馬亞男 郭潔 李林光 翟浩 余賢美 張勇
摘要:蘋果作為我國栽培面積最大、產(chǎn)量最高的果樹品種,在調(diào)整農(nóng)業(yè)結(jié)構(gòu)、發(fā)展農(nóng)村經(jīng)濟和增加農(nóng)民收入過程中發(fā)揮著至關(guān)重要的作用。近年來,蘋果炭疽葉枯病在全國各蘋果產(chǎn)區(qū)大范圍爆發(fā)和流行,造成部分蘋果品種葉片脫落、樹勢削弱,導(dǎo)致次年果實減產(chǎn)甚至絕產(chǎn),對蘋果產(chǎn)量和品質(zhì)造成巨大影響,嚴(yán)重制約蘋果產(chǎn)業(yè)健康可持續(xù)發(fā)展。本文從蘋果炭疽葉枯病的病原學(xué)研究、侵染機制及抗病機制、防治策略三方面綜述了近年來的最新研究進展,以期對蘋果炭疽葉枯病有更全面的了解,探尋深入研究該病害病原菌分子致病機理的角度與手段,為防控藥劑研發(fā)和管理措施優(yōu)化提供重要參考信息,并為病害綜合防治和抗病品種的培育提供新思路。
關(guān)鍵詞:蘋果;炭疽葉枯病;病原學(xué);侵染機制;防治措施;研究進展
中圖分類號:S436.611.1+2-1文獻(xiàn)標(biāo)識號:A文章編號:1001-4942(2018)05-0160-08
Abstract China is the largest apple producer in the world. As a species of major commercial fruit tree, apple (Malus pumila) occupies the largest cultivation area and production in China, and played a significant role in improving agriculture structure, increasing farmers income and developing rural economy. In recent years, the outbreak and prevalence of Glomerella leaf spot (GLS) in a wide range of apple producing area in China have caused the leaf abscission and fruit rot of some apple varieties, which weakened the tree vigor and lead to decline in apple production, even resulted in no yield in the next year. Thus, GLS has an enormous impact on apple output and quality, and has seriously restricted the healthy and sustainable development of apple industry. Here we introduced the latest research progresses of GLS in three aspects: etiology research, infection mechanism as well as disease resistance mechanism and prevention strategies in order to have a deep understanding of this disease and discuss the idea and measure of the molecular pathogenesis research. The results of this research will provide important references for the research and development of effective fungicides and the optimization of management measures, and the new insights into the disease control of GLS and the breeding of disease-resistant cultivars to promote the healthy development of apple industry.
Keywords Apple; Glomerella leaf spot; Etiology; Infection mechanism; Prevention strategy; Research progress
蘋果(Malus pumila)在世界范圍內(nèi)均有種植。2016年全世界蘋果種植面積約為5 293 341 hm2,總產(chǎn)量達(dá)到89 329 182 t。中國蘋果種植面積占到世界近一半(2 383 905 hm2),產(chǎn)量約為44 448 575 t(Food and Agricultural Organization, 2017)。目前,影響蘋果產(chǎn)量的主要因素包括低溫時間較短、春夏季多雨、相對濕度較高和病蟲害嚴(yán)重等。近年來,蘋果炭疽葉枯?。℅lomerella leaf spot,GLS)在包括中國在內(nèi)的世界各蘋果產(chǎn)區(qū)大范圍爆發(fā)和流行,對蘋果產(chǎn)量和品質(zhì)均造成巨大影響,嚴(yán)重制約蘋果產(chǎn)業(yè)健康可持續(xù)發(fā)展。該病害是由圍小叢殼(Glomerella cingulata,有性態(tài)為炭疽菌屬Colletotrichum spp.)侵染引起的,主要侵染蘋果葉片,使葉片產(chǎn)生黑褐色病斑,最終干枯脫落,也會在夏季侵染果實造成果面的小型壞死斑點。
