金海波,凌晨,李靜波
(1.北京理工大學(xué) 材料學(xué)院,北京 100081;2.結(jié)構(gòu)可控先進(jìn)功能材料與綠色應(yīng)用北京市重點(diǎn)實(shí)驗(yàn)室,北京 100081)
衛(wèi)星在近地軌道運(yùn)行時(shí),其外部熱環(huán)境會(huì)發(fā)生劇烈變化,溫度波動(dòng)范圍可達(dá)–150~150℃[1-3]。為了維持其搭載設(shè)備正常運(yùn)轉(zhuǎn),并最大限度地延長(zhǎng)設(shè)備服役壽命,航天器需要配備熱控系統(tǒng),使其在合適的溫度范圍內(nèi)運(yùn)行[4-5]。在空間環(huán)境中,輻射是航天器與環(huán)境換熱的唯一方式,且主要集中在中、遠(yuǎn)紅外波段[6]。可變發(fā)射率熱控器件可以根據(jù)工作溫度變化,實(shí)現(xiàn)低溫低熱輻射率和高溫高熱輻射率,從而大幅提高熱控效率[7-8],成為航天器熱控系統(tǒng)的重要組成部分。
隨著航天技術(shù)的不斷發(fā)展,微小型衛(wèi)星和納米衛(wèi)星等微型航天器由于其靈活、專業(yè)、低開(kāi)發(fā)、制備和運(yùn)行成本等優(yōu)勢(shì)受到了國(guó)際航天科研工作者的青睞。但是微/納衛(wèi)星體積小、空間利用率高、功率密度高,對(duì)衛(wèi)星的熱控技術(shù)提出了更大的挑戰(zhàn)[9]。
傳統(tǒng)的可變發(fā)射率熱控器件主要采用諸如百葉窗等電驅(qū)動(dòng)熱控器件,通常需要搭配溫度傳感器、驅(qū)動(dòng)器、驅(qū)動(dòng)元件、控制電路、供電系統(tǒng)等部件,增加了航天器重量、體積以及能源消耗,也增加了相應(yīng)的制造和發(fā)射成本。因此具有快速響應(yīng)、結(jié)構(gòu)簡(jiǎn)單、質(zhì)量小的高效新型航天器熱控器件成為目前航天熱控技術(shù)的研究熱點(diǎn)。
總結(jié)國(guó)內(nèi)外研究現(xiàn)狀,可變發(fā)射率熱控器件可分為主動(dòng)型和被動(dòng)型兩大類。主動(dòng)型熱控器件強(qiáng)調(diào)使用各種驅(qū)動(dòng)信號(hào)來(lái)調(diào)節(jié)各項(xiàng)熱控參數(shù),實(shí)現(xiàn)快速、精確控溫。如:基于微機(jī)電系統(tǒng)(Micro-Electro-Mechanical System,MEMS)的微型熱控百葉窗[7,10-15]、靜電開(kāi)關(guān)輻射器[16-25]、電致變色熱控器件[26-30]、可控?zé)崃總鬏數(shù)男滦蜔峁芗夹g(shù)[31-35]。而被動(dòng)型熱控器件則是利用器件自身特殊的物理化學(xué)性質(zhì),隨著環(huán)境溫度的變化,自主調(diào)節(jié)發(fā)射率,實(shí)現(xiàn)低溫低發(fā)射率、高溫高發(fā)射率。如:基于熱致變色的智能熱控器件(Smart Radiation Device,SRD)[36-40]、微型熱開(kāi)關(guān)[41-42]、智能型可反復(fù)展開(kāi)式輻射器[43-45]等。
微型熱控百葉窗是一種采用電驅(qū)動(dòng)的裝置,通過(guò)控制低發(fā)射率葉片遮擋高發(fā)射率散熱表面的方法來(lái)控制器件的整體發(fā)射率,進(jìn)而控制航天器溫度[46]。早期航天器設(shè)計(jì)中,傳統(tǒng)熱控百葉窗作為一種重要的熱控技術(shù)在各個(gè)國(guó)家的航天器中得到了廣泛運(yùn)用。我國(guó)于1971年3月3日發(fā)射的第2顆衛(wèi)星“實(shí)踐1號(hào)”便將熱控百葉窗技術(shù)運(yùn)用于該航天器的熱控系統(tǒng)當(dāng)中[47]。為了適應(yīng)航天器微尺度化的發(fā)展趨勢(shì),基于MEMS的微型熱控百葉窗受到了航天科研工作者的廣泛關(guān)注。美國(guó)約翰霍普金斯大學(xué)Osiander等研制了一種可以通過(guò)開(kāi)關(guān)葉片來(lái)控制器件輻射率的MEMS微型熱控百葉窗,在每平方厘米大小的表面集成了400個(gè)0.15 mm2大小的微型葉片,可以通過(guò)電信號(hào)驅(qū)動(dòng)葉片的開(kāi)關(guān)來(lái)控制器件的輻射率,如圖 1所示。美國(guó)航空航天局(National Aeronautics and Space Administration,NASA)發(fā)射的ST-5衛(wèi)星上使用微型熱控百葉窗,其發(fā)射率變化范圍為0.3~0.6,循環(huán)壽命可達(dá)到10 000~50 000次[11-12]。因?yàn)榘偃~窗及其驅(qū)動(dòng)器占據(jù)了表面積的50%以上,其理論填充系數(shù)(實(shí)際輻射面積與設(shè)備投影面積的比值)無(wú)法超過(guò)50%[11]。Douglas等在實(shí)驗(yàn)室條件下將發(fā)射率調(diào)節(jié)范圍提高到了0.5~0.88[7]。蘭州空間技術(shù)物理研究所也于2011年研制出新型“三明治”微型百葉窗結(jié)構(gòu),其有效發(fā)射率變化范圍可以達(dá)到0.36~0.79[15]。
圖1 MEMS熱控百葉窗Fig.1 MEMS thermal control shutter
靜電開(kāi)關(guān)輻射器(Electrostatic Switched Radiator,ESR)是在真空中通過(guò)靜電力控制高發(fā)射率薄膜表面同低發(fā)射率基板表面的縫隙,進(jìn)而調(diào)節(jié)發(fā)射率變化,以此實(shí)現(xiàn)航天器熱管理的主動(dòng)型熱控元器件,工作原理如圖 2所示[5,18]。當(dāng)開(kāi)關(guān)關(guān)閉,ESR處于保溫狀態(tài),頂部的高發(fā)射率薄膜由隔熱材料支架支撐,與基板表面形成幾十微米厚的真空層。因此開(kāi)關(guān)關(guān)閉時(shí),熱量無(wú)法有效向外輻射,達(dá)到保溫效果。當(dāng)開(kāi)關(guān)打開(kāi),ESR處于散熱狀態(tài),高發(fā)射率薄膜受靜電力作用與基板接觸,航天器基板上的熱量可以通過(guò)高發(fā)射率薄膜向宇宙空間輻射[22]。2006年NASA對(duì)靜電開(kāi)關(guān)輻射器進(jìn)行了飛行實(shí)驗(yàn),其發(fā)射率變化幅度為0.7[20,23]。如今ESR技術(shù)結(jié)合MEMS也呈現(xiàn)出微型化的趨勢(shì)。近期韓國(guó)朝鮮大學(xué)Kim教授設(shè)計(jì)了一種微型電珠散熱器,通過(guò)改變電場(chǎng)方向使得電珠移動(dòng),進(jìn)而改變散熱器的輻射率,其發(fā)射率變化范圍從0.33~0.65[48]。
圖2 靜電開(kāi)關(guān)輻射器(ESR)結(jié)構(gòu)與工作原理圖[5]Fig.2 Principle of electrostatic switchable radiator(ESR)[5]
