5]。
1 膠質(zhì)瘤的分類
膠質(zhì)瘤是中樞神經(jīng)系統(tǒng)的異質(zhì)原發(fā)性腫瘤。根據(jù)細(xì)胞譜系,它們可以分為星形膠質(zhì)細(xì)胞、少突膠質(zhì)細(xì)胞和混合腫瘤細(xì)胞[6]。根據(jù)世界衛(wèi)生組織(WHO)的膠質(zhì)瘤分類指南,將其分為纖維性星形細(xì)胞瘤(WHO GradeⅠ)、彌漫性低位膠質(zhì)瘤(WHO GradeⅡ)、間變性膠質(zhì)瘤(WHO GradeⅢ)和惡性膠質(zhì)瘤(WHO GradeⅣ)[7]。
2 膠質(zhì)瘤治療的局限性
手術(shù)是惡性膠質(zhì)瘤的主要治療方式,然而它面臨著許多局限性。首先,腫瘤組織切除術(shù)十分復(fù)雜,技術(shù)門檻很高;其次術(shù)后不佳的主要原因是腫瘤與健康組織區(qū)域界限不清。在手術(shù)切除的過程中,通過X線成像可以很容易地發(fā)現(xiàn)腫瘤組織整體輪廓,但在視覺上腫瘤與正常的腦組織是難以區(qū)分的[3,6]。由于周圍組織與腫瘤部位存在相似性問題,不可能通過手術(shù)切除所有的腦瘤細(xì)胞,為復(fù)發(fā)留下了隱患[8]。膠質(zhì)瘤的高度侵襲性和浸潤性也是難以切除的原因[9]。血腦屏障是一種物理和生理的屏障,它是調(diào)節(jié)分子從系統(tǒng)循環(huán)進(jìn)入腦實(shí)質(zhì)的通路,是一種高選擇性的物理/生物屏障[10-11]。血腦屏障主要是由毛細(xì)血管內(nèi)皮與細(xì)胞間的緊密連接構(gòu)成,與其他器官的血管內(nèi)皮相比,腦毛細(xì)血管內(nèi)皮細(xì)胞之間無窗孔,缺少胞飲作用的載體,并且由于某些酶的存在等原因,阻止了大部分藥物進(jìn)入腦內(nèi)。血腦屏障的存在阻礙了腦膠質(zhì)瘤的治療,因此選擇一種恰當(dāng)?shù)募{米粒子,穿透血腦屏障并準(zhǔn)確地靶向腫瘤細(xì)胞尤其重要。
3 納米技術(shù)及治療腦膠質(zhì)瘤
由于大多數(shù)抗腫瘤藥物穿透血腦屏障的低滲透性,一般化學(xué)療法效果較差。納米技術(shù)的材料有很高的治療選擇性,通常廣泛地應(yīng)用于臨床。納米技術(shù)主要包括納米材料和納米粒子兩大研究領(lǐng)域。納米材料被廣泛的應(yīng)用于腦腫瘤的診斷和治療。納米粒子的類型包括:脂質(zhì)體、膠束、樹狀大分子等。
3.1 運(yùn)用脂質(zhì)體治療腦膠質(zhì)瘤
脂質(zhì)體是一種尺寸在納米或微米大小、由一個(gè)或多個(gè)磷脂雙分子層形成的封閉囊泡。由于其獨(dú)特的物理化學(xué)特性,脂質(zhì)體能夠結(jié)合親水性、疏水性的治療藥物。治療藥物的高劑量和特異性的組織靶向轉(zhuǎn)運(yùn)是一種有價(jià)值的臨床治療策略。因此設(shè)計(jì)脂質(zhì)體藥物遞送系統(tǒng)的目的是提升腫瘤藥物的治療水平,同時(shí)減少藥物的浪費(fèi)。例如靶向脂質(zhì)體包裹表阿霉素和塞來昔布,通過破壞腫瘤細(xì)胞的血管新生來實(shí)現(xiàn)治療腦膠質(zhì)瘤的效果。人們已經(jīng)發(fā)現(xiàn), 轉(zhuǎn)鐵蛋白受體和氯毒素修飾的聚乙二醇脂質(zhì)體具有重要的治療效果,它能顯著地促進(jìn)細(xì)胞轉(zhuǎn)染,增加質(zhì)粒DNA在血腦屏障的運(yùn)輸,然后靶向大腦神經(jīng)膠質(zhì)瘤細(xì)胞[12]。為實(shí)現(xiàn)轉(zhuǎn)運(yùn)藥物通過血腦屏障,然后靶向腦膠質(zhì)瘤發(fā)揮療效,Zong等[13]合成了一種細(xì)胞穿透肽和轉(zhuǎn)鐵蛋白修飾的雙靶向紫杉醇脂質(zhì)體,體內(nèi)外實(shí)驗(yàn)證明紫杉醇脂質(zhì)體能顯著增強(qiáng)實(shí)驗(yàn)動(dòng)物的治療效果。