1988年,巴西巴拿馬地區(qū)在兩個蘋果栽培品種‘金冠和‘嘎啦上發(fā)現(xiàn)一新型葉斑病害,經(jīng)分離鑒定判斷其病原菌為G. cingulata[1-3],這是GLS首次被發(fā)現(xiàn)并報道 。1997—1999年,由于敏感品種廣泛種植和粗放的管理模式,巴西的六個蘋果種植區(qū)域均發(fā)生GLS, GLS迅速成為影響巴西蘋果生產(chǎn)的主要問題[4, 5]。美國在1998年發(fā)現(xiàn)GLS的發(fā)生[2, 3]。2011年8月,江蘇省豐縣地區(qū)三個蘋果栽培品種‘嘎啦、‘金冠和‘青冠也發(fā)生GLS[6]。該病害在各種植品種間存在較大差異,‘金冠系列,尤其是‘嘎啦對GLS非常敏感,而‘蛇果系列像‘富士則為抗病品種[7]。
GLS雖為我國近年新發(fā)生病害,但發(fā)展迅速、危害嚴(yán)重,尤其是夏季高溫多雨的亞熱帶氣候特別適宜GLS發(fā)生與發(fā)展[4]。本文從GLS的病原學(xué)研究、侵染機制及抗病機制、防治策略三個方面進行總結(jié),以期尋找深入研究該病害病原真菌分子致病機理的角度與手段,為防控制劑研發(fā)和管理措施優(yōu)化提供重要參考信息,并為病害綜合防治和抗病育種提供新思路。
1 病原學(xué)研究
1.1 病原菌侵染結(jié)構(gòu)的分化
炭疽菌屬是一類破壞性極強的半活體營養(yǎng)型植物病原真菌,可引起世界范圍內(nèi)多種植物炭疽病,其生活史包括較為短暫的活體營養(yǎng)階段和在寄主死亡組織中繼續(xù)發(fā)展的具有高破壞性的死體營養(yǎng)階段[8, 9]。在病原與寄主互作過程中,真菌分生孢子可分化形成黑化的附著胞,穿透葉片角質(zhì)層和細(xì)胞壁,侵入表皮細(xì)胞。附著胞在活的具有完整細(xì)胞膜的植物細(xì)胞中特化形成侵染囊泡,并長出活體營養(yǎng)型內(nèi)生菌絲。接著進入死體營養(yǎng)階段,真菌發(fā)生形態(tài)變化長出死體營養(yǎng)菌絲,從死的植物細(xì)胞中獲取養(yǎng)分[10, 11]。炭疽菌屬真菌附著胞中積累的黑色素,對其直接穿透角質(zhì)層成功侵染寄主細(xì)胞是非常必要的[12]。附著胞快速產(chǎn)生黑色素有助于高效地從寄主細(xì)胞中獲取營養(yǎng),并在寄主組織中成功定殖[13]。有些炭疽菌屬真菌可分化產(chǎn)生分生孢子吻合管(conidial anastomosis tubes,CATs),從植物葉片中獲得足夠養(yǎng)分以保證長時間存活于葉片表面。研究證實,附著胞和CATs的形成是相互抑制的兩個分化過程。對可以形成黑化附著胞并能快速侵染寄主的物種而言,CATs的形成是不必要的。Gonalves等[14]通過一系列研究提出,炭疽菌屬真菌在附著胞和CATs的分化形成過程中存在細(xì)胞間的“群體感應(yīng)”,但只在細(xì)菌和少數(shù)真菌中被證實[15]。另有研究顯示,寄主植物外源養(yǎng)分的補給可同時抑制CATs[16]和附著胞[17]的形成。
1.2 病原種類與遺傳多樣性
炭疽菌屬具有高度的物種多樣性,既有致病性真菌,也有植物內(nèi)生性真菌,目前根據(jù)各物種不同的寄主范圍、致病力水平和基因組分析數(shù)據(jù)可分為11個復(fù)合群[18, 19]。研究證實,膠孢刺盤孢(C. gloeosporioides)、尖孢炭疽菌(C. acutatum)、喀斯特炭疽菌(C. karstii)、果生刺盤孢(C. fructicola)和隱秘刺盤孢(C. aenigma)均可引起GLS,主要分布于Acutatum和Gloeosporioides復(fù)合群中[20]。王薇等[21]根據(jù)新的刺盤孢分類系統(tǒng),利用形態(tài)學(xué)、培養(yǎng)特性、多基因系統(tǒng)發(fā)育及致病性等特征,明確我國河南省和陜西省部分蘋果產(chǎn)區(qū)發(fā)生的GLS病原為果生刺盤孢和隱秘刺盤孢兩個種,歸屬于Gloeosporioides復(fù)合群。
提高遺傳變異性對病原真菌克服寄主植物品種抗性、抵御不良環(huán)境和提高抗藥性是至關(guān)重要的。除有性生殖和基因突變,菌絲融合和準(zhǔn)性生殖也可提高真菌遺傳變異性。研究顯示炭疽菌屬病原真菌一般不會進行有性生殖,準(zhǔn)性生殖在其遺傳變異過程中發(fā)揮至關(guān)重要的作用[22, 23]。但也能在蘋果葉片上觀察到子囊殼的存在,說明GLS病原也可以在自然條件下通過有性生殖來增加遺傳變異機會[24]。
近年來,限制性片段長度多態(tài)性(restriction fragment length polymorphism,RFLP)和多位點基因測序(multilocus gene sequencing,MGS)等檢測方法已廣泛應(yīng)用于GLS病原菌遺傳多樣性的研究[24, 25]。雖然MGS可成功對引起巴西和烏拉圭地區(qū)GLS和蘋果苦腐?。╝pple bitter rot,ABR)的果生刺盤孢進行分離鑒定,但簡單重復(fù)序列(inter-simple sequences repeat,ISSR)分子標(biāo)記法可在更細(xì)致的分類水平上分析炭疽菌屬真菌各類群的遺傳結(jié)構(gòu)[26-29]。同時ISSR分子標(biāo)記技術(shù)還能夠根據(jù)物種群體的地理位置或寄主偏好來區(qū)分種群,計算種群之間的基因多樣性、遺傳分化和基因流動[26-29]。微衛(wèi)星位點的進化速率通常高于其他基因組區(qū)域,可檢測物種的多態(tài)性[30]。另外,營養(yǎng)體親和群(vegetative compatibility group,VCG)的鑒定也被應(yīng)用于GLS病原真菌種群生物學(xué)分子水平的分析研究[25, 31, 32]。