電致變色是指材料的光學(xué)性質(zhì)(吸收率、發(fā)射率、透過(guò)率等)在外加電場(chǎng)的作用下發(fā)生可逆變化的現(xiàn)象[27,30,49]。在熱控過(guò)程中,無(wú)論是微型百葉窗還是靜電開(kāi)關(guān)輻射器,其發(fā)射率調(diào)控都涉及機(jī)械過(guò)程。電致變色熱控涂層(Electrochromic,EC)則是依靠外加電場(chǎng)作用下的可逆化學(xué)過(guò)程改變發(fā)射率,從而實(shí)現(xiàn)航天器熱控。美國(guó)NASA“新盛世計(jì)劃”重點(diǎn)研究了電致變色涂層在航天器熱控方面的應(yīng)用,并在2006年發(fā)射的ST-5衛(wèi)星上對(duì)電致變色熱控器件進(jìn)行了飛行實(shí)驗(yàn)驗(yàn)證[11]。美國(guó)EES公司設(shè)計(jì)的電致變色熱控器件在原有器件結(jié)構(gòu)基礎(chǔ)上增加了一層透明保護(hù)膜,將電致變色層與空間環(huán)境隔離,提高了熱控器件的服役性能。該器件于2007年搭載美國(guó)MidSTAR衛(wèi)星進(jìn)行空間飛行試驗(yàn),試驗(yàn)表明器件具有良好的熱控性能[6,12]。如圖 3所示,電致變色熱控器件主要由反射電極(Reflective Electrode,RE)、離子存儲(chǔ)層(Ion Storage,IS)、電解質(zhì)層(Ion Conductor,IC)、電致變色層(Electrochromic,EC)、透明導(dǎo)電層(Transparent Electrode,TE),5層膜結(jié)構(gòu)組成[1,28]。安裝在航天器表面的RE層具有反射紅外光線的能力;IS層主要起到存儲(chǔ)功能離子的作用;IC層則為EC層和IS層間的離子傳輸提供通道;EC層作為器件核心,是電致變色反應(yīng)層,變色層的性能決定了整體器件的熱控能力;頂層TC層是具有高電導(dǎo)率和高紅外透射率的透明電極,同時(shí)保護(hù)器件免受宇宙空間原子氧的影響[1,5]。
圖3 電致變色熱控器件[41]Fig.3 Electrochromic thermal control device[41]
Demiryont等設(shè)計(jì)的電致變色熱控器件不僅擁有較低的密度(5 g/m2),而且在實(shí)驗(yàn)室條件下平均發(fā)射率變化幅度達(dá)到0.7,特定波長(zhǎng)的發(fā)射率調(diào)節(jié)變化最大接近0.9,空間實(shí)驗(yàn)中平均發(fā)射率調(diào)節(jié)變化幅度達(dá)到了0.3[1,50-51]。Chandrasekhar等設(shè)計(jì)的電致變色熱控器件,發(fā)射率調(diào)節(jié)變化幅度接近0.5[52]。我國(guó)蘭州物理研究所何延春等采用磁控濺射方法,制備了WO3/ITO/Glass簡(jiǎn)易電致變色器件,透過(guò)率平均變化達(dá)到50%,具有較好的變色性能[5,53]。近期加拿大科研人員Camirand和他的團(tuán)隊(duì)通過(guò)改變不同的濺射壓強(qiáng)控制WO3薄膜的孔隙率。利用循環(huán)伏安法結(jié)合原位傳輸測(cè)量,發(fā)現(xiàn)更快的電荷注入可以有效影響紅外調(diào)制能力[54]。雖然各種電致變色熱控器件擁有諸多優(yōu)異的性能,但是在實(shí)際應(yīng)用上依舊面臨許多問(wèn)題。在電致變色層材料的選擇方面,有機(jī)材料存在易降解的問(wèn)題,而無(wú)機(jī)材料變色響應(yīng)時(shí)間較長(zhǎng),而且變色材料在外空間劇烈溫度變化條件下,都面臨著循環(huán)壽命欠佳的問(wèn)題[29,55]。
熱管概念于1942年首次被提出,具有極好的導(dǎo)熱效果,已經(jīng)成為航天器熱控技術(shù)中一種重要的傳熱元件[32-34]。熱管一般由管殼、管芯和工作介質(zhì)組成,其基本工作原理是使熱管一端受熱,使管內(nèi)液體蒸發(fā)至另一端冷凝成液體,再利用毛細(xì)力作用使之回流,如此循環(huán)達(dá)到熱控的目的[47]。熱管系統(tǒng)經(jīng)在航天器上的應(yīng)用,證明了其有效性和可靠性[35]。隨著航天技術(shù)的發(fā)展,熱管技術(shù)也在不斷進(jìn)步,近年來(lái)毛細(xì)抽吸兩相流體回路(Capillary Pump Loop,CPL)[56-58]熱管和環(huán)路熱管(Loop Heat Pipe,LHP)[59-60]作為兩個(gè)重要的研究方向受到了各國(guó)研究者的廣泛關(guān)注,其結(jié)構(gòu)如圖 4所示。目前環(huán)路熱管(LHP)發(fā)展較好,并進(jìn)行了多次飛行實(shí)驗(yàn),取得了較好的效果,成為一種重要的航天器熱控技術(shù)。CPL作為一種新型熱量收集輸運(yùn)技術(shù),在大型航天器熱控系統(tǒng)中有著較好的發(fā)展前景。
圖4 熱管示意圖Fig.4 Schematic of heat pipe
被動(dòng)型可變發(fā)射率熱控器件是利用材料自身物理化學(xué)性質(zhì),根據(jù)環(huán)境溫度調(diào)節(jié)發(fā)射率,起到智能調(diào)控航天器內(nèi)部溫度的作用。它不需要主動(dòng)型熱控器件所需的諸如控制電路、驅(qū)動(dòng)、動(dòng)件和能源供給等部件及繁復(fù)的結(jié)構(gòu)。這對(duì)空間和能源極其有限的空天飛行器來(lái)說(shuō)具有重要意義。
日本宇宙航空開(kāi)發(fā)機(jī)構(gòu)/宇宙科學(xué)研究所(Japan Aerospace Exploration Agency/Institute of Space and Aeronautical Science,JAXA/ISAS),開(kāi)發(fā)了一種100 W量級(jí)輕型智能輻射器,該散熱器具有環(huán)境自適應(yīng)能力并裝有記憶可逆型散熱板,具有較高的應(yīng)用潛力,并于2002年開(kāi)始實(shí)驗(yàn)[43-44]。在不同的熱環(huán)境中,即使沒(méi)有電力支持它依舊可以根據(jù)航天器內(nèi)部溫度與外空間環(huán)境溫度的差異調(diào)整散熱板。如圖 5所示,低溫條件下,散熱板收攏吸熱,高溫條件下散熱板展開(kāi)散熱[61]。于2009年報(bào)道的智能型可反復(fù)展開(kāi)式輻射器的反復(fù)展開(kāi)測(cè)試、真空熱性能測(cè)試和振動(dòng)測(cè)試結(jié)果表明,在–30~30℃的溫度范圍內(nèi),散熱板可實(shí)現(xiàn)從0~140°反復(fù)展開(kāi)。熱平衡試驗(yàn)和功率循環(huán)試驗(yàn)等熱性能測(cè)試表明,智能輻射器的自主熱控能力隨功率的變化而變化。雖然振動(dòng)測(cè)試結(jié)果對(duì)器件造成了輕微的損傷,但不會(huì)對(duì)熱控系統(tǒng)的結(jié)構(gòu)完整性產(chǎn)生影響。這些成功的服役性能和熱控性能測(cè)試實(shí)驗(yàn)證明,該輻射器具有實(shí)際應(yīng)用的價(jià)值[45]。
圖5 智能型可反復(fù)展開(kāi)式輻射器[61]Fig.5 Intelligent deployable/stowable radiator[61]