3.2 運(yùn)用膠束治療腦膠質(zhì)瘤
膠束的粒徑大小在150 nm以下(優(yōu)先考慮100 nm,一般膠束粒度30~50 nm),因此膠束可以躲避單核吞噬細(xì)胞系統(tǒng),在腫瘤細(xì)胞內(nèi)高速高效釋放藥物[14]。采用乳化溶劑蒸發(fā)法制備了載有卡莫司汀的T7肽共軛膠束。靶向效率研究表明T7肽修飾的膠束在腫瘤內(nèi)的濃度高于非偶聯(lián)載體。與此同時(shí),數(shù)據(jù)顯示納米粒度與治療效果具有相關(guān)性。最小的納米顆粒具有最佳的治療效果,模型鼠體重減輕較少,存活時(shí)間明顯延長[15]。Li等[16]發(fā)現(xiàn)20%膽堿衍生物-聚乙二醇-阿霉素膠束有良好的細(xì)胞攝取能力和抗腫瘤活性。20%膽堿衍生物-聚乙二醇-阿霉素膠束因降低心臟毒性而具有良好的耐受性。原位膠質(zhì)瘤模型顯示治療組具有顯著的抗腫瘤活性和最長的生存時(shí)間。研究結(jié)果表明對(duì)于膠質(zhì)瘤的治療20%膽堿衍生物-聚乙二醇-阿霉素膠束是一個(gè)潛在的抗腫瘤靶向制劑。
3.3 樹狀大分子治療腦膠質(zhì)瘤
樹狀大分子呈現(xiàn)出高度枝狀的3D體系結(jié)構(gòu),包含一個(gè)引發(fā)核心和重復(fù)單元組成的許多內(nèi)部層,以及多個(gè)活躍的表面末端基團(tuán)[17]。樹狀大分子的表面基團(tuán)和分子量決定進(jìn)入細(xì)胞的動(dòng)力[18-19]。Li等[20]設(shè)計(jì)了一種可以靶向轉(zhuǎn)鐵蛋白并載有他莫昔芬的樹狀大分子,同時(shí)它也是一種pH敏感、雙重靶向修飾的藥物載體。pH值為4的時(shí)候(在弱酸性生理環(huán)境下),藥物釋放量大,載體較穩(wěn)定,并能準(zhǔn)確的靶向腫瘤細(xì)胞,顯著地提高腦膠質(zhì)瘤的治療效果。
3.4 運(yùn)用金屬納米粒子治療腦膠質(zhì)瘤
功能化納米粒子攜帶腫瘤特異性藥物(如抗體或蛋白質(zhì)),可進(jìn)一步提高它們的腫瘤靶向能力。為尋找一種新的治療策略來提高腦膠質(zhì)瘤的患者生存率,研究人員對(duì)氧化鐵納米粒子、金納米粒子、銀納米粒子開展了大量研究[21-22]。如Xu等[23]合成了具有超順磁性氧化鐵為核心的多功能納米粒子,用聚乙二醇/聚乙烯亞胺/吐溫80組成多功能外殼,以阿霉素為活性藥物。包裹阿霉素的吐溫80-磁性納米粒子對(duì)C6細(xì)胞的攝取等體外實(shí)驗(yàn)表明,吐溫80-磁性納米粒子和包封的阿霉素能通過施加外部磁場的方式轉(zhuǎn)運(yùn)到膠質(zhì)瘤,表明磁性靶向能更好地治療腦膠質(zhì)瘤。金納米粒子具有獨(dú)特的光學(xué)、化學(xué)、電及催化性能,且無毒[24-25]。Dixit等[26]設(shè)計(jì)了一種轉(zhuǎn)鐵蛋白肽包裹的金納米粒子。他們的研究結(jié)果表明,金納米粒子對(duì)治療腦瘤具有可行性。與此同時(shí),Liu等[19]發(fā)現(xiàn),使用銀納米粒子聯(lián)合放射治療膠質(zhì)瘤,可以發(fā)揮出促凋亡和抗增殖作用。
4 小結(jié)