2 病原菌侵染機制
在過去二十幾年中,炭疽菌屬真菌一直被作為重要的模式病原真菌來進行寄主-病原間分子水平的互作研究。
GLS病原真菌為了成功侵染寄主并在植物組織中定殖,會特化形成附著胞等侵染結(jié)構(gòu)[33]。伴隨著附著胞的成熟,其內(nèi)部會積累大量的甘油和黑色素,增強附著胞的硬度以利于穿透植物細(xì)胞的角質(zhì)層和細(xì)胞壁,同時抵御植物分泌各種酶類的降解作用[12]。此侵染過程中,病原真菌除了借助機械壓力的穿透作用,還會調(diào)動自身合成各種角質(zhì)和細(xì)胞壁降解酶類以利于侵染[33]。病原真菌可在侵染和增殖過程中分泌產(chǎn)生一系列果膠酶(pectolytic enzymes,PE),以降解植物細(xì)胞壁中的多糖成分。很多果膠酶包括多聚半乳糖醛酸內(nèi)切酶(polygalacturonase,PG)[34, 35]、果膠裂解酶(pectate lyase,PL)[36]和果膠酯酶(pectinesterase,PE)[37, 38]已被證實在多種病原真菌的致病過程中發(fā)揮著重要作用。
GLS病原侵染的過程也與促分裂原活性蛋白激酶(mitogen-activated protein kinase,MAPK)級聯(lián)相關(guān)。MAPKs級聯(lián)包含MAPKKK、MAPKK和MAPK,被證實可以參與多種病原真菌侵染相關(guān)的形態(tài)學(xué)調(diào)控[9, 39, 40]。敲除一個MAPK基因Cgl-slt2可以影響膠孢刺盤孢營養(yǎng)菌絲生長、孢子形成和致病能力[40]。同樣敲除一個MAPKK基因CgMEK1,可使膠孢刺盤孢缺失附著胞的形成能力和致病能力[39]。
Zhou等[41]研究發(fā)現(xiàn),一個三磷酸腺苷(adenosine triphosphate,ATP)結(jié)合蛋白CgABCF2對膠孢刺盤孢的附著胞形成、致病性、有性生殖都是至關(guān)重要的,但不會影響分生孢子萌發(fā)。他們認(rèn)為CgABCF2是GLS病原真菌諸如形態(tài)發(fā)育、有性和無性繁殖、附著胞分化和侵染致病等生命進程的基礎(chǔ)。
3 抗病機制與防治策略
3.1 寄主植物的抗病機制
GLS病害發(fā)展過程中,侵染位點的植物細(xì)胞識別病原真菌并快速發(fā)生一系列生化反應(yīng),其中最早發(fā)生的是活性氧(reactive oxygen species,ROS)的瞬間生物合成[42, 43],也被稱為氧迸發(fā)(oxidative burst),可觸發(fā)植物防衛(wèi)反應(yīng)。NADPH氧化酶(NADPH oxidase,NOX)、黃嘌呤氧化酶(xanthine oxidase,XOD)和過氧化物酶(peroxidase,POD)等都會參與ROS的積累[44],產(chǎn)生的ROS以單線態(tài)氧(1O2)、超氧陰離子(O·-2)和氫氧根離子(OH-)的形式存在,并作用于相關(guān)細(xì)胞進程中[43]。ROS在參與植物光合和呼吸作用[44]的同時,更可作為第二信使參與植物信號傳導(dǎo)和防衛(wèi)反應(yīng),比如離子流、基因表達(dá)、MAPK的激活、病程相關(guān)蛋白(pathogenesis-related proteins,PR)的表達(dá)、細(xì)胞壁蛋白偶聯(lián)、植物抗毒素的積累以及木質(zhì)化等[43, 44]。另有研究證實,ROS可作用于蛋白質(zhì)和膜脂,提高細(xì)胞的電解質(zhì)滲出率[45],誘導(dǎo)侵染位點的過敏性壞死反應(yīng)(hypersensitiveresponse,HR)[41, 46]。植物細(xì)胞為將ROS的濃度限制在不會產(chǎn)生毒副作用的水平,會調(diào)動復(fù)雜的ROS清除機制,包括合成愈創(chuàng)木酚過氧化物酶(guaiacol peroxidase,GPOD)、抗壞血酸過氧化物酶(ascorbate peroxidase,APX)、過氧化氫酶(catalase,CAT)、谷胱甘肽還原酶(glutathione reductase,GR)和超氧化物歧化酶(superoxide dismutase,SOD)等[42, 44],這些酶在猝滅毒性ROS[47]的同時還會參與應(yīng)對病原真菌侵染的防衛(wèi)反應(yīng)[43]。Araujo等[48]曾報道蘋果對GLS的抗病能力與被侵染后GPOD的活性相關(guān)。
3.2 病害防治策略
GLS不僅侵染葉片和果實,還侵染新芽[53]。在適宜環(huán)境條件下,GLS可導(dǎo)致超過90%的落葉率和病果率[49]。使用殺菌劑一直是控制GLS最常用也最有效的方法。二硫代氨基甲酸鹽類殺菌劑(如代森錳、代森聯(lián)和甲基代森鋅等)可對GLS起到較為顯著的控制效果,在蘋果生育早期使用,病害防治指數(shù)可達(dá)80%[50]。王冰等[51]通過比較不同類型殺菌劑對GLS的防治效果發(fā)現(xiàn),波爾多液在噴施18 d后對炭疽葉枯病菌侵染的抑制作用仍達(dá)50%,在病菌侵染后72 h內(nèi)使用吡唑醚菌酯或在病菌侵染后24 h內(nèi)使用咪鮮胺對病斑的顯癥有一定療效,但持久性不強。連續(xù)使用單一藥劑存在較高的抗藥性,因此炭疽葉枯病的防治應(yīng)以波爾多液為主,并與吡唑醚菌酯等有機殺菌劑交替使用。還有一些殺菌劑防治組合,比如25%凱潤乳油2 000倍+70%丙森鋅可濕性粉劑700倍、25%凱潤乳油2 000倍+43%戊唑醇懸浮劑3 000倍殺菌效果都比較顯著[52]。
