尹業(yè)師,陳華海,曹林艷,唐林,何福林
?
尹業(yè)師 博士,教授,湖南科技學院生物工程學科帶頭人。從事腸道微生物與宿主相互作用研究。主持國家自然科學基金和國家863計劃子課題等;以主要作者在、、、、等期刊發(fā)表論文60余篇;以第一發(fā)明人申報中國發(fā)明專利6項。中華醫(yī)學會消化病學分會微生態(tài)組委員、中國微生物學會永久會員、中國生物工程學會終身會員和美國微生物學會會員。、、、、《生物工程學報》和《微生物學通報》等期刊的審稿專家。
細菌耐藥性應對策略研究進展
尹業(yè)師,陳華海,曹林艷,唐林,何福林
湖南科技學院 化學與生物工程學院 湘南優(yōu)勢植物資源綜合利用湖南省重點實驗室,湖南 永州 425199
尹業(yè)師, 陳華海, 曹林艷, 等. 細菌耐藥性應對策略研究進展. 生物工程學報, 2018, 34(8): 1346–1360.Yin YS, Chen HH, Cao LY, et al. Progress in strategies to combat antimicrobial resistance. Chin J Biotech, 2018, 34(8): 1346–1360.
細菌耐藥性 (Antimicrobial resistance,AMR) 持續(xù)增長,但新上市抗生素數(shù)量卻持續(xù)下降??股啬退幓?(Antimicrobial resistance gene,ARG) 和抗生素耐藥菌感染已嚴重威脅人類健康。因此,需要多方面聯(lián)合采取措施來應對AMR所帶來的各種挑戰(zhàn),包括創(chuàng)新生物醫(yī)藥、改善抗生素使用和抗生素耐藥監(jiān)測系統(tǒng)、減少抗生素耐藥基因產(chǎn)生速度、阻止健康護理相關(guān)感染和多重抗生素耐藥菌傳播與擴散、開發(fā)微生物學快速診斷方法與設(shè)備、減少臨床和獸醫(yī)抗生素濫用等。慶幸的是,AMR已受到各國政要、科學家和企業(yè)家等的高度重視與支持,相信隨著新技術(shù)、新產(chǎn)品的不斷問世和管理新措施的不斷出臺,AMR問題一定會得到控制和緩解。
抗生素,細菌耐藥性,抗生素耐藥菌,抗生素耐藥基因
細菌耐藥性 (AMR) 已成為當代醫(yī)學和制藥公司面臨的一個嚴重問題。抗生素耐藥細菌 (簡稱耐藥菌) 感染數(shù)量的增加已經(jīng)嚴重威脅全球公共健康,其發(fā)病率和致死率均很高。由耐藥菌引起的死亡人數(shù)相當于HIV、乳腺癌和前列腺癌致死人數(shù)的總和[1-3],這對社會經(jīng)濟學和生態(tài)學造成了嚴重影響。美國每年大約有200萬人的感染和23萬人的死亡與耐藥菌相關(guān) (http://1.usa.gov/1nDmtkJ)。更嚴重的是,全球每年有約70萬人的死亡是耐藥菌感染導致的。由于亞洲和非洲抗生素使用量仍然很大,AMR形勢將不斷惡化,專家們預測,到2050年每年將有1 000萬人因此而死亡,其經(jīng)濟損失將超過數(shù)萬億美元[4]。
隨著臨床和非臨床抗生素的隨意和大量使用,AMR新時代已經(jīng)到來[5],但藥物研發(fā)速度遠跟不上細菌耐藥性產(chǎn)生的速度。1983?1987年期間,美國FDA批準了16種新的抗生素,但這個數(shù)字在顯著下降,2008?2012年期間總共只批準了2種新抗生素[6],而且已經(jīng)有超過45年沒有批準任何用于治療革蘭氏陰性菌感染的新類別抗生素[7]。因此,應對AMR所帶來的嚴重威脅和挑戰(zhàn),需要國際合作與共同努力,包括加大宣傳教育力度、加強抗生素使用管理、研發(fā)新的抗菌物質(zhì)和尋找抗生素替代方法等[8]。
臨床耐藥菌的出現(xiàn)與傳播很大程度上與醫(yī)院和養(yǎng)殖場抗生素銷售的管控不嚴和隨意使用有關(guān)[9-10]。目前,當一個新抗生素上市,其耐藥菌株很快就可以被找到[11]??梢姂獙MR已不能單純通過研發(fā)新型抗生素來解決,必須采取綜合治理措施。管控人和動物病原菌AMR需在 One health理念指導下,聯(lián)合政策制定者、科研工作者、獸醫(yī)和終端消費者來采取行動,防止耐藥性的產(chǎn)生和傳播 (圖1)。慶幸的是,抗生素的可持續(xù)利用已經(jīng)受到廣泛關(guān)注。2015年,世界衛(wèi)生組織 (WHO) 決議WAH68.7強烈要求各成員國制定應對AMR策略[12]。已有超過100個成員國作出了回應并采取了相關(guān)措施[12]。近年來,中國作為成員國之一也正在積極采取各項措施應對抗生素耐藥[13]。