微型熱開(kāi)關(guān)具有適應(yīng)外界環(huán)境溫度來(lái)調(diào)節(jié)器件散熱速率的能力。當(dāng)設(shè)備產(chǎn)生大量熱量,熱開(kāi)關(guān)將電子元件同散熱器連接起來(lái);當(dāng)設(shè)備不再產(chǎn)生熱量,便將連接斷開(kāi)保存熱量,從而保障設(shè)備處于理想的溫度范圍內(nèi)[41]。如圖 6所示,使用熱開(kāi)關(guān)將每個(gè)內(nèi)部組件連接到衛(wèi)星散熱器。因此,每個(gè)內(nèi)部元器件的溫度可以通過(guò)選擇合適的熱交換工作溫度來(lái)單獨(dú)控制。這一特性使它們成為一種重要的現(xiàn)代衛(wèi)星熱控技術(shù)。微型熱開(kāi)管可通過(guò)多種方式調(diào)節(jié)導(dǎo)熱性能,美國(guó)“火星漫游者”探測(cè)器所搭載的石蠟啟動(dòng)微型熱開(kāi)關(guān),這種熱開(kāi)關(guān)依靠石蠟融化過(guò)程中的體積膨脹,可使其熱導(dǎo)率達(dá)到30倍的變化,其熱導(dǎo)率最大可達(dá)到0.4 W/℃[4]。Lankford等開(kāi)發(fā)了一種氣隙式微型熱開(kāi)關(guān),通過(guò)加熱吸附床中的吸附劑控制開(kāi)關(guān)結(jié)構(gòu)間隙中氣體的體積,進(jìn)而改變熱傳導(dǎo)效率[62]。除了上述兩種常見(jiàn)的熱開(kāi)關(guān),見(jiàn)諸報(bào)道的熱開(kāi)關(guān)還有非均勻膨脹型熱開(kāi)關(guān)(Differential Thermal Expansion,DTE)[63]、可調(diào)制熱層開(kāi)關(guān)(Variable Thermal Layer,VTL)[64]和電濕潤(rùn)介質(zhì)開(kāi)關(guān)[65]等。
圖6 微型熱開(kāi)關(guān)輻射器[41]Fig.6 Micro thermal switch radiator[41]
熱致變色功能材料是一類基于熱致相變實(shí)現(xiàn)有效的光學(xué)調(diào)制的材料。材料受熱發(fā)生相變,光的透過(guò)率和反射率在熱致相變前后發(fā)生顯著變化,從而實(shí)現(xiàn)對(duì)環(huán)境溫度自適應(yīng)的智能光學(xué)響應(yīng)。因此,熱致變色材料在光電子器件、激光防護(hù)和航天器熱控用智能型輻射器件等方面具有重要的應(yīng)用價(jià)值。無(wú)機(jī)金屬氧化物熱致變色材料穩(wěn)定性高,適于空間環(huán)境應(yīng)用。其中,二氧化釩(VO2)和鈣鈦礦稀土堿土金屬錳氧化物(LaSrMnO3型)熱致變色材料是當(dāng)前最具潛力的SRD材料。
2.3.1 鈣鈦礦稀土堿土金屬錳氧化物
用于航天器SRD的鈣鈦礦稀土堿土金屬錳氧化物主要為L(zhǎng)a1-xSrxMnO3和La1-xCaxMnO3化合物。它們是在LaMnO3中用Sr2+/Ca2+替代部分La3+形成的畸變鈣鈦礦結(jié)構(gòu)錳氧化物,鈣鈦礦晶胞原型如圖 7所示[66]。La1-xSr/CaxMnO3是一種電子強(qiáng)關(guān)聯(lián)材料,通過(guò)改變化合物中的Sr/Ca含量,金屬–絕緣轉(zhuǎn)變(Metal-Insulator Transition,MIT)溫度可以調(diào)控到室溫附近[67-69]。其低溫金屬相對(duì)紅外光強(qiáng)反射,高溫絕緣相則對(duì)紅外光高透過(guò)。由于其光學(xué)性能與航天器熱控要求相匹配,受到了來(lái)自中國(guó)和日本科學(xué)家的關(guān)注[70-73]。研究表明隨著Sr2+/Ca2+摻雜量的不同,La1-xSrxMnO3的發(fā)射率將產(chǎn)生較大的變化[74]。2003年Tachikawa等針對(duì)La1-xSrxMnO3鈣鈦礦錳氧化物進(jìn)行了研究,其最高發(fā)射率可達(dá)0.65,最低發(fā)射率為0.28,發(fā)射率調(diào)節(jié)范圍達(dá)到0.37[75]。近年來(lái)南京理工大學(xué)利用射頻濺射法分別在不同基底上制備了摻雜錳酸鑭熱致變色薄膜,其發(fā)射率變化幅度達(dá)到0.43,呈現(xiàn)出優(yōu)良的熱控性能[76-77]。2017年日本的Shiota等利用金屬有機(jī)物分解技術(shù)在Si基底上制備了致密單相鈣鈦礦(La1-xSrx)MnO3-δ薄膜,觀察到發(fā)射率隨鐵磁-順磁相變產(chǎn)生變化,發(fā)射率變化幅度約0.2[78]。
圖7 LaMnO3晶格結(jié)構(gòu)Fig.7 Lattice structure of LaMnO3
雖然其光學(xué)特性可以滿足航天器熱控要求,但是鈣鈦礦錳氧化物材料的太陽(yáng)吸收率較高,需要利用多層光學(xué)膜結(jié)構(gòu)降低其太陽(yáng)吸收率。此類材料的熱致變色響應(yīng)溫度范圍較寬,熱控響應(yīng)相對(duì)緩慢,難以實(shí)現(xiàn)精確熱控管理。此外,鈣鈦礦錳氧化物材料需要精確的成分控制才能實(shí)現(xiàn)功能特性。這都是未來(lái)實(shí)際應(yīng)用中需要克服的難題。
2.3.2 二氧化釩熱致變色材料
二氧化釩(VO2)作為一種過(guò)渡金屬氧化物,在68℃左右發(fā)生金屬–絕緣體相變(MIT),相變響應(yīng)速度極快,小于納秒量級(jí)[79-80]。伴隨著相變的發(fā)生,VO2由高溫金紅石金屬相(R相,空間群P42/mnm)轉(zhuǎn)變成低溫單斜半導(dǎo)相(M1相,空間群P21/c),如圖 8所示。伴隨MIT相變,其電阻率和紅外透過(guò)率發(fā)生大幅度突變,電阻率變化幅度可高達(dá)4 ~5個(gè)數(shù)量級(jí),紅外透過(guò)率也由高溫低透過(guò)率高反射率狀態(tài)變?yōu)榈蜏馗咄高^(guò)率低反射率狀態(tài),透光率變化可達(dá)70%以上[81]。相應(yīng)地,VO2薄膜發(fā)射率也會(huì)發(fā)生突變,發(fā)射率變化幅度達(dá)到0.6[82]。
圖8 VO2相變前后結(jié)構(gòu)及紅外透過(guò)率變化Fig.8 Structure and infrared transmittance changes during the VO2 phase transition
然而VO2對(duì)紅外光低溫高透過(guò)、高溫高反射,其發(fā)射率隨溫度變化正好與航天器熱控需求相反。加拿大學(xué)者Benkahoul等直接在金屬鋁基材上制備VO2薄膜,利用鋁對(duì)紅外光的強(qiáng)反射,實(shí)現(xiàn)了材料光學(xué)性能的反轉(zhuǎn),獲得了適于航天器熱控應(yīng)用的發(fā)射率可調(diào)的器件[83]。雖然此器件的發(fā)射率調(diào)制率只有0.22[83],但是此項(xiàng)工作證明,將VO2材料輔以強(qiáng)反射基底,可以發(fā)揮VO2的熱致變色性能,實(shí)現(xiàn)衛(wèi)星熱控功能。研究者們先后提出了利用多層膜結(jié)構(gòu)改善SRD熱控性能的研究思路[84-86],基本原理是在強(qiáng)反射基底與VO2薄膜間引入光介質(zhì)層,采用高反射金屬膜/紅外透光介質(zhì)膜/VO2膜以及防靜電膜的復(fù)合膜結(jié)構(gòu),形成非對(duì)稱法布里–珀羅(F-P)諧振微腔,通過(guò)相干相消,實(shí)現(xiàn)低溫低發(fā)射率,高溫高發(fā)射率的熱控功能[84-86]。非對(duì)稱F–P諧振微腔結(jié)構(gòu)示意如圖 9,高反射金屬膜、紅外透光介質(zhì)膜、VO2膜構(gòu)成基本的復(fù)合膜結(jié)構(gòu)。