納米技術(shù)是一種新型的診斷和治療腦膠質(zhì)瘤的方法。納米粒子可以修飾特殊的靶向配體,如抗體、糖類、多肽、葉酸等,這可能進(jìn)一步增加腫瘤組織中納米粒子的滯留和蓄積,起到準(zhǔn)確靶向腫瘤細(xì)胞發(fā)揮療效的作用。主動(dòng)靶向納米粒子除了配體的類型不同外,納米粒子在體內(nèi)的穩(wěn)定性、粒子的形狀和大小、配體密度等其他因素也在靶向治療中發(fā)揮重要作用。此外,納米粒子還裝載了成像探針,用于診斷早期的疾病和手術(shù)實(shí)時(shí)監(jiān)測,準(zhǔn)確地切除腫瘤組織。在過去的20年里,一些納米藥物已經(jīng)被批準(zhǔn)用于臨床,其中一些甚至已經(jīng)成為治療某些特定癌癥的標(biāo)準(zhǔn)藥物。納米技術(shù)在膠質(zhì)瘤治療方面仍需繼續(xù)研究,為膠質(zhì)瘤的治療提供新的希望。
[參考文獻(xiàn)]
[1] Saenz del Burgo L,Hernandez RM,Orive G, et al. Nanotherapeutic approaches for brain cancer management [J]. Nanomedicine:Nanotechnology,Biology,and Medicine,2014,10(5):905-919.
[2] Marie SK,Shinjo SM. Metabolism and brain cancer [J]. Clinics (Sao Paulo),2011,66(Suppl 1):33-43.
[3] Bhojani MS,Van Dort M,Rehemtulla A,et al. Targeted ima?鄄ging and therapy of brain cancer using theranostic nano?鄄particles [J]. Molecular Pharmaceutics,2010,7 (6):1921-1929.
[4] Orive G,Ali OA,Anitua E,et al. Biomaterial-based technologies for brain anti-cancer therapeutics and imaging [J]. Biochimicaet Biophysica Acta,2010,1806(1):96-107.
[5] Xu HL,ZhuGe DL,Chen PP,et al. Silk fibroin nanoparticles dyeing indocyanine green for imaging-guided photo-thermal therapy of glioblastoma [J]. Drug Delivery,2018, 25 (1):364-375.
[6] Gao X,Jin W. The emerging role of tumor-suppressive mic?鄄roRNA-218 in targeting glioblastoma stemness [J]. Cancer Letters,2014,353(1):25-31.
[7] Bredlau AL,Dixit S,Chen C,et al. Nanotechnology Applications for Diffuse Intrinsic Pontine Glioma [J]. Current neur?鄄opharmacology,2017,15(1):104-115.
[8] Xie Z,Shen Q,Xie C,et al. Retro-inverso bradykinin opens the door of blood-brain tumor barrier for nanocarriers in glioma treatment [J]. Cancer Letters,2015,369(1):144-151.