2016年,原國家衛(wèi)生和計劃生育委員會下發(fā)了 (《遏制細菌耐藥國家行動計劃 (2016?2020年)》(http://www.nhfpc.gov.cn/yzygj/ s3593/201608/f1ed26a0c8774e1c8fc89dd481ec84d7.shtml)),提出到2020年實現(xiàn)“爭取研發(fā)上市全新抗菌藥物1?2個,新型診斷儀器設(shè)備和試劑5?10項”,“零售藥店憑處方銷售抗菌藥物的比例基本達到全覆蓋”等多項行動目標。2017年,原農(nóng)業(yè)部也印發(fā)了(《全國遏制動物源細菌耐藥行動計劃(2017?2020年)》(http://www.moa.gov.cn/govpublic/ SYJ/201706/t20170623_5726086.htm)),提出到2020年,實現(xiàn)“推進獸用抗菌藥物規(guī)范化使用。省 (區(qū)、市) 憑獸醫(yī)處方銷售獸用抗菌藥物的比例達到50%”等目標。2016年9月召開的“聯(lián)合國大會國家元首高級別會議”上,多國科學家聯(lián)合發(fā)文呼吁:提高對AMR的認識;加強對抗生素的監(jiān)測和評估,制定確實有效的措施促進抗生素合理使用;鼓勵國家和社會基金資助應對AMR相關(guān)研究;聯(lián)合多部門開展協(xié)調(diào)行動,在國家層面協(xié)調(diào)非政府組織、民間團體和私人機構(gòu)等,通過各國努力提高抗生素的有效利用,實現(xiàn)WHO全球行動計劃[14-15]。
圖1 各方協(xié)作應對AMR戰(zhàn)略合作圖(改編自Sharma等的文章[16])
政府部門應加強宣傳與教育,監(jiān)控抗生素使用和耐藥產(chǎn)生情況,鼓勵和投入更多專項經(jīng)費資助科學家研究AMR產(chǎn)生、傳播和進化機制,引導企業(yè)研發(fā)AMR防治新策略。除了研發(fā)抗菌活性更好的新抗生素外,建立完善的抗生素使用和耐藥性產(chǎn)生監(jiān)控體系、及早診斷和預測耐藥菌的產(chǎn)生和有針對性地采取應對措施也非常重要。只有建立了強大的監(jiān)測系統(tǒng),應用生物信息學和基因組學新進展將全球和當?shù)乜股卦谌撕蛣游镏械南M情況、耐藥機制和細菌表型等整合起來,才能獲得更可靠的流行病學數(shù)據(jù),才能更好地指導應對AMR危機。如研究發(fā)現(xiàn)在4個主要場所AMR進化比較頻繁:1) 人和動物微生物組;2) 醫(yī)院和長期護理單位;3) 污水和其他任何形式的生物殘留;4) 土壤及其表面或地下水環(huán)境[17]。這將為我們有針對性地防治耐藥性指明方向。
WHO將抗生素分為3類——常規(guī)抗生素、被監(jiān)控抗生素和儲備抗生素,且對不同類別抗生素的使用作了說明:常規(guī)抗生素是可廣泛使用、容易獲得的抗生素;被監(jiān)控抗生素是比較容易產(chǎn)生耐藥性的抗生素,因此不建議作為大部分感染治療的首選;儲備抗生素耐藥性產(chǎn)生較少,被推薦僅用于最后一道防線的治療[18]。但臨床醫(yī)生在具體操作時會越級或超量使用[15]。由于長期濫用抗生素導致攜帶多種耐藥基因的多種AMR細菌出現(xiàn)[19-21],因此有必要對臨床醫(yī)生加強抗生素使用培訓和教育。在中國廣西省的2個縣、25個鄉(xiāng)鎮(zhèn)衛(wèi)生所進行的一項研究中,研究者對基層醫(yī)務(wù)工作者 (醫(yī)生及護工) 進行了為期9個月的培訓,結(jié)果發(fā)現(xiàn)培訓后,抗生素處方率從82%顯著下降至40%,而對照組 (未接受培訓) 的抗生素處方率未發(fā)生顯著改變[22]。雖然針對基層醫(yī)生的培訓或可有效減少抗生素濫用,但加強抗生素管理是否能有效阻止AMR還有待進一步研究。因為大部分實驗設(shè)計都不夠完善,不同研究者使用的參數(shù)和條件不一致,很難得出證據(jù)充分的結(jié)論[23]。
加強對獸醫(yī)工作者的培訓和獸用抗生素的管理也非常重要,因為有報道表明抗生素生產(chǎn)總量的近80%被用于動物生產(chǎn)[24]。在動物生產(chǎn)過程中抗生素經(jīng)常被用于疾病預防和促生長,但動物也存在將耐藥菌株傳播給人和環(huán)境的風險[16]。有研究表明,限制食用動物行業(yè)抗生素使用,動物耐藥菌減少,人群尤其是直接與食用動物接觸的人群耐藥菌也有類似減少。但在普通人群中,這種觀點還證據(jù)不足,有待進一步研究[25]。