為控制GLS,蘋果每個生育周期需要噴施殺菌劑15次之多[50]。殺菌劑的使用嚴(yán)重威脅著生態(tài)平衡和人類健康,而病原真菌的抗藥性和藥劑使用成本也在不斷提高,這就使開發(fā)生態(tài)友好型的防治手段顯得尤為迫切。人們更期望利用生物防治的策略來應(yīng)對GLS,尤其在果實敏感期。為節(jié)約成本、加快研究進度,多采用離體試驗的方法進行生防制劑篩選,但往往存在實驗室內(nèi)離體試驗結(jié)果與田間效果不一致的現(xiàn)象[53, 54]。Moreira等[55]經(jīng)田間試驗發(fā)現(xiàn),無論是在人工接種病原的試驗基地還是在自然發(fā)病的商業(yè)種植果園,分離蘋果葉面的三個細(xì)菌菌株[56]芽孢桿菌(Bacillus sp.)、假單胞菌(Pseudomonas putida)和嗜堿芽孢桿菌(Bacillus alcalophilus)都無法有效控制GLS的發(fā)展。
乙烯在很多植物細(xì)胞進程如果實的成熟和衰老中發(fā)揮著重要作用。病原真菌侵染和昆蟲為害均可促進植物合成乙烯,產(chǎn)生一系列生化反應(yīng),影響植物生長和發(fā)育[57]。氨基乙氧基乙烯甘氨酸(aminoethoxyvinlglycine,AVG)可有效抑制植物合成乙烯,使植物的防衛(wèi)反應(yīng)滯后[58]。Bogo等[59]經(jīng)研究發(fā)現(xiàn),在侵染前或侵染后進行AVG處理會利于膠孢刺盤孢在蘋果葉片侵染位點處癥狀發(fā)展,提高GLS病害程度。但Meyer等[60]的研究獲得了與之相反的結(jié)果,他們發(fā)現(xiàn)侵染前進行60 mg·L-1和150 mg·L-1的AVG處理可以明顯減少GLS引起的葉片脫落,其效果與使用殺菌劑相當(dāng);但如果病害已開始發(fā)生或者使用殺菌劑防治失敗,AVG處理將會導(dǎo)致更為嚴(yán)重的落葉現(xiàn)象。
石莼聚糖作為一種提取自裂片石莼(Ulva fasciata,一種藻類)的水溶性多糖,在防治GLS中具有很大的利用價值,可通過抑制分生孢子萌發(fā)和附著胞形成,減緩病害發(fā)展速度[48]。在病原真菌侵染前6 d噴施石莼聚糖可以使病害程度減小一半[61],但石莼聚糖并不具有抗微生物活性,只能誘導(dǎo)植物產(chǎn)生抗病性[61-63]。已有研究證明,石莼聚糖可以誘導(dǎo)擬南芥[68]和蒺藜苜蓿(Medicago truncatula)[65]防衛(wèi)相關(guān)基因的表達(dá)。同時石莼聚糖也可以誘導(dǎo)植物的氧化迸發(fā),從而降低病害的嚴(yán)重程度[63]。但Araujo等[48]認(rèn)為,無論是品種特異性還是石莼聚糖誘導(dǎo)的蘋果植株對GLS的抗病性,都與病原侵染72 h后SOD和β-1,3-葡聚糖酶活性水平的升高有直接關(guān)系。
除此以外,利用病原真菌的激發(fā)子來誘導(dǎo)寄主產(chǎn)生抗病性的防治手段,被認(rèn)為是一種可以在未來替代傳統(tǒng)化學(xué)防治手段的有效策略[66, 67]。Zhang等[68]通過研究證實,外源的水楊酸(salicylic acid,SA)處理可顯著提高寄主的抗氧化能力(T-AOC)和防衛(wèi)反應(yīng)酶類的活性,上調(diào)5個PR(PR1、PR5、PR8、幾丁質(zhì)酶和β-1,3-葡聚糖酶)基因的表達(dá)水平,誘導(dǎo)感病品種‘嘎啦產(chǎn)生對GLS較高的抗病能力,病斑數(shù)量和病情指數(shù)明顯減少。
目前較為有效的控制植物病害的方法是培育和種植抗病品種。所以遺傳學(xué)研究和蘋果抗GLS分子標(biāo)記的篩選就顯得尤為重要。已有研究證實,蘋果對GLS的抗病性由一個單隱性基因控制[48, 69],抗病基因型為rr,感病基因型為Rr和RR[70]。Liu等[71]繪制了第一個GLS抗病基因Rgls遺傳圖譜,包含11個SSR分子標(biāo)記。Rgls抗病基因被定位于蘋果第15個基因連鎖群,與微衛(wèi)星分子標(biāo)記SSR0304673和SSR0405127有500 kb的基因組距離。Liu等[72]通過對雜交F1代蘋果植株的全基因組測序研究,快速定位Rgls基因并鑒定得到3個候選抗病基因。
4 結(jié)論
所有植物的先天免疫反應(yīng)包含兩個層面[73],其中第一個層面就是由病原相關(guān)分子模式(pathogen- associated molecular patterns,PAMPs)觸發(fā)的免疫反應(yīng)(PAMPs triggered immunity,PTI)。PTI是通過植物跨膜的模式識別受體(pattern-recognition receptors,PRRs)來實現(xiàn)的,PRRs可以識別保守的病原相關(guān)分子模式,激活寄主植物的第一層免疫反應(yīng)來抵御入侵微生物的定殖[74-76]。植物的PRRs感知PAMPs,會快速啟動與PTI相關(guān)的一系列反應(yīng),包括絲裂源活性蛋白的級聯(lián)、防衛(wèi)反應(yīng)相關(guān)基因的響應(yīng)和細(xì)胞死亡等[77-79]。植物先天免疫系統(tǒng)的第二個層面是以高度多樣化的抗性蛋白(R蛋白)為基礎(chǔ),這些R蛋白可以識別各種各樣的病原效應(yīng)蛋白(effector),激活植物免疫反應(yīng),即蛋白觸發(fā)的免疫反應(yīng)(effector-triggered immunity,ETI)[80, 81]。