在航天器SRD應(yīng)用研究方面,加拿大MPB通信公司在加拿大航天局(Canadian Space Agency,CSA)和歐洲航天局(European Space Agency,ESA)的資助下開(kāi)展了基于VO2的航天器用SRD器件的研究。他們采用金屬Al基底,將具有一定尺寸和形狀的熱致相變顆粒分散于SiO2介質(zhì)中,制備出了低溫低發(fā)射率、高溫高發(fā)射率,在30~90℃范圍內(nèi)發(fā)射率變化△ε~0.45的熱致變色可調(diào)發(fā)射率涂層[88]。MPB公司還開(kāi)發(fā)出Ag/VO2/SiO2/VO2多層膜結(jié)構(gòu)智能型熱控器件,發(fā)射率變化范圍為0.38~0.74,太陽(yáng)吸收率僅為0.32。器件經(jīng)4 000次的真空熱循環(huán)和17次抗熱震穩(wěn)定性實(shí)驗(yàn)(溫度區(qū)間為–196~165℃),仍然具有較好的熱控性能,表明器件具有較好的穩(wěn)定性和熱服役性能[89]??紤]空間復(fù)雜環(huán)境對(duì)器件熱控效率的影響,Jiang等開(kāi)展了空間原子氧環(huán)境模擬實(shí)驗(yàn),研究發(fā)現(xiàn)空間氧原子環(huán)境對(duì)器件性能影響甚微[90]。Ali Hendaoui等提出了一種簡(jiǎn)單的三層薄膜結(jié)構(gòu),如圖 10所示,在VO2相變前后發(fā)射率由0.22增加至0.71,發(fā)射率變化達(dá)到0.49[84]。意大利學(xué)者Li Voti等研究了基于VO2/Cu和VO2/Ag的多層膜結(jié)構(gòu),發(fā)射率隨著層數(shù)的增加而增加,其發(fā)射率最大變化范圍為0.3~0.7[91]。2017年美國(guó)亞利桑那州立大學(xué)的Sydney Taylor等利用單軸傳遞矩陣方法和有效介質(zhì)理論計(jì)算了器件輻射特性,計(jì)算結(jié)果顯示隨著VO2相變的發(fā)生,智能熱控器件形成法布里–珀羅諧振微腔,實(shí)現(xiàn)低溫低發(fā)射率,高溫高發(fā)射率的熱控性能[87]。
圖9 VO2熱致變色智能輻射器(SRD)結(jié)構(gòu)示意[87]Fig.9 Schematic diagram of VO2 thermochromic smart radiator device (SRD)[87]
國(guó)內(nèi)相關(guān)工作仍處于起步和技術(shù)儲(chǔ)備階段。馮煜東等利用TFCALC軟件開(kāi)展了基于VO2的SRD的光學(xué)模擬設(shè)計(jì)研究,設(shè)計(jì)了Al2O3/Ag/Al2O3/TiO2/VO2/TiO2/VO2/TiO2/Ge和Al2O3/Ag/Al2O3/Ge/VO2/Ge/VO2/SiO2/Ge的多層膜結(jié)構(gòu),模擬計(jì)算的最大發(fā)射率變化可達(dá)0.5[92]。中國(guó)科學(xué)院上海硅酸鹽研究所的閆璐等設(shè)計(jì)了基于非對(duì)稱FP諧振腔的VO2智能熱控涂層,利用光學(xué)模擬計(jì)算研究了熱控涂層的發(fā)射率變化幅度△ε隨著VO2層厚度的變化規(guī)律,發(fā)現(xiàn)△ε隨VO2膜厚度增加先增大后減小,最大可達(dá)到0.6[93]。他們制備的Ag/HfO2/VO2三層膜結(jié)構(gòu)SRD器件(如圖 11),當(dāng)VO2薄膜厚度為50 nm時(shí)△ε達(dá)到最大,發(fā)射率調(diào)節(jié)范圍為0.13~0.68[94]。
已有的研究工作表明,VO2/光介質(zhì)層/金屬基底多層膜結(jié)構(gòu)的發(fā)射率與基底材料、光介質(zhì)層材料、膜層厚度、多層結(jié)構(gòu)形式等各種因素均有密切關(guān)系,但最關(guān)鍵的因素是作為SRD器件核心材料的VO2薄膜的光學(xué)調(diào)制性能,即VO2薄膜的質(zhì)量。
航天器用VO2基SRD器件不但需要VO2具有強(qiáng)的紅外調(diào)制能力還要保持低的太陽(yáng)吸收率,這對(duì)VO2薄膜質(zhì)量提出了很高的要求;為實(shí)現(xiàn)有效熱控,還需降低VO2的相變溫度。然而,制備高質(zhì)量的VO2薄膜難度較大,這主要是因?yàn)閂O2在空氣氣氛下是亞穩(wěn)相,熱處理過(guò)程中氧分壓微小的變化就易形成第二相,而且氧空位對(duì)VO2的相變性能具有顯著的影響[39]。
國(guó)內(nèi)外科研工作者在VO2薄膜制備及其相變溫度調(diào)控方面開(kāi)展了廣泛的研究。目前制備VO2薄膜的工藝主要有脈沖激光沉積[84,95]、反應(yīng)蒸發(fā)[96]、磁控濺射[97]、分子束外延[98]、溶膠–凝膠[99]、化學(xué)氣相沉積法[100]和水熱法[37]等。其中最具實(shí)用價(jià)值的是磁控濺射、溶膠–凝膠和水熱法。溶膠凝膠法簡(jiǎn)便易行,但所制備薄膜的質(zhì)量普遍低于磁控濺射和水熱法,溶膠凝膠法制備的VO2薄膜的相變電阻躍遷幅度基本小于3個(gè)數(shù)量級(jí)[99,101],而磁控濺射和水熱法所制備薄膜的相變電阻躍遷幅度可達(dá)~4個(gè)數(shù)量級(jí)[37,97]。北京理工大學(xué)金海波課題組對(duì)磁控濺射法和液相法制備VO2薄膜開(kāi)展了系統(tǒng)的研究。在磁控濺射制備VO2薄膜的研究工作中發(fā)現(xiàn)襯底誘導(dǎo)取向生長(zhǎng)對(duì)VO2薄膜的熱處理穩(wěn)定性和光、電性能具有顯著影響[102],為利用磁控濺射技術(shù)制備高質(zhì)量VO2薄膜提供了技術(shù)基礎(chǔ)。首次提出了利用襯底誘導(dǎo)技術(shù)采用水熱法制備具有規(guī)則網(wǎng)絡(luò)結(jié)構(gòu)薄膜的研究思路,成功制備得到具有桁架結(jié)構(gòu)的VO2/Al2O3網(wǎng)絡(luò)薄膜和具有正交結(jié)構(gòu)的VO2/TiO2網(wǎng)絡(luò)薄膜,如圖 12所示。該網(wǎng)絡(luò)結(jié)構(gòu)VO2薄膜具有優(yōu)良的結(jié)晶性能,電阻調(diào)制幅度達(dá)到4.8個(gè)數(shù)量級(jí),如圖 12(b)。其自組裝的多孔結(jié)構(gòu)提高了薄膜的可見(jiàn)光透過(guò)率,最大可見(jiàn)光透過(guò)率超過(guò)65%,如圖 12(d),同時(shí)薄膜保持了高的紅外調(diào)制率,相變前后對(duì)2 000 nm紅外光的調(diào)制率達(dá)到41.9%,對(duì)5 000 nm紅外光調(diào)制率接近50%。由于網(wǎng)絡(luò)薄膜具有桁架結(jié)構(gòu),薄膜表現(xiàn)出了優(yōu)異的抗相變疲勞損傷性能,經(jīng)500次熱循環(huán)相變,薄膜性能基本沒(méi)有改變,如圖 12(c)。結(jié)合襯底誘導(dǎo)技術(shù),在長(zhǎng)有多晶TiO2緩沖層的石英玻璃上水熱法制備得到結(jié)合良好的多孔VO2納米片組裝膜,薄膜表現(xiàn)出。
優(yōu)異的熱致變色性能[40]。上述工作表明,利用誘導(dǎo)技術(shù),采用水熱法可以制備得到熱致變色性能優(yōu)良的VO2薄膜,從而滿足SRD性能要求。