攜帶耐藥基因的耐藥菌在環(huán)境,尤其是飲用水和污水中的出現(xiàn)將嚴重影響人類健康。雖然自然選擇會引進低水平AMR的出現(xiàn),但人類活動可導致環(huán)境中高水平AMR的傳播與流行[26]。工廠、社區(qū)、臨床醫(yī)院和農(nóng)場污水中高濃度耐藥基因和耐藥菌已嚴重威脅整個生態(tài)圈[27]。在中國17個主要城市的32個污水處理廠采集并分析116個污水樣本,發(fā)現(xiàn)381個AMR基因在各大城市都普遍存在,并與廢水核心菌群和人體腸道菌群顯著相關(guān)[28]。另外DNA也是污水處理廠中不可忽視的AMR基因來源。在未經(jīng)處理的廢水中,細胞相關(guān)耐藥基因占主要部分;經(jīng)過生物處理、污泥沉降、膜過濾、消毒后,細胞相關(guān)的耐藥基因顯著減少,但ARG/16S rRNA的比值在消毒后上升[29]。更讓人吃驚的是,在全球25個城市飲用水樣本中,共檢測到屬于16種ARG類型的181種亞型;其中針對桿菌肽、氨基糖苷、磺胺、β-內(nèi)酰胺等的耐藥基因占優(yōu)勢,應警惕ARG在飲用水系統(tǒng)中的潛在水平傳播[30]。
另外,優(yōu)化抗生素治療的藥代動力學和藥理學可以改善治療效果、減少毒性和耐藥性出現(xiàn)的風險[34]。如有研究表明多粘菌素的副作用并不像以前報道的那樣頻繁,尤其是在精準靶向用藥后[35]。但由于老抗生素很少被納入監(jiān)測系統(tǒng),其相關(guān)耐藥性產(chǎn)生速度、最小抑菌濃度 (Minimum inhibitory concentration,MIC) 和協(xié)同作用等數(shù)據(jù)比較缺乏[34]。另外,地域性差異導致從局部得出的結(jié)果并不一定準確[36],因此需要進一步研究。同時,由于一些老的抗生素 (如磷霉素、甲氧芐啶-磺胺甲氧異惡唑、氯林可霉素、普那霉素、梭鏈孢酸) 也可以導致耐藥基因的水平轉(zhuǎn)移,它們的重新啟用需要進行全局的生態(tài)學調(diào)查。
提高已有抗生素療效的一個方法是聯(lián)合用藥,聯(lián)合用藥比任何單一藥物的效果好很多[37]。實驗室研究表明利福平聯(lián)合達托霉素 (靶向抗萬古霉素腸球菌[38])、拉氧頭孢聯(lián)合妥布霉素或者頭孢曲松聯(lián)合妥布霉素 (靶向腸桿菌科[39])、氨基糖苷類聯(lián)合β-內(nèi)酰胺類 (靶向革蘭氏陰性菌[40])、環(huán)絲氨酸聯(lián)合沒食子酸 (靶向耐甲氧西林金黃色葡萄球菌[41]),均對治療耐藥菌感染有較好療效。另外最近研究報道將傳統(tǒng)的頭孢類抗生素頭孢他啶與β-內(nèi)酰胺酶抑制劑阿維巴坦聯(lián)用既保證了抗生素功能,又減少了細菌耐藥性[42]。
抗生素與植物提取物聯(lián)合使用也是較有前景的協(xié)同殺菌策略之一[43-45]。多項研究表明,酚類化合物,如玫瑰果中tellimagrandin Ⅰ[46]和熊果中鞣料云實素[47],其生物轉(zhuǎn)化可提高抗生素的抑菌效果。另外,Souto等報道杧果乙醇提取物與四環(huán)素和紅霉素聯(lián)合使用可以使其MIC降低4倍[16]。將柚木甲醇提取物與四環(huán)素合用,起到協(xié)同抗鼠傷寒沙門氏菌和肺炎克雷伯氏菌作用,其MIC濃度分別降低2倍和4倍[16]。
細菌、真菌和植物次生代謝產(chǎn)物是主要的抗菌物質(zhì)來源,當前醫(yī)藥用抗菌物質(zhì)大約有70%來源于細菌和真菌次級代謝產(chǎn)物。很多次級代謝產(chǎn)物,如聚酮類抗生素、非核糖體多肽、生物堿類化合物、糖類萜類化合物和細菌素等主要由基因簇編碼[48],且典型的次生代謝產(chǎn)物產(chǎn)生者其基因組中一般都含有生物合成基因簇(Biosynthetic gene cluster,BGCs)[49]。由于大部分抗生素來源于可培養(yǎng)細菌的天然產(chǎn)物,但細菌可培養(yǎng)率低,大量潛在抗生素難見天日。隨著測序技術(shù)的發(fā)展和宏基因組學研究的不斷深入,全球微生物組,包括土壤微生物組和腸道微生物組已被逐漸認為是新藥發(fā)現(xiàn)的巨大資源寶庫[50-51]。Donia等對人類微生物組進行分析,鑒定到了大于14 000個BGCs,并對其中3 000多個進行了比較詳細的分析[52],Walsh等從人類微生物組數(shù)據(jù)庫中鑒定到了數(shù)十個細菌素基因簇[53]。
令人備受鼓舞的是,有些研究開始使用生物信息學分析結(jié)果來指導抗菌物質(zhì)的發(fā)現(xiàn)與合成 (圖2)。Hover等根據(jù)達托霉素合成基因的保守序列設(shè)計引物,構(gòu)建擴增子文庫,依據(jù)文庫序列預測和查找新型的基因元件,再結(jié)合進一步的宏基因組測序和異源表達,從土壤中發(fā)現(xiàn)了一種分布廣泛、鈣離子依賴型、抗MRSA菌的新抗生素,被命名為malacidins;新抗生素在小鼠感染模型中效果極佳,且不產(chǎn)生選擇耐藥性[54]。Chu等根據(jù)分析結(jié)果合成了一種新的抗菌物質(zhì)humimycins,它對臨床分離的MRSA具有很好的抑制活性,能提高一些β-內(nèi)酰胺抗生素的活性,增加感染小鼠的成活率[55]。Vila-Farres等利用生物信息學分析結(jié)果指導合成了2個新的抗生素,一個具有抗細菌活性,另一個具有抗真菌活性[56]。