不同種類炭疽菌屬真菌的體外基因敲除和回補課題的開展促進了對這類模式病原物的研究和利用[10],現(xiàn)已對可侵染模式植物擬南芥(Arabidopsis thaliana)和十字花科蔬菜炭疽病菌(C. higginsianum)[82-84]以及可侵染本氏煙(Nicotiana benthamiana)和煙草(N. tabacum)的西瓜炭疽菌(C. orbiculare)[11]進行深入研究。然而對GLS病原菌等的PAMPs和效應(yīng)蛋白的研究,還遠(yuǎn)遠(yuǎn)滯后于這些真菌的次生代謝分析等,到目前為止只有少數(shù)幾種效應(yīng)蛋白得到驗證[39-42],今后需從GLS病原-寄主互作蛋白著手,闡述該病菌的分子致病機理。
參 考 文 獻(xiàn):
[1] Leite Junior R P, Tsuneta M, Kishino A R. Ocorrencia demancha foliar de Glomerella em macieira noestado do Parana [M]. Londrina: Fundacao Instituto Agronomico do Parana, 1988.
[2] González E, Sutton T B. First report of Glomerella leaf spot (Glomerella cingulata) of apple in the United States [J]. Plant Disease, 1999, 83(11):1074.
[3] Gonzalez E. Characterization of isolates of Glomerella cingulata causal agent of Glomerella leaf spot and bitter rot of apples based on morphology and genetic, molecular, and pathogenicity tests[D]. Raleigh:North Carolina State University, 2003.
[4] Crusius L U, Forcelini C A, Sanhueza R M V, et al. Epidemiology of apple leaf spot[J]. Fitopatol. Bras., 2002, 27(1): 65-70.
[5] Velho A C, Stadnik M J. First report of Colletotrichum karstii causing Glomerella leaf spot on apple in Santa Catarina State, Brazil[J]. Plant Disease, 2014, 98(1):157.
[6] Wang C X, Zhang Z F, Li B H, et al. First report of Glomerella leaf spot of apple caused by Glomerella cingulata in China [J]. Plant Disease, 2012, 96(6):912.
[7] 宋清, 王素俠, 楊春亮,等. 蘋果炭疽菌葉枯病的研究初報[J]. 落葉果樹, 2012(2):29-30.
[8] O′Connell R J, Thon M R, Hacquard S, et al. Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses[J]. Nature Genetics, 2012, 44(9):1060-1065.
[9] Gan P, Ikeda K, Irieda H, et al. Comparative genomic and transcriptomic analyses reveal the hemibiotrophic stage shift of Colletotrichum fungi[J]. New Phytologist, 2013, 197(4):1236-1249.
[10]Perfect S E, Hughes H B, O′Connell R J, et al. Colletotrichum: a model genus for studies on pathology and fungal-plant interactions[J]. Fungal Genetics and Biology, 1999, 27(2/3): 186-198.
[11]Shen S, Goodwin P H, Hsiang T. Infection of Nicotiana species by the anthracnose fungus, Colletotrichum orbiculare[J]. European Journal of Plant Pathology, 2001, 107: 767-773.
[12]Ludwig N, Lhrer M, Hempel M, et al. Melanin is not required for turgor generation but enhances cell-wall rigidity in appressoria of the corn pathogen Colletotrichum graminicola[J]. Mol. Plant Microbe. Interact., 2014, 27(4):315-327.