圖12 VO2/Al2O3桁架結(jié)構(gòu)和VO2/TiO2正交結(jié)構(gòu)網(wǎng)絡(luò)膜Fig.12 VO2/Al2O3 trussed-structure network film and VO2/TiO2 orthogonal nanonet film
VO2是典型的電子強(qiáng)關(guān)聯(lián)材料,利用外電場(chǎng)可以激發(fā)相變,調(diào)節(jié)相變溫度[103]。Nakano等制備了VO2基雙電層晶體管,研究發(fā)現(xiàn),厚度為50 nm的VO2納米薄膜在3 V門(mén)電壓作用下,相變溫度下降到~50℃[104]。1.14%W摻雜VO2納米線在225 K溫度只需約1 V電壓即可誘導(dǎo)相變發(fā)生,隨著溫度升高,誘導(dǎo)相變所需的電場(chǎng)強(qiáng)度逐漸降低[105]。金海波課題組在VO2薄膜上制備間距40 μm的表面電極,在50℃利用外電場(chǎng)激發(fā)了VO2的金屬–絕緣轉(zhuǎn)變,隨氧缺位的增加誘導(dǎo)相變所需的電壓降低,如圖 13[39]。上述研究結(jié)果表明,較小的工作電壓即可顯著降低VO2薄膜的相變溫度,且結(jié)構(gòu)簡(jiǎn)單,為VO2基SRD設(shè)計(jì)提供了一個(gè)新思路。
圖13 VO2樣品的I-V曲線Fig.13 I-V curves of VO2 samples
已有的研究表明利用元素?fù)诫s可以改變VO2的相變溫度[106],其中高價(jià)金屬離子如W[107-108]、Mo[109]、Nb[110]等的摻雜可以有效降低VO2的相變溫度。如圖 14所示,隨著W元素?fù)诫s含量的增多,材料相變溫度有著明顯降低[111]。研究表明,W、Mo、Nb等元素?fù)诫s會(huì)弱化V-V鍵的共價(jià)性進(jìn)而降低V-V鏈相互作用的強(qiáng)度,最終降低了相變溫度TMIT。W摻雜VO2晶格結(jié)構(gòu)與d//軌道變化如圖 14(a)~14(b)所示[111-113]。然而,摻雜往往會(huì)對(duì)VO2的光學(xué)調(diào)制性能產(chǎn)生不利的影響,相關(guān)工作仍需進(jìn)一步深入展開(kāi)。
圖14 W摻雜VO2使其相變溫度發(fā)生改變Fig.14 Orbital change manipulation metal-insulator transition temperature in W-doped VO2
國(guó)內(nèi)外對(duì)VO2熱致變色SRD的研究進(jìn)展表明,VO2基SRD器件結(jié)構(gòu)簡(jiǎn)單、響應(yīng)速度快、紅外調(diào)制率高,是很具應(yīng)用前景的新一代熱控器件。通過(guò)進(jìn)一步優(yōu)化高質(zhì)量純相VO2大面積薄膜制備技術(shù)、優(yōu)化VO2薄膜SRD器件結(jié)構(gòu)、開(kāi)發(fā)合理的摻雜技術(shù),有望形成具有實(shí)用價(jià)值的特別適合微小衛(wèi)星的新一代熱控技術(shù)。
隨著航天技術(shù)的發(fā)展,微小型衛(wèi)星和納米衛(wèi)星等微型航天器的出現(xiàn),傳統(tǒng)的熱控器件面臨著巨大挑戰(zhàn)。相關(guān)研究表明,未來(lái)的航天器熱控技術(shù)有如下發(fā)展趨勢(shì):基于微機(jī)電系統(tǒng)(MEMS)的新型熱控器件將得到逐步應(yīng)用;同時(shí)紅外發(fā)射率可變材料,如電/熱致變色材料,尤其是VO2熱致變色材料,作為一類新興的功能材料具有極大的應(yīng)用和發(fā)展?jié)摿?;新型的CPL和LHP等熱管技術(shù)將會(huì)大大提高現(xiàn)有航天器的熱控能力。
下一代的航天器熱控系統(tǒng),將會(huì)提高各種熱控器件的協(xié)同應(yīng)用程度,被動(dòng)型和主動(dòng)型器件相互輔助,共同實(shí)現(xiàn)新一代航天器熱控管理。
[1]DEMIRYONT H,SHANNON III K,PONNAPPAN R.Electrochromic devices for satellite thermal control[C]// Space Tech.&Applic.Int.Forum-staif 2006.[S.l]:AIP,2006.
[2]DAVID G G.Spacecraft thermal control handbook volume I:fundamental technologies[J].Mechanical Engineering,2002(5):68.
[3]DONABEDIAN M.Spacecraft thermal control handbook,volume II:cryogenics[M].El Segundo,California:The Aerospace Press,2002.
[4]范含林.航天器熱控材料的應(yīng)用和發(fā)展[C]//航天材料及工藝研究所建所50周年科技論壇暨先進(jìn)功能復(fù)合材料技術(shù)學(xué)術(shù)交流會(huì)、中國(guó)宇航學(xué)會(huì)材料工藝專業(yè)委員會(huì)2007年學(xué)術(shù)研討會(huì).北京:中國(guó)宇航學(xué)會(huì),2007.FAN H L.Spacecraft thermal control materials[C]//The 50th Anniversary of the Institute of Aerospace Materials and Technology,BBS and Advanced Functional Composite Materials Technology Academic Exchange Meeting,China Aerospace Society Material Craft Professional Committee 2007 Academic Seminar.Beijing:Chinese Society of Astronautics,2007.
[5]曹生珠,陳學(xué)康,吳敢,等.航天器用可變發(fā)射率熱控器件[C]//空間材料及其應(yīng)用技術(shù)學(xué)術(shù)交流會(huì).北京:中國(guó)空間技術(shù)研究院,2011.CAO S Z,CHEN X K,WU G,et al.Spacecraft variable emittance thermal control devices[C]//Proceedings of the Space Materials and Applied Technology Academic Exchange.Beijing:China Academy of Space Technology,2011.
[6]劉東青,程海峰,鄭文偉,等.紅外發(fā)射率可變材料在航天器熱控技術(shù)中的應(yīng)用[J].國(guó)防科技大學(xué)學(xué)報(bào),2012,34(2):145-149.LIU D Q,CHENG H F,ZHENG W W,et al.Application of variable infrared-emissivity materials to spacecraft thermal control[J].Journal of National University of Defense Technology,2012,34(2):145-149.