由于環(huán)境微生物在實驗室條件下比較難實現(xiàn)純培養(yǎng),科學家們已經(jīng)發(fā)明了從未培養(yǎng)菌中提取活性物質(zhì)的方法。Kim研究組通過原位混合菌培養(yǎng)的方法從土壤樣品中直接篩選活性分子。通過對原位培養(yǎng)菌抑菌活性代謝產(chǎn)物鑒定,發(fā)現(xiàn)了2種新的抗生素Lassomycin和泰斯巴汀 (Teixobactin),這2種新型抗菌物質(zhì)對MRSA和結(jié)核分枝桿菌有較好的抑制活性,且不容易導致耐藥性產(chǎn)生[57-58]。
2.選人視野的廣闊性。實行競爭性選拔的目的,就是最大限度地“選賢任能”,把各方面優(yōu)秀人才選拔上來。競爭性選拔干部給所有層面的干部,特別是優(yōu)秀年輕干部提供了難得的機會和平臺。從報名參加競聘的干部來源上看,所屬單位和崗位都各不相同,豐富了源頭活水,保證了干部來源的廣泛性;從干部所屬的層面上看,競爭性選拔特別是公開選拔使各個層面的干部都能參與進來,特別是賦予了廣大基層干部以寶貴的機會,從而能夠有效地優(yōu)化干部隊伍結(jié)構(gòu)。
化合物文庫篩選一直是科學家和制藥企業(yè)使用的經(jīng)典方法之一。Kim等在其最新研究中采用秀麗隱桿線蟲-MRSA篩選模型,從82 000個合成小分子化合物中篩選發(fā)現(xiàn)了185個化合物可明顯減少MRSA引起的秀麗隱桿線蟲死亡。進一步對其中兩個結(jié)構(gòu)相似的合成維甲酸——CD437和CD1530進行研究發(fā)現(xiàn),合成維甲酸通過破壞細菌脂質(zhì)雙層而殺傷生長期和持留MRSA;且在MRSA慢性感染的小鼠模型中,CD437及其類似物均具有良好的療效[59]。
盡管抗生素耐藥形勢仍然嚴峻,但科學家們已探索研發(fā)了很多新的抗菌策略 (圖3),以幫助應對可能出現(xiàn)的“無藥可用”危機。
圖2 發(fā)現(xiàn)新型抗菌物質(zhì)示意圖(改編自Kim等的文章[60])
圖3 抗菌新策略匯總(改編自Sharma等的文章[16])
隨著多重耐藥病原菌的增多,噬菌體療法越來越受到關(guān)注。很多學者使用動物模型對臨床相關(guān)病原菌,如銅綠假單胞菌、艱難梭菌、耐萬古霉素腸球菌、產(chǎn)β內(nèi)酰胺酶大腸桿菌、鮑氏不動桿菌和金黃色釀膿葡萄球菌進行了研究,結(jié)果發(fā)現(xiàn)噬菌體對細菌感染或化膿有較好的治療效果,能明顯降低實驗動物死亡率[61]。臨床實驗也表明,噬菌體療法對耐藥銅綠假單胞菌和金黃色釀膿葡萄球菌有較好的抑制作用[62]。最近美國FDA批準的一個緊急案例中,靜脈注射噬菌體拯救了一位由多重耐藥菌感染而瀕臨死亡的患者,更是讓人對噬菌體療法充滿期待[63]。另外,噬菌體裂解酶、多糖解聚酶等也被報道具有降解細菌莢膜、生物膜和革蘭氏陰性菌脂多糖外膜等功能[64-68],具有很好的應用開發(fā)前景。
盡管AMR持續(xù)增多,但最近25年來,沒有新類抗生素的問世。即使最新的一些鼓勵刺激措施可能會促進新抗生素的研發(fā),但也可能很快會出現(xiàn)耐藥。淋球菌已經(jīng)相繼對用于治療的抗生素產(chǎn)生了耐藥,已經(jīng)接近無藥可治的地步[69]。疫苗在全球疾病預防中的重要作用已有近2個世紀的歷史,應該可以被考慮為防治AMR的重要武器[69]。Laverde等研究發(fā)現(xiàn),TraM免疫或抗TraM抗血清可以靶向4型分泌系統(tǒng)蛋白,對多重耐藥性革蘭氏陽性致病菌有很好抑制作用,能顯著減少小鼠肝臟中腸球菌的菌落數(shù)[70]。Sassone-Corsi 等將鐵載體蛋白連接到高免疫原性蛋白后免疫小鼠,成功激發(fā)了鐵載體蛋白特異的IgA,有效降低鐵載體蛋白結(jié)合鐵的效率,進而降低病原體感染[71]。疫苗接種不僅避免了抗生素的初次使用[72],而且減少了細菌繼發(fā)感染后的二次使用[73]。另外,疫苗的效果可以通過群體免疫擴展至未接種疫苗的人群,從而使細菌耐藥性減少[74]。針對肺炎球菌、結(jié)核病、傷寒、流感、呼吸道合胞病毒和淋病的研究已表明加速疫苗研發(fā)具有明顯優(yōu)勢[69,75-76]。
以毒力因子為治療靶標的精準抗菌治療已有成功案例。小分子virstatin和toxtazin B是影響霍亂弧菌毒素表達的抗毒力抑制因子,在霍亂弧菌感染動物模型中表現(xiàn)出很好的療效[77]??苟玖λ幬颾ezlotoxumab是一種抗艱難梭菌毒素TcdB的單克隆抗體,已于2016年被FDA批準用于高復發(fā)風險艱難梭菌感染患者的治療[78]。其他很多抗金黃色葡萄球菌和銅綠假單胞菌的抗毒力因子治療也在進行臨床實驗[78]。