[13]Araújo L, Gonalves A E, Stadnik M J. Ulvan effect on conidial germination and appressoria formation of Colletotrichum gloeosporioides[J]. Phytoparasitica, 2014, 42(5):631-640.
[14]Gonalves A E, Velho A C, Stadnik M J. Formation of conidial anastomosis tubes and melanization of appressoria are antagonistic processes in Colletotrichum spp. from apple[J]. European Journal of Plant Pathology, 2016, 146(3):497-506.
[15]Albuquerque P, Casadevall A. Quorum sensing in fungi—a review[J]. Medical Mycology, 2012, 50(4):337-345.
[16]Ishikawa F H, Souza E A, Read N D, et al. Live-cell imaging of conidial fusion in the bean pathogen, Colletotrichum lindemuthianum[J]. Fungal Biology, 2010, 114(1):2-9.
[17]Gonalves A E, Stadnik M J. Interference of ulvan on apressoria development and melanization of Colletotrichum gloeosporioides[J]. Tropical Plant Pathology, 2012, 37(6): 431-437.
[18]Damm U, Cannon P F, Woudenberg J H C, et al. The Colletotrichum acutatum species complex[J]. Studies in Mycology, 2012, 73(1):37-113.
[19]Weir B S, Johnston P R, Damm U. The Colletotrichum gloeosporioides species complex[J]. Studies in Mycology, 2012, 73(1):115-180.
[20]Bragana C A D. Molecular characterization of Colletotrichum spp. associated with fruits in Brazil[C]//Materials Science Forum. 2013:41-48.
[21]王薇, 符丹丹, 張榮,等. 蘋果炭疽葉枯病病原學(xué)研究[J]. 菌物學(xué)報, 2015, 34(1):13-25.
[22] Gabriela Roca M, Read N D, Wheals A E. Conidial anastomosis tubes in filamentous fungi[J]. FEMS Microbiology Letters, 2005, 249(2):191-198.
[23]Ishikawa F H, Souza E A, Shoji J Y, et al. Heterokaryon incompatibility is suppressed following conidial anastomosis tube fusion in a fungal plant pathogen[J]. PLoS One, 2012, 7(2):e31175.
[24]Velho A C, Alaniz S, Casanova L, et al. New insights into the characterization of Colletotrichum species associated with apple diseases in southern Brazil and Uruguay[J]. Fungal Biology, 2015, 119(4):229-244.
[25]González E, Sutton T B, Correll J C. Clarification of the etiology of Glomerella leaf spot and bitter rot of apple caused by Colletotrichum spp. based on morphology and genetic, molecular, and pathogenicity tests[J]. Phytopathology, 2006, 96(9):982-992.
[26]Kumar N, Jhang T, Sharma T R. Molecular and pathological characterization of Colletotrichum falcatum infecting subtropical Indian sugarcane[J]. Journal of Phytopathology, 2015, 159(4):260-267.
[27]Mckay S F, Freeman S, Minz D, et al. Morphological, genetic, and pathogenic characterization of Colletotrichum acutatum, the cause of anthracnose of almond in Australia[J]. Phytopathology, 2009, 99(8):985-995.
[28]Rampersad S N. Genetic structure of Colletotrichum gloeosporioides sensu lato isolates infecting papaya inferred by multilocus ISSR markers[J]. Phytopathology, 2013, 103(2):182-189.
[29]Ratanacherdchai K, Wang H K, Lin F C, et al. ISSR for comparison of cross-inoculation potential of Colletotrichum capsici causing chilli anthracnose[J]. African Journal of Microbiology Research, 2010, 4(2):76-83.
[30]Wolfe A D, Liston A. Contributions of PCR-based methods to plant systematics and evolutionary biology[M]. New York: Springer US,1998:43-86.
[31]Brooker N L, Leslie J F, Dickman M B. Nitrate non-utilizing mutants of Colletotrichum and their use in studies of vegetative compatibility and genetic relatedness[J]. Phytopathology, 1991, 81(6):672-677.
[32]Leslie J F. Fungal vegetative compatibility[J]. Annual Review of Phytopathology, 1993, 31:127-150.
[33]Deising H B, Werner S, Wernitz M. The role of fungal appressoria in plant infection[J]. Microbes and Infection, 2000, 2(13):1631-1641.
[34]Centis S, Dumas B, Fournier J, et al. Isolation and sequence analysis of Clpgl, a gene coding for an endopolygalacturonase of the phytopathogenic fungus Colletotrichum lindemuthianum[J]. Gene, 1996, 170(1):125-129.
[35]Li J, Goodwin P H. Expression of cgmpg2, an endopolygalacturonase gene of Colletotrichum gloeosporioides f. sp. malvae, in culture and during infection of Malva pusilla[J]. Journal of Phytopathology, 2002, 150(4/5):213-219.
[36]Wei Y, Shih J, Li J, et al. Two pectin lyase genes, pnl-1 and pnl-2, from Colletotrichum gloeosporioides f. sp. malvae differ in a cellulose-binding domain and in their expression during infection of Malva pusilla[J]. Microbiology, 2002, 148(7):2149-2157.