[7]DOUGLAS D M,SWANSON T,OSIANDER R,et al.Development of the variable emittance thermal suite for the space technology 5 microsatellite[C]//AIP Conference Proceedings.Albuquerque,New Mexico:AIP,2002,608(1):204-210.
[8]郭寧.可變發(fā)射率熱控器件的研究進(jìn)展[J].真空與低溫,2003,9(4):187-190.GUO N.The development of the variable emittance thermal suite[J].Vacuum & Cryogenics,2003,9(4):187-190.
[9]潘增富.微小衛(wèi)星熱控關(guān)鍵技術(shù)研究[J].航天器工程,2007,16(2):16-21.PAN Z F.Study on key thermal control technology for microsatellite[J].Spacecraft Engineering,2007,16(2):16-21.
[10]PATTON S T,COWAN W D,ZABINSKI J S.Performance and reliability of a new MEMS electrostatic lateral output motor[C]//Reliability Physics Symposium Proceedings,1999.37th Annual.1999 IEEE International.San Diego,CA,USA:IEEE,1999:179-188.
[11]OSIANDER R,F(xiàn)IREBAUGH S L,CHAMPION J L,et al.Micro electromechanical devices for satellite thermal control[J].IEEE Sensors Journal,2004,4(4):525-531.
[12]OSIANDER R,CHAMPION J,DARRIN M,et al.Micro-machined shutter arrays for thermal control radiators on ST5[C]//40th AIAA Aerospace Sciences Meeting & Exhibit.Maryland:AIAA,2002:359.
[13]GARRISON D A,OSIANDER A R,CHAMPION J,et al.Variable emissivity through MEMS technology[C]//Thermal and Thermomechanical Phenomena in Electronic Systems,2000.ITHERM 2000.The Seventh Intersociety Conference on.Las Vegas:IEEE,2000(1):264-270.
[14]FARRAR D,DOUGLAS D M,SWANSON T,et al.MEMS shutters for thermal control-flight validation and lessons learned[C]//AIP Conference Proceedings.Albuquerque:AIP,2007,880(1):73-80.
[15]CAO S,CHEN X,WU G,et al.Study on design and fabrication of micro thermal control louvers[J].Rare Metal Materials and Engineering,2011,394(40):249-251.
[16]UENO A,SUZUKI Y.Parylene-based active micro space radiator with thermal contact switch[J].Applied Physics Letters,2014,104(9):093511.
[17]MOGHADDAM S,LAWLER J,CURRANO J,et al.Novel method for measurement of total hemispherical emissivity[J].Journal of Thermophysics and Heat Transfer,2007,21(1):128-133.
[18]MOGHADDAM S,LAWLER J,CURRANO J,et al.A space-based experiment to evaluate performance of electrostatic switched radiator(ESR)[J].2007(880):66-72.
[19]CURRANO J,MOGHADDAM S,LAWLER J,et al.Performance analysis of an electrostatic switched radiator using heat-flux-based emissivity measurement[J].Journal of Thermophysics and Heat Transfer,2008,22(3):360-365.
[20]BITER W,OH S,HESS S.Electrostatic switched radiator for space based thermal control[J].2002,608(8):73-80.
[21]BITER W,OH S.Performance results of the ESR from the space technology 5 satellites[J].AIP Conference Proceedings,2007,880(1):59-65.
[22]BITER W,HESS S,OH S.Development status of electrostatic switched radiator[C]//AIP Conference Proceedings.Albuquerque:AIP,2006,813(1):56-63.
[23]BITER W,HESS S,OH S.Electrostatic radiator for spacecraft temperature control[C]//AIP Conference Proceedings.Albuquerque:AIP,2004,699(1):96-102.
[24]BITER W,HESS S,OH S.Electrostatic appliqué for spacecraft temperature control[C]// AIP Conference Proceedings.Albuquerque:AIP,2003,654(1):162-171.
[25]BEASLEY M A,F(xiàn)IREBAUGH S L,EDWARDS R L,et al.Microfabricated thermal switches for emittance control[C]//AIP Conference Proceedings.Albuquerque:AIP,2004,699(1):119-125.
[26]ZHOU D,XIE D,XIA X,et al.All-solid-state electrochromic devices based on WO3||NiO films:material developments and future applications[J].Science China Chemistry,2016,60(1):3-12.
[27]PLATT J R.Electrochromism,a possible change of color producible in dyes by an electric field[J].The Journal of Chemical Physics,1961,34(3):862-863
[28]KOO B R,AHN H J.Fast-switching electrochromic properties of mesoporous WO3films with oxygen vacancy defects[J].Nanoscale,2017,9(45):17788-17793.
[29]KANU S S,BINIONS R.Thin films for solar control applications[J].Proceedings of the Royal Society A:Mathematical,Physical and Engineering Sciences,2009,466(2113):19-44.
[30]DEB S K.A novel electrophotographic system[J].Applied Optics,1969,8(101):192-195.
[31]ZHANG H,MI M,MIAO J,et al.Development and on-orbit operation of loop heat pipes on Chinese circumlunar return and reentry spacecraft[J].Journal of Mechanical Science and Technology,2017,31(6):2597-2605.
[32]SWANSON T D,BIRUR G C.NASA thermal control technologies for robotic spacecraft[J].Applied Thermal Engineering,2003,23(9):1055-1065.
[33]REAY D A.Heat pipes[J].Physics in Technology,2002,3(19):311-319.
[34]REAY D,HARVEY A.The role of heat pipes in intensified unit operations[J].Applied Thermal Engineering,2013,57(1-2):147-153.
[35]HOU Z Q,HUA C S,GUO S,et al.Performance investigation and application of grooved heat pipes[C]//American Institute of Aeronautics and Astronautics,Thermophysics Conference 14th.Orlando,F(xiàn)lorida,1979.
[36]RAJESWARAN B,PRADHAN J K,ANANTHA RAMAKRISHNA S,et al.Thermochromic VO2thin films on ITO-coated glass substrates for broadband high absorption at infra-red frequencies[J].Journal of Applied Physics,2017,122(16):163107.
[37]ZHANG J,JIN H,CHEN Z,et al.Self-Assembling VO2nanonet with high switching performance at wafer-scale[J].Chemistry of Materials,2015,27(21):7419-7424.
[38]GUO D,ZHAO Z,LI J,et al.Symmetric confined growth of superstructured vanadium dioxide nanonet with a regular geometrical pattern by a solution approach[J].Crystal Growth & Design,2017,17(11):5838-5844.
[39]ZHANG J,ZHAO Z,LI J,et al.Evolution of structural and electrical properties of oxygen-deficient VO2under low temperature heating process[J].ACS Appl.Mater Interfaces,2017,9(32):27135-27141.
[40]ZHANG J,LI J,CHEN P,et al.Hydrothermal growth of VO2nanoplate thermochromic films on glass with high visible transmittance[J].Scientific Reports,2016(6):27898.
[41]HENGEVELD D,MATHISON M,BRAUN J,et al.Review of modern spacecraft thermal control technologies[J].HVAC&R Research,2010,16(2):189-220.
[42]SUNADA E,LANKFORD K,PAUKEN M,et al.Wax-actuated heat switch for Mars surface applications[C]//AIP Conference Proceedings.Albuquerque: AIP,2002,608(1):211-213.
[43]NAGANO H,NAGASAKA Y,OHNISHI A.Development of a flexible thermal control device with high-thermal-conductivity graphite sheets[R].[s.l]: SAE Technical Paper,2003.
[44]NAGANO H,NAGASAKA Y,OHNISHI A.Simple deployable radiator with autonomous thermal control function[J].Journal of Thermophysics & Heat Transfer,2006,20(20):856-864.