植物有多種功能特性,主要表現(xiàn)在具有各種生物活性次級代謝產(chǎn)物或植物化合物,如皂苷類、生物堿、花青素、香豆素類、黃酮類、酚類、萜類、醌類、單寧、外源凝集素和多肽等[16]。理論上講,天然產(chǎn)物應該比普通的抗生素具有更多優(yōu)勢。很多抗微生物中草藥同時具有抗細菌、真菌、原蟲和病毒的特性。同時,中草藥產(chǎn)品具有免疫促進作用,有利于宿主對感染的抵抗。青蒿素是傳統(tǒng)醫(yī)學中分離獲得的最著名的抗微生物藥物,現(xiàn)已成為主要的抗瘧疾藥[18]。另外,如從博落回中分離獲得的植物藥sanguiritrin 已經(jīng)成功用于臨床治療成人和小孩細菌和真菌感染性耳炎、膿性皮炎、皮膚癬、陰道炎、宮頸糜爛、牙周炎、壞死潰瘍性齦炎等[79]。
盡管益生菌、益生元和合生元的益生功能主要通過改變腸道環(huán)境和增強宿主抵抗力等方面來實現(xiàn)[80],但一些實驗數(shù)據(jù)證實有些益生菌具有直接對抗多種耐藥菌的功能。如嗜酸乳桿菌和假鏈狀雙歧桿菌SPM1309對臨床分離的MDR銅綠假單胞菌具有很強的抑制作用[16,81]。干酪乳桿菌對MDR賀氏 (桿) 菌和大腸桿菌具有很強抑制活性[16,82]。且基于乳酸菌的直接飼喂微生物已經(jīng)上市,BovamineTM和BovamineDefendTM已經(jīng)被廣泛用于減少大腸桿菌O157:H7感染[83]。另外,糞微生態(tài)移植作為一種新的多重耐藥細菌感染治療新手段也已用于臨床實驗[84]。
細菌素是微生物核糖體合成的一種具有抗菌活性的多肽,研究較多的有nisin和lacticin等。雖然一些細菌素如nisin已被開發(fā)用于乳腺炎的抗生素替代治療[85],但目前其主要用途仍以食品保存和防腐為主[41]。目前科學家們正試圖利用結(jié)構(gòu)-功能關(guān)系理性設(shè)計原理對細菌素進行基因改造[86],以提高其特異性、穩(wěn)定性和擴大宿主譜,從而擴展其用途[87-89]。
宿主防御肽是哺乳動物為了抵抗病原菌感染而分泌的一種小分子短肽。研究較多的是從人腸道中發(fā)現(xiàn)的一種陽離子抗菌肽LL-37。研究表明,抗菌肽LL-37對革蘭氏陰性菌 (鮑曼不動桿菌、大腸桿菌、鼠傷寒沙門氏菌、銅綠假單胞菌、嗜麥芽窄食單胞菌、普通變形桿菌、肺炎克雷伯氏菌、淋病奈瑟氏菌) 和革蘭氏陽性菌 (葡萄球菌、腸球菌、鏈球菌、芽孢桿菌、嗜酸乳桿菌、單增李斯特菌、痤瘡丙酸桿菌) 均有較好的抑菌效果[90]。另外,β-防御素和新近發(fā)現(xiàn)的β抵抗素樣分子 (RELMβ) 等,也是腸道重要的抗菌蛋白武器[91]。
肽核酸(Peptide nucleic acids,PNAs) 作為反義分子通過抑制靶基因翻譯起到抑菌作用。由于可以抵抗核酸酶、蛋白酶和其他酶的降解,被認為是一種很有前景的體內(nèi)替代經(jīng)典抗生素的方法[92]。Mondhe等通過設(shè)計靶向不同翻譯起始區(qū)域的PNAs來改變其抗菌譜,從而使之有更好的靶向性。如肽BS0001被設(shè)計用來靶向殺死枯草芽孢桿菌,肽KS0001被設(shè)計用來靶向殺死肺炎克雷伯菌等[93]。
納米顆??赡芡ㄟ^電荷相互作用粘附到細菌膜表面從而破壞細菌膜完整性,改變細胞壁結(jié)構(gòu),阻止重要酶信號通路等。納米顆粒及這些離子誘導的氧化應激可以不可逆地損害細菌細胞組分,從而導致細菌死亡[94]。已有研究報道納米顆粒可替代抗生素用于對抗流產(chǎn)布魯氏桿菌、金黃色葡萄球菌和牛皮癬感染等[16,95-96]。同時,不同的納米材料(有機和無機納米材料,脂質(zhì)體,生物分子如多糖、脂類、蛋白/多肽和病毒衣殼)與抗生素聯(lián)合使用,其抗菌效果更好[97-100]。將抗生素連接到納米材料將有利于增加感染部位抗生素的濃度和提高抗生素與細菌間的相互作用。同樣,納米顆粒與抗菌肽和香精油聯(lián)合使用也具有協(xié)同抗菌作用[101]。納米材料可作為新型抗菌藥物載體系統(tǒng),以提高藥物的內(nèi)化[102]。
細菌代謝減緩與很多抗生素耐受和耐藥相關(guān),促進細菌代謝可增加其敏感性[103-106]。通過研究耐藥菌的代謝狀態(tài),Peng等發(fā)現(xiàn)耐藥遲鈍愛德華菌其代謝譜與敏感菌有差異,其中心代謝通路出現(xiàn)了一些缺陷。耐藥菌株的葡萄糖和丙氨酸含量明顯較低[107]。通過添加外源代謝物可以刺激中心代謝和增加藥物攝入,從而提高抗生素治療的敏感性[107]。這與以前報道的耐藥嗜麥芽窄養(yǎng)單胞菌和銅綠假單胞菌結(jié)果一致[108-109]。Allison等也表明外源添加代謝物 (如葡萄糖、甘露醇、果糖) 可刺激中心代謝,使氨基糖苷抗生素能更好清除大腸桿菌和金黃色葡萄球菌的持留和生物膜生成[103]。