[9] Zhang F,Mastorakos P,Mishra MK,et al. Uniform brain tumor distribution and tumor associated macrophage targeting of systemically administered dendrimers [J]. Biomaterials,2015,52:507-516.
[10] Kim SS,Harford JB,Pirollo KF,et al. Effective treatment of glioblastoma requires crossing the blood-brain barrier and targeting tumors including cancer stem cells:the promise of nanomedicine [J]. Biochemical and Biophysical Research Communications,2015,468 (3):485-489.
[11] Su B,Wang R,Xie Z,et al. Effect of retro-inverso isomer of bradykinin on size-dependent penetration of blood-brain tumor barrier [J]. Small,2018,14(7). doi: 10. 1002/smll.201702331
[12] Yue PJ,He L,Qiu SW,et al. OX26/CTX-conjugated PEGylated liposome as a dual-targeting gene delivery system for brain glioma [J]. Molecular Cancer,2014,13(7):191.
[13] Zong T,Mei L,Gao H,et al. Synergistic dual-ligand doxorubicin liposomes improve targeting and therapeutic efficacy of brain glioma in animals [J]. Molecular Pharmaceutics,2014,11(7):2346-57.
[14] Miller T,Hill A,Uezguen S,et al. Analysis of immediate stress mechanisms upon injection of polymeric micelles and related colloidal drug carriers: implications on drug targeting [J]. Biomacromolecules,2012,13(6):1707-1718.
[15] Bi Y,Liu L,Lu Y,et al. T7 Peptide-Functionalized PEG-PLGA micelles loaded with carmustine for targeting therapy of glioma [J]. ACS Appl Mater Interfaces,2016. [Epub ahead of print]
[16] Li J,Yang H,Zhang Y,et al. Choline derivate-modified doxorubicin loaded micelle for glioma therapy [J]. ACS Applied Materials & Interfaces,2015,7:21589-21601.
[17] Hu J,Hu K,Cheng Y. Tailoring the dendrimer core for efficient gene delivery [J]. Acta Biomaterialia,2016,35:1-11.
[18] Xu L,Zhang H,Wu Y. Dendrimer advances for the central nervous system delivery of therapeutics [J]. ACS Chem?鄄ical Neuroscience,2014,5:2-13.
[19] Liu P,Huang Z,Chen Z,et al. Silver nanoparticles: a novel radiation sensitizer for glioma[J]. Nanoscale,2013, 5(23):11829-11836.
[20] Li Y,He H,Jia X,Lu WL,et al. A dual-targeting nano?鄄carrier based on poly(amidoamine) dendrimers conjugated with transferrin and tamoxifen for treating brain glio?鄄mas [J]. Biomaterials,2012,33(15):3899-3908.
[21] Brunetti V,Bouchet LM,Strumia MC. Nanoparticle-cored dendrimers: functional hybrid nanocomposites as a new platform for drug delivery systems [J]. Nanoscale,2015,7(9):3808-3816.
[22] Zheng M,Wang S,Liu Z,et al. Development of temozolomide coated nano zinc oxide for reversing the resistance of malignant glioma stem cells [J]. Materials Science & Engineering C,Materials For Biological Applications,2018,83:44-50.
[23] Xu HL,Mao KL,Huang YP,et al. Glioma-targeted superparamagnetic iron oxide nanoparticles as drug-carrying vehicles for theranostic effects [J]. Nanoscale,2016,8(29):14222-14236.
[24] Kumar D,Saini N,Jain N,et al. Gold nanoparticles:an era in bionanotechnology [J]. Expert Opinion on Drug Delivery,2013,10:397-409.
[25] Kodiha M,Wang YM,Hutter E,et al. Off to the organ?鄄elles-killing cancer cells with targeted gold nanoparticles [J]. Theranostics,2015,5(4):357-370.
[26] Dixit S,Novak T,Miller K,et al. Transferrin receptor-targeted theranostic gold nanoparticles for photosensitizer delivery in brain tumors [J]. Nanoscale,2015,7(5):1782-1790.
(收稿日期:2018-01-25 本文編輯:蘇 暢)