[37]Shih J, Wei Y, Goodwin P H. A comparison of the pectate lyase genes, pel-1 and pel-2, of Colletotrichum gloeosporioides f.sp. malvae and the relationship between their expression in culture and during necrotrophic infection[J]. Gene, 2000, 243(1/2):139-150.
[38]Yakoby N, Beno-Moualem D, Keen N T, et al. Colletotrichum gloeosporioides pelB is an important virulence factor in avocado fruit-fungus interaction[J]. Molecular Plant-Microbe Interactions, 2001, 14(8):988-995.
[39]Kim Y K, Kawano T, Li D, et al. A mitogen-activated protein kinase kinase required for induction of cytokinesis and appressorium formation by host signals in the conidia of Colletotrichum gloeosporioides[J]. Plant Cell, 2000, 12(8):1331-1343.
[40]Yong H Y, Bakar F D A, Illias R M, et al. Cgl-SLT2 is required for appressorium formation, sporulation and pathogenicity in Colletotrichum gloeosporioides[J]. Brazilian Journal of Microbiology, 2013, 44(4):1241-1250.
[41]Zhou Z S, Wu J J, Wang M Y, et al. ABC protein CgABCF2 is required for asexual and sexual development, appressorial formation and plant infection in Colletotrichum gloeosporioides[J]. Microbial Pathogenesis, 2017, 110:85-92.
[42]Quan L J, Zhang B, Shi W W, et al. Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network[J]. Journal of Integrative Plant Biology, 2008, 50(1):2-18.
[43]Shetty N P, Lyngs Jrgensen H J, Jensen J D, et al. Roles of reactive oxygen species in interactions between plants and pathogens[J]. European Journal of Plant Pathology, 2008, 121(3):267-280.
[44]Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction[J]. Annual Review of Plant Biology, 2004, 55:373-399.
[45]Demidchik V, Straltsova D, Medvedev S S, et al. Stress-induced electrolyte leakage: the role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment[J]. Journal of Experimental Botany, 2014, 65(5):1259-1270.
[46]Torres M A. ROS in biotic interactions[J]. Physiologia Plantarum, 2010, 138(4):414-429.
[47]De Gara L, De Pinto M C, Tommasi F. The antioxidant systems vis-à-vis reactive oxygen species during plant-pathogen interaction[J]. Plant Physiology and Biochemistry, 2003, 41(10):863-870.
[48]Araujo L, Stadnik M J. Cultivar-specific and ulvan-induced resistance of apple plants to Glomerella leaf spot are associated with enhanced activity of peroxidases[J]. Acta Scientiarum, Agronomy(UEM), 2013, 35(3):287-293.
[49]Wang B, Li B H, Dong X L, et al. Effects of temperature, wetness duration, and moisture on the conidial germination, infection, and disease incubation period of Glomerella cingulata[J]. Plant Disease, 2015, 99(2):249-256.
[50]Katsurayama Y, Boneti J I S. Manejo da mancha da Gala[J]. Agropecu. Catarin., 2012, 25(2):45-51.
[51]王冰, 王彩霞, 史祥鵬,等. 不同殺菌劑對蘋果炭疽葉枯病的防治效果[J]. 植物保護, 2014(6):176-180.
[52]范昆, 李曉軍, 李林光,等. 蘋果炭疽葉枯病的田間防控試驗[J]. 山東農(nóng)業(yè)科學(xué), 2014,46(2):109-110,115.
[53]Andrews J H. Biological control in the phyllosphere[J]. Annual Review of Phytopathology, 1992, 30:603-635.
[54]Bettiol W. Biocontrole na filosfera: problemas e perspectivas[J]. Revis. Anu. Patol. Plantas.,1998,5:59-97.
[55]Moreira R R, Mio L L M D. Potential biological agents isolated from apple fail to control Glomerella leaf spot in the field[J]. Biological Control, 2015, 87:56-63.
[56]Moreira R R, Nesi C N, De Mio L L M. Bacillus spp. and Pseudomonas putida, as inhibitors of the Colletotrichum acutatum, group and potential to control Glomerella leaf spot[J]. Biological Control, 2014, 72:30-37.
[57]Kim C Y, Liu Y, Thorne E T, et al. Activation of a stress-responsive mitogen-activated protein kinase cascade induces the biosynthesis of ethylene in plants[J]. Plant Cell, 2003, 15(11): 2707-2718.
[58]Chagué V, Danit L V, Siewers V, et al. Ethylene sensing and gene activation in Botrytis cinerea: a missing link in ethylene regulation of fungus-plant interactions?[J]. Molecular Plant-Microbe Interactions, 2006, 19(1):33-42.
[59]Bogo A, Casa R T, Rufato L, et al. Ethylene inhibitor aminoethoxyvinilglycine on Glomerella leaf spot in apple cultivar ‘Royal Gala[J]. Ciência Rural, 2011, 41(6): 925-930.
[60]Meyer G D A, Rufato L, Sanhueza R M V, et al. The action of aminoethoxyvinylglycine (AVG) on apple (‘Maxi Gala) leaf abscission in plants infected by Glomerella leaf spot (Colletotrichum gloesporioides)[J]. Acta Horticulturae,2016,1119:43-48.