CRISPR-Cas工具已經(jīng)用來設(shè)計生產(chǎn)靶向特異序列的抗微生物制劑[110-113]。這種方法在體外很有效,可選擇性殺死攜帶耐藥基因或毒力基因的靶向細菌。Citorik等利用CRISPR-Cas技術(shù)設(shè)計特異性抗生素,顯著提升了大蠟螟感染小鼠的存活率[110]。Bikard等應用CRISPR-Cas工具設(shè)計特異性靶向毒性基因的抗菌物質(zhì),特異性殺死有毒金黃色葡萄球菌,而對無毒金黃色葡萄球菌沒有影響,且在小鼠體內(nèi)具有很好療效[111]。
最近十年,基于光的治療在對抗各種AMR方面取得了重大進展。這種方法包括使用抗微生物藍光、抗菌光動力療法和殺菌紫外線照射等。光治療與傳統(tǒng)抗生素治療相比的優(yōu)點是可選擇性地清除微生物細胞,而對人體細胞和組織無害。這些治療和裝置有很多有趣功能和應用,如牙科、一些眼科和皮膚疾病、很難清洗的表面、內(nèi)科器官 (如胃) 消毒、儀器設(shè)備和房間清毒等[114]。
小RNAs (sRNAs) 是一種存在于細菌中的長度在50?500 bp的核苷酸[115]。已有研究表明調(diào)控sRNAs表達對維持AMR表型和讓細菌具有生物優(yōu)勢非常重要[116-122]。一些選擇性的菌株暴露在抗生素后其sRNAs表達譜發(fā)生改變[116-119]。更重要的是,調(diào)控抗生素引起的sRNAs反應可增加細菌對多種抗生素的敏感性[120-121,123]。sRNA 有發(fā)展成為新藥的巨大潛能。sRNA 激動劑或拮抗劑與傳統(tǒng)抗生素同時使用可能是優(yōu)化與減少耐藥菌出現(xiàn)的方法之一[124]。
與DNA類似,PMOs是一個以合成的磷酰二胺和嗎啉為骨架的ATCG低聚物[92]。PMOs在體外和體內(nèi)均能對臨床病原菌如鮑氏不動桿菌、洋蔥伯克霍爾德菌和大腸桿菌有較好的抑制作用[125-127],代表了一類新的有前景的精準抗菌物質(zhì)。最新研究表明,靶向、和等必需基因的PMOs與陽離子抗生素多粘菌素B結(jié)合后,可提高2–8倍抗銅綠假單胞菌活性[128];靶向可抑制銅綠假單胞菌生物膜形成;靶向的化合物與托普霉素具有協(xié)同作用,可以導致小鼠肺部細菌總量降低3個數(shù)量級。
盡管抗生素的使用和管理還存在很多漏洞,耐藥菌和耐藥基因的診斷與監(jiān)測還并不完善,以上列舉的各種抗菌策略也還存在許多不足,大眾被警告,一場“抗生素”災難即將來臨,人類即將面臨來自無法殺滅細菌的最大威脅;然而,世界末日還未來臨,科學家們正在積極應對AMR的威脅,新知識及化學療法正在保衛(wèi)我們的未來,未來是光明而不是黑暗的[129]。
科學家和企業(yè)家們正在努力尋找理想的抗生素替代物 (無毒且容易從人體中排出,能穩(wěn)定通過胃腸道,環(huán)境友好容易分解,選擇性抗某些病原菌,對土著腸道菌群影響很小或沒影響,不產(chǎn)生耐藥性)。各國政府也正在聯(lián)合各方力量積極應對AMR,包括:1) 改造已有抗生素;2) 尋找新型抗生素;3) 發(fā)展和改善給藥系統(tǒng);4) 優(yōu)化抗生素給藥頻率和劑量等[130]。
[1] Lipsky BA, Itani K, Norden C, et al. Treating foot infections in diabetic patients: a randomized, multicenter, open-label trial of linezolid versus ampicillin-sulbactam/amoxicillin-clavulanate. Clin Infect Dis, 2004, 38(1): 17–24.
[2] de Kraker ME, Davey PG, Grundmann H, et al. Mortality and hospital stay associated with resistantandbacteremia: estimating the burden of antibiotic resistance in Europe. PLoS Med, 2011, 8(10): e1001104.
[3] Carlet J, Collignon P, Goldmann D, et al. Society’s failure to protect a precious resource: antibiotics. Lancet, 2011, 378(9788): 369–371.