[45]NAGANO H,OHNISHI A,HIGUCHI K,et al.Experimental investigation of a passive deployable/stowable radiator[J].Journal of Spacecraft and Rockets,2009,46(1):185-190.
[46]閔桂榮.航天器熱控制[M].北京:科學(xué)出版社,1998.MIN G R.Spacecraft thermal control[M].Beijing:Science Press,1998.
[47]侯增祺,閔桂榮.淺析航天器熱控技術(shù)的預(yù)先研究及其應(yīng)用研究[J].航天器工程,2004,13(2):1-9.HOU Z Q,MIN G R.Preliminary study on spacecraft thermal control technology and its application[J].Spacecraft Engineering,2004,13(2):1-9.
[48]KIM T,HAN S-H,OH H-U.Design and performance evaluation of MEMS-Based spaceborne variable emissivity radiator using movement of electrified beads[J].Journal of Microelectromechanical Systems,2017,26(1):113-119.
[49]CARPENTER M K,CONELL R S,CORRIGAN D A.The electrochromic properties of hydrous nickel oxide[J].Solar Energy Materials,1987,16(4):333-346.
[50]DEMIRYONT H,SHANNON III K C.Variable emittance electrochromic devices for satellite thermal control[C]//AIP Conference Proceedings.Albuquerque:AIP,2007,880(1):51-58.
[51]DEMIRYONT H,SHANNON K,WILLIAMS A.Emissivity modulating electro-chromic device[C]//Thermosense XXX.Orlando:International Society for Optics and Photonics,2008.
[52]CHANDRASEKHAR P,ZAY B J,MCQUEENEY T,et al.Variable emittance materials based on conducting polymers for spacecraft thermal control[C]//AIP Conference Proceedings.Albuquerque:AIP,2003,654(1):157-161.
[53]何延春,邱家穩(wěn).直流磁控濺射沉積WO3薄膜電致變色性能研究[J].真空與低溫,2007,13(1):16-20.HE Y C,QIU J W.The Electrochromic properties of WO3thin films by DC magentron sputtering[J].Vacuum & Cryogenics,2007,13(1):16-20.
[54]CAMIRAND H,BALOUKAS B,KLEMBERG-SAPIEHA J E,et al.In situ spectroscopic ellipsometry of electrochromic amorphous tungsten oxide films[J].Solar Energy Materials and Solar Cells,2015(140):77-85.
[55]BO G,WANG X,WANG K,et al.Preparation and electrochromic performance of NiO/TiO2nanorod composite film[J].Journal of Alloys and Compounds,2017(728):878-886.
[56]BUGBY D,MARLAND B,STOUFFER C,et al.Across-gimbal and miniaturized cryogenic loop heat pipes[C]//AIP Conference Proceedings.Albuquerque:AIP,2003,654(1):218-226.
[57]BUGBY D C,KROLICZEK E J,YUN J S.Development and testing of a miniaturized multi-evaporator hybrid loop heat pipe[C]//AIP Conference Proceedings.Albuquerque:AIP,2005,746(1):69-81.
[58]BUGBY D,WRENN K,WOLF D,et al.Multi-evaporator hybrid loop heat pipe for small spacecraft thermal management[C]//Aerospace Conference,2005 IEEE.Montana:IEEE,2005:810-823.
[59]DUTRA T,RIEHL R R.Loop heat pipe:design and performance during operation[C]//AIP Conference Proceedings.Albuquerque:AIP,2004,699(1):51-58.
[60]BAKER C L,GROB E W,MCCARTHY T V,et al.Geoscience laser altimetry system(GLAS)on-orbit flight report on the propylene loop heat pipes(LHPs)[C]//AIP Conference Proceedings.Albuquerque:AIP,2004,699(1):88-95.
[61]劉佳,李運(yùn)澤,常靜,等.微小衛(wèi)星熱控系統(tǒng)的研究現(xiàn)狀及發(fā)展趨勢(shì)[J].航天器環(huán)境工程,2011,28(1):77-82.LIU J,LI Y Z,CHANG J,et al.Research status and development trend of micro satellite thermal control system[J].Spacecraft Environment Engineering,2011,28(1):77-82.
[62]AARON K.Spacecraft thermal control handbook,volume 1:fundamental technologies[M].El Segundo:The Aerospace Press,2002.
[63]MARLAND B,BUGBY D,STOUFFER C.Development and testing of advanced cryogenic thermal switch concepts[C]//AIP Conference Proceedings.Albuquerque:AIP,2000,504(1):837-846.
[64]HAFER W,VITALE N,MACRIS C,et al.Design of a variable thermal layer (VTL) for a generic satellite component interface[C]//49th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference,16th AIAA/ASME/AHS Adaptive Structures Conference,10th AIAA Non-Deterministic Approaches Conference,9th AIAA Gossamer Spacecraft Forum,4th AIAA Multidisciplinary Design Optimization Specialists Conference.Illinois:AIAA,2008:2259.
[65]GONG J,CHA G,JU Y S.Thermal switches based on coplanar EWOD for satellite thermal control[C]//Micro Electro Mechanical Systems,2008.MEMS 2008.IEEE 21st International Conference on.Arizona:IEEE,2008:848-851.
[66]PICKETT W E,SINGH D J.Electronic structure and half-metallic transport in the La1-xCaxMnO3system[J].Phys Rev B Condens Matter,1996,53(3):1146-1160.
[67]JONKER G H.Semiconducting properties of mixed crystals with perovskite structure [J].Physica,1954,20(7-12):1118-1122.
[68]JONKER G H,SANTEN J H V.Ferromagnetic compounds of manganese with perovskite structure[J].Physica,1950,16(3):337-349.
[69]JONKER G H,SANTEN J H V.Magnetic compounds wtth perovskite structure III.ferromagnetic compounds of cobalt[J].Physica,1953,19(1):120-130.
[70]SHIMAKAWA Y,YOSHITAKE T,KUBO Y,et al.A variableemittance radiator based on a metal-insulator transition of(La,Sr)MnO3thin films[J].Applied Physics Letters,2002,80(25):4864-4866.
[71]TANG G,YU Y,CAO Y,et al.The thermochromic properties of La1-xSrxMnO3compounds[J].Solar Energy Materials and Solar Cells,2008,92(10):1298-1301.
[72]SHEN X,XU G,SHAO C,et al.Temperature dependence of infrared emissivity of doped manganese oxides in different wavebands (3-5 and 8-14 μm)[J].Journal of Alloys and Compounds,2009,479(1-2):420-422.
[73]SHEN X,XU G,SHAO C.The effect of B site doping on infrared emissivity of lanthanum manganites La0.8Sr0.2Mn1-xBxO3(B=Ti or Cu)[J].Journal of Alloys and Compounds,2010,499(2):212-214.
[74]SHIMAZAKI K,TACHIKAWA S,OHNISHI A,et al.Radiative and optical properties of La1-xSrxMnO3(0≤x≤0.4) in the vicinity of metal-insulator transition temperatures from 173 to 413K[J].International Journal of Thermophysics,2001,22(5):1549-1561.
[75]TACHIKAWA S,OHNISHI A,SHIMAKAWA Y,et al.Development of a variable emittance radiator based on a perovskite manganese oxide[J].Journal of Thermophysics and Heat Transfer,2003,17(2):264-268.
[76]FAN D,LI Q,DAI P.Temperature-dependent emissivity property in La0.7Sr0.3MnO3films[J].Acta Astronautica,2016(121):144-152.
[77]LU T,F(xiàn)AN D,LI Q,et al.Nanometer thick thermochromic film based on K-doped manganite oxide prepared by magnetron sputtering[J].Journal of Alloys and Compounds,2017(704):366-372.