[61]Araújo L, Borsato L C, Valdebenito-Sanhueza Rˇ M,et al. Fosfito de potássio e ulvana no controle da mancha foliar da gala em macieira[J]. Tropical Plant Pathology, 2008, 33(3):74-80.
[62]Paulert R, Talamlnl V, Cassolato J E F, et al. Effects of sulfated polysaccharide and alcoholic extracts from green seaweed Ulva fasciata on anthracnose severity and growth of common bean (Phaseolus vulgaris L.)[J]. Journal of Plant Diseases and Protection, 2009, 116(6):263-270.
[63]Paulert R, Ebbinghaus D, Urlass C, et al. Priming of the oxidative burst in rice and wheat cell cultures by ulvan, a polysaccharide from green macroalgae, and enhanced resistance against powdery mildew in wheat and barley plants[J]. Plant Pathology, 2010, 59(4):634-642.
[64]Jaulneau V, Lafitte C, Jacquet C, et al. Ulvan, a sulfated polysaccharide from green algae, activates plant immunity through the jasmonic acid signaling pathway[J]. Journal of Biomedicine and Biotechnology, 2010, 2010(2):525291.
[65]Cluzet S, Torregrosa C, Jacquet C, et al. Gene expression profiling and protection of Medicago truncatula against a fungal infection in response to an elicitor from green algae Ulva spp[J]. Plant Cell and Environment, 2004, 27(7):917-928.
[66]Tian S P, Wan Y K, Qin G Z, et al. Induction of defense responses against Alternaria, rot by different elicitors in harvested pear fruit[J]. Applied Microbiology and Biotechnology, 2006, 70(6):729-734.
[67]Yu C, Zeng L Z, Sheng K, et al. γ-Aminobutyric acid induces resistance against Penicillium expansum by priming of defence responses in pear fruit[J]. Food Chemistry, 2014, 159:29-37.
[68]Zhang Y, Shi X P, Li B H, et al. Salicylic acid confers enhanced resistance to Glomerella leaf spot in apple[J]. Plant Physiology and Biochemistry, 2016, 106:64-72.
[69]劉源霞, 蘭進好, 柏素花,等. 蘋果抗炭疽菌葉枯病基因SNP和InDel標(biāo)記的HRM篩選[J]. 園藝學(xué)報, 2017, 44(2):215-222.
[70]Liu Y X, Li B H, Wang C H, et al. Genetics and molecular marker identification of a resistance to Glomerella leaf spot in apple[J]. Horticultural Plant Journal, 2016, 2(3):121-125.
[71]Liu Y X, Lan J H, Wang C H, et al. Investigation and genetic mapping of a Glomerella leaf spot resistance locus in apple[J]. Plant Breeding, 2017, 136(1):119-125.
[72]Liu Y X, Lan J H, Li Q, et al. Rapid location of Glomerella leaf spot resistance gene locus in apple by whole genome re-sequencing[J]. Molecular Breeding, 2017, 37(8):96.
[73]Schwessinger B, Ronald PC. Plant innate immunity: perception of conserved microbial signatures[J]. Annual Review of Plant Biology, 2012, 63(3):451-482.
[74]Dodds P N, Rathjen J P. Plant immunity: towards an integrated view of plant-pathogen interactions[J]. Nature Reviews Genetics, 2010, 11: 539-548.
[75]Jones J D G, Dangl J L. The plant immune system[J]. Nature, 2006, 444(7117): 323-329.
[76]Zipfel C. Pattern-recognition receptors in plant innate immunity[J]. Current Opinion in Immunology,2008,20(1):10-16.
[77]Boller T, He S Y. Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens[J]. Science, 2009, 324: 742-744.
[78]Altenbach D, Robatzek S. Pattern recognition receptors: from the cell surface to intracellular dynamics[J]. Molecular Plant-Microbe Interactions, 2007, 20(9): 1031-1039.
[79]Zipfel C. Early molecular events in PAMP-triggered immunity[J]. Current Opinion in Plant Biology, 2009, 12(4): 414-420.
[80]Abramovitch R B, Anderson J C, Martin G B. Bacterial elicitation and evasion of plant innate immunity[J]. Nature Reviews Molecular Cell Biology, 2006, 7: 601-611.
[81]Chisholm S T, Coaker G, Day B, et al. Host-microbe interactions: shaping the evolution of the plant immune response[J]. Cell, 2006, 124(4): 803-814.
[82]Narusaka Y, Narusaka M, Park P, et al. RCH1, a locus in Arabidopsis that confers resistance to the hemibiotrophic fungal pathogen Colletotrichum higginsianum[J]. Molecular Plant-Microbe Interactions, 2004, 17(7): 749-762.
[83]Narusaka M, Shirasu K, Noutoshi Y, et al. RRS1 and RPS4 provide a dual resistance-gene system against fungal and bacterial pathogens[J]. Plant Journal, 2009, 60(2): 218-226.
[84]OConnell R, Herbert C, Sreenivasaprasad S, et al. A novel Arabidopsis-Colletotrichum pathosystem for the molecular dissection of plant-fungal interactions[J]. Molecular Plant-Microbe Interactions, 2004, 17(3): 272-282.