[4] 由英國政府和惠康基金會 (Wellcome Trust) 資助, 以經(jīng)濟學家Jim O’Neill為主席的細菌耐藥性評估委員會發(fā)表相關(guān)研究成果. [2016-05-16]. https://amr-review.org/sites/default/files/160525_Final%20paper_with%20cover.pdf.
[5] Brown ED, Wright GD. Antibacterial drug discovery in the resistance era. Nature, 2016, 529(7586): 336–343.
[6] Boucher HW, Talbot GH, Benjamin DK Jr, et al. 10 x '20 Progress--development of new drugs active against gram-negative bacilli: an update from the infectious diseases Society of America. Clin Infect Dis, 2013, 56(12): 1685–1694.
[7] de La Fuente-Nunez C, Torres MD, Mojica FJ, et al. Next-generation precision antimicrobials: towards personalized treatment of infectious diseases. Curr Opin Microbiol, 2017, 37: 95–102.
[8] Enioutina EY, Teng LD, Fateeva TV, et al. Phytotherapy as an alternative to conventional antimicrobials: combating microbial resistance. Expert Rev Clin Pharmacol, 2017, 10(11): 1203–1214.
[9] Hao HH, Cheng GY, Iqbal Z, et al. Benefits and risks of antimicrobial use in food-producing animals. Front Microbiol, 2014, 5: 288.
[10] Barriere SL. Clinical, economic and societal impact of antibiotic resistance. Expert Opin Pharmacother, 2015, 16(2): 151–153.
[11] Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev, 2010, 74(3): 417–433.
[12] Inoue H, Minghui R. Antimicrobial resistance: translating political commitment into national action. Bull World Health Organ, 2017, 95(4): 242.
[13] Xiao YH, Li LJ. China’s national plan to combat antimicrobial resistance. Lancet Infect Dis, 2016, 16(11): 1216–1218.
[14] Laxminarayan R, Amábile-Cuevas CF, Cars O, et al. UN high-level meeting on antimicrobials—what do we need? Lancet, 2016, 388(10041): 218–220.
[15] Vikesland PJ, Pruden A, Alvarez PJJ, et al. Toward a Comprehensive strategy to mitigate dissemination of environmental sources of antibiotic resistance. Environ Sci Technol, 2017, 51(22): 13061–13069.
[16] Sharma C, Rokana N, Chandra M, et al. Antimicrobial resistance: its surveillance, impact, and alternative management strategies in dairy animals. Front Vet Sci, 2017, 4: 237.
[17] Baquero F, Martínez JL, Cantón R. Antibiotics and antibiotic resistance in water environments. Curr Opin Biotechnol, 2008, 19(3): 260–265.
[18] Cui LW, Su XZ. Discovery, mechanisms of action and combination therapy of artemisinin. Expert Rev Anti Infect Ther, 2009, 7(8): 999–1013.
[19] Icgen B, Yilmaz F. Co-occurrence of antibiotic and heavy metal resistance in K?z?l?rmak River isolates. Bull Environ Contam Toxicol, 2014, 93(6): 735–743.
[20] Lv L, Yu X, Xu Q, et al. Induction of bacterial antibiotic resistance by mutagenic halogenated nitrogenous disinfection byproducts. Environ Pollut, 2015, 205: 291–298.
[21] Xu YB, Hou MY, Li YF, et al. Distribution of tetracycline resistance genes and AmpC β-lactamase genes in representative non-urban sewage plants and correlations with treatment processes and heavy metals. Chemosphere, 2017, 170: 274–281.
[22] Wong GWK. Reducing antibiotic prescriptions for childhood upper respiratory tract infections. Lancet Glob Health, 2017, 5(12): e1170–e1171.
[23] Bertollo LG, Lutkemeyer DS, Levin AS. Are antimicrobial stewardship programs effective strategies for preventing antibiotic resistance? A systematic review. Am J Infect Control, 2018, doi: 10.1016/j.ajic.2018.01.002.
[24] Zhang QQ, Ying GG, Pan CG, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance. Environ Sci Technol, 2015, 49(11): 6772–6782.
[25] Suzuki S, Horinouchi T, Furusawa C. Acceleration and suppression of resistance development by antibiotic combinations. BMC Genomics, 2017, 18: 328.
[26] Rodriguez-Mozaz S, Chamorro S, Marti E, et al. Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. Water Res, 2015, 69: 234–242.
[27] Devarajan N, Laffite A, Graham ND, et al. Accumulation of clinically relevant antibiotic-resistance genes, bacterial load, and metals in freshwater lake sediments in Central Europe. Environ Sci Technol, 2015, 49(11): 6528–6537.
[28] Su JQ, An XL, Li B, et al. Metagenomics of urban sewage identifies an extensively shared antibiotic resistome in China. Microbiome, 2017, 5: 84.
[29] Zhang Y, Li AL, Dai TJ, et al. Cell-free DNA: a neglected source for antibiotic resistance genes spreading from WWTPs. Environ Sci Technol, 2018, 52(1): 248–257.
[30] Ma LP, Li B, Jiang XT, et al. Catalogue of antibiotic resistome and host-tracking in drinking water deciphered by a large scale survey. Microbiome, 2017, 5: 154.
[31] Pulcini C, Bush K, Craig WA, et al. Forgotten antibiotics: an inventory in Europe, the United States, Canada, and Australia. Clin Infect Dis, 2012, 54(2): 268–274.
[32] Cassir N, Rolain JM, Brouqui P. A new strategy to fight antimicrobial resistance: the revival of old antibiotics. Front Microbiol, 2014, 5: 551.