[78]SHIOTA T,MORI Y,SUGIYAMA J,et al.Preparation of (La1-xSrx)MnO3-δthin films on Si (100) substrates by a metal-organic decomposition method for smart radiation devices[J].Thin Solid Films,2017(626):154-158.
[79]MORIN F J.Oxides which show a metal-to-insulator transition at the neel temperature[J].Physical Review Letters,1959,3(1):34-36.
[80]CAVALLERI A,DEKORSY T,CHONG H H W,et al.Evidence for a structurally-driven insulator-to-metal transition inVO2:A view from the ultrafast timescale[J].Physical Review B,2004,70(16):161102.
[81]ZHANG Z,GAO Y,CHEN Z,et al.Thermochromic VO2thin films:solution-based processing,improved optical properties,and lowered phase transformation temperature[J].Langmuir,2010,26(13):10738-10744.
[82]GUINNETON F,SAUQUES L,VALMALETTE J C.Role of surface defects and microstructure in infrared optical properties of thermochromic VO2materials[J].Journal of Physics & Chemistry of Solids,2005,66(1):63-73.
[83]BENKAHOUL M,CHAKER M,MARGOT J,et al.Thermochromic VO2film deposited on Al with tunable thermal emissivity for space applications[J].Solar Energy Materials & Solar Cells,2011,95(12):3504-3508.
[84]HENDAOUI A,éMOND N,CHAKER M,et al.Highly tunableemittance radiator based on semiconductor-metal transition of VO2thin films[J].Applied Physics Letters,2013,102(6):061107.
[85]HENDAOUI A,éMOND N,DORVAL S,et al.VO2-based smart coatings with improved emittance-switching properties for an energyefficient near room-temperature thermal control of spacecrafts[J].Solar Energy Materials and Solar Cells,2013(117):494-498.
[86]HENDAOUI A,éMOND N,DORVAL S,et al.Enhancement of the positive emittance-switching performance of thermochromic VO2films deposited on Al substrate for an efficient passive thermal control of spacecrafts[J].Current Applied Physics,2013,13(5):875-879.
[87]TAYLOR S,YANG Y,WANG L.Vanadium dioxide based Fabry-Perot emitter for dynamic radiative cooling applications[J].Journal of Quantitative Spectroscopy and Radiative Transfer,2017(197):76-83.
[88]KRUZELECKY R V,HADDAD E,WONG B,et al.Variable emittance thermochromic material and satellite system:U.S.Patent 7,761,053[P].USA:[s.n],2010.
[89]BENKAHOUL M,HADDAD E,KRUZELECKY R,et al.Multilayer tuneable emittance coatings,with higher emittance for improved smart thermal control in space applications[C]//40th International Conference on Environmental Systems.[S.l]:AIAA,2010.
[90]JIANG X,SOLTANI M,HADDAD E,et al.Effects of atomic oxygen on the thermochromic characteristics of VO2coating[J].Journal of Spacecraft and Rockets,2006,43(3):497-500.
[91]VOTI R L,LARCIPRETE M C,LEAHU G,et al.Optimization of thermochromic VO2based structures with tunable thermal emissivity[J].Journal of Applied Physics,2012,112(3):1750-1466.
[92]FENG Y D,WANG Z M,MA Y L,et al.Thin film design for advanced thermochromic smart radiator devices[J].Chinese Physics,2007,16(6):1704-1709.
[93]閆璐,王孝,曹韞真,等.基于二氧化釩的輻射率可調(diào)涂層設(shè)計(jì)[J].宇航材料工藝,2016,46(3):22-26.YAN L,WANG X,CAO Y Z,et al.Structure design of V02-based multilayer structure with tunable emittance[J].Aerospace Materials and Technology,2016,46(3):22-26.
[94]WANG X,CAO Y,ZHANG Y,et al.Fabrication of VO2-based multilayer structure with variable emittance[J].Applied Surface Science,2015(344):230-235.
[95]RATHI S,LEE I-Y,PARK J-H,et al.Postfabrication annealing effects on insulator-metal transitions in VO2 Thin-film devices[J].ACS applied materials & interfaces,2014,6(22):19718-19725.
[96]CASE F C.Modifications in the phase transition properties of predeposited VO2 films[J].Journal of Vacuum Science & Technology A:Vacuum,Surfaces,and Films,1984,2(4):1509-1512.
[97]CHANG T,CAO X,DEDON L R,et al.Optical design and stability study for ultrahigh-performance and long-lived vanadium dioxidebased thermochromic coatings[J].Nano Energy,2018(44):256-264.
[98]FAN L,CHEN S,WU Y,et al.Growth and phase transition characteristics of pure M-phase VO2epitaxial film prepared by oxide molecular beam epitaxy[J].Applied Physics Letters,2013,103(13):131914.
[99]PAN M,ZHONG H,WANG S,et al.Properties of VO2thin film prepared with precursor VO(ACAC)2[J].Journal of Crystal Growth,2004,265(1-2):121-126.
[100]GRAF D,SCHL?FER J,GARBE S,et al.Interdependence of structure,morphology,and phase transitions in CVD grown VO2and V2O3nanostructures[J].Chemistry of Materials,2017,29(14):5877-5885.
[101]PARTLOW D,GURKOVICH S,RADFORD K,et al.Switchable vanadium oxide films by a sol-gel process[J].Journal of Applied Physics,1991,70(1):443-452.
[102]DOU Y K,LI J B,CAO M S,et al.Oxidizing annealing effects on VO2 films with different microstructures[J].Applied Surface Science,2015(345):232-237.
[103]JEONG J,AETUKURI N,GRAF T,et al.Suppression of metalinsulator transition in VO2by electric field-induced oxygen vacancy formation[J].Science,2013,339(6126):1402-1405.
[104]NAKANO M,SHIBUYA K,OGAWA N,et al.Infrared-sensitive electrochromic device based on VO2[J].Applied Physics Letters,2013,103(15):153503.
[105]WU T-L,WHITTAKER L,BANERJEE S,et al.Temperature and voltage driven tunable metal-insulator transition in individual WxV1-xO2nanowires[J].Physical Review B,2011,83(7):073101.
[106]ZHANG R,JIN H B,GUO D,et al.The role of Fe dopants in phase stability and electric switching properties of Fe-doped VO2[J].Ceramics International,2016,42(16):18764-18770.
[107]JIN P,NAKAO S,TANEMURA S.Tungsten doping into vanadium dioxide thermochromic films by high-energy ion implantation and thermal annealing[J].Thin Solid Films,1998,324(1):151-158.
[108]PAN G,YIN J,JI K,et al.Synthesis and thermochromic property studies on W doped VO2films fabricated by sol-gel method[J].Scientific Reports,2017,7(1):6132.
[109]MAI L,HU B,HU T,et al.Electrical property of mo-doped VO2nanowire array film by melting-quenching sol-gel method[J].The Journal of Physical Chemistry B,2006,110(39):19083-19086.
[110]QUESADA-CABRERA R,POWELL M J,MARCHAND P,et al.Scalable production of thermochromic Nb-Doped VO2nanomaterials using continuous hydrothermal flow synthesis[J].Journal of Nanoscience and Nanotechnology,2016,16(9):10104-10111.
[111]HE X,ZENG Y,XU X,et al.Orbital change manipulation metalinsulator transition temperature in W-doped VO2[J].Physical Chemistry Chemical Physics,2015,17(17):11638-11646.
[112]REN Q,WAN J,GAO Y.Theoretical study of electronic properties of X-Doped (X=F,Cl,Br,I) VO2nanoparticles for thermochromic energy-saving foils[J].The Journal of Physical Chemistry A,2014,118(46):11114-11118.
[113]WAN J,REN Q,WU N,et al.Density functional theory study of M-doped (M=B,C,N,Mg,Al) VO2nanoparticles for thermochromic energy-saving foils[J].Journal of Alloys and Compounds,2016(662):621-627.