[33] Chen FF, Di HX, Wang YX, et al. Small-molecule targeting of a diapophytoene desaturase inhibitsvirulence. Nat Chem Biol, 2016, 12(3): 174–179.
[34] Mouton JW, Ambrose PG, Canton R, et al. Conserving antibiotics for the future: new ways to use old and new drugs from a pharmacokinetic and pharmacodynamic perspective. Drug Resist Updat, 2011, 14(2): 107–117.
[35] Falagas ME, Kasiakou SK. Toxicity of polymyxins: a systematic review of the evidence from old and recent studies. Crit Care, 2006, 10(1): R27.
[36] Deshpande LM, Fritsche TR, Moet GJ, et al. Antimicrobial resistance and molecular epidemiology of vancomycin-resistant enterococci from North America and Europe: a report from the SENTRY antimicrobial surveillance program. Diagn Microbiol Infect Dis, 2007, 58(2): 163–170.
[37] Loewe S. The problem of synergism and antagonism of combined drugs. Arzneimittelforschung, 1953, 3(6): 285–290.
[38] Rand KH, Houck H. Daptomycin synergy with rifampicin and ampicillin against vancomycin-resistant enterococci. J Antimicrob Chemother, 2004, 53(3): 530–532.
[39] Fass RJ. Comparativeactivities of beta-lactam-tobramycin combinations againstand multidrug-resistant Gram-negative enteric bacilli. Antimicrob Agents Chemother, 1982, 21(6): 1003–1006.
[40] Scudamore RA, Goldner M. Penetration of the outer membrane ofby synergistic combinations of beta-lactam and aminoglycoside antibiotics. Antimicrob Agents Chemother, 1982, 21(6): 1007–1010.
[41] Zhao WH, Hu ZQ, Okubo S, et al. Mechanism of synergy between epigallocatechin gallate and β-lactams against methicillin-resistant. Antimicrob Agents Chemother, 2001, 45(6): 1737–1742.
[42] Wright GD. Empowering older antibiotics. Cell, 2016, 167(2): 301.
[43] Darwish RM, Aburjai TA. Effect of ethnomedicinal plants used in folklore medicine in Jordan as antibiotic resistant inhibitors on. BMC Complement Altern Med, 2010, 10: 9.
[44] Dudhatra GB, Mody SK, Awale MM, et al. A comprehensive review on pharmacotherapeutics of herbal bioenhancers. Sci World J, 2012, 2012: 637953.
[45] Kumar-Sarangi M, Chandra-Joshi B, Ritchie B. Natural bioenhancers in drug delivery: an overview. P R Health Sci J, 2018, 37(1): 12–18.
[46] Shiota S, Shimizu M, Mizusima T, et al. Restoration of effectiveness of beta-lactams on methicillin-resistantby tellimagrandin I from rose red. FEMS Microbiol Lett, 2000, 185(2): 135–138.
[47] Shimizu M, Shiota S, Mizushima T, et al. Marked potentiation of activity of β-lactams against methicillin-resistantby corilagin. Antimicrob Agents Chemother, 2001, 45(11): 3198–3201.
[48] Cotter PD, Ross RP, Hill C. Bacteriocins-a viable alternative to antibiotics? Nat Rev Microbiol, 2013, 11(2): 95–105.
[49] Cimermancic P, Medema MH, Claesen J, et al. Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters. Cell, 2014, 158(2): 412–421.
[50] Lam YC, Crawford JM. Discovering antibiotics from the global microbiome. Nat Microbiol, 2018, 3(4): 392–293.
[51] Garcia-Gutierrez E, Mayer MJ, Cotter PD, et al. Gut microbiota as a source of novel antimicrobials. Gut Microbes, 2018, doi: 10.1080/19490976.2018.1455790.
[52] Donia MS, Cimermancic P, Schulze CJ, et al. A systematic analysis of biosynthetic gene clusters in the human microbiome reveals a common family of antibiotics. Cell, 2014, 158(6): 1402–1414.
[53] Walsh CJ, Guinane CM, Hill C, et al.identification of bacteriocin gene clusters in the gastrointestinal tract, based on the Human Microbiome Project’s reference genome database. BMC Microbiol, 2015, 15: 183.
[54] Hover BM, Kim SH, Katz M, et al. Culture-independent discovery of the malacidins as calcium-dependent antibiotics with activity against multidrug-resistant Gram-positive pathogens. Nat Microbiol, 2018, 3(4): 415–422.
[55] Chu J, Vila-Farres X, Inoyama D, et al. Discovery of MRSA active antibiotics using primary sequence from the human microbiome. Nat Chem Biol, 2016, 12(12): 1004–1006.
[56] Vila-Farres X, Chu J, Inoyama D, et al. Antimicrobials inspired by nonribosomal peptide synthetase gene clusters. J Am Chem Soc, 2017, 139(4): 1404–1407.
[57] Ling LL, Schneider T, Peoples AJ, et al. A new antibiotic kills pathogens without detectable resistance. Nature, 2015, 517(7535): 455–459.
[58] Gavrish E, Sit CS, Cao SG, et al. Lassomycin, a ribosomally synthesized cyclic peptide, killsby targeting the ATP-dependent protease ClpC1P1P2. Chem Biol, 2014, 21(4): 509–518.
[59] Kim W, Zhu WP, Hendricks GL, et al. A new class of synthetic retinoid antibiotics effective against bacterial persisters. Nature, 2018, 556(7699): 103–107.
[60] Kim HU, Blin K, Lee SY, et al. Recent development of computational resources for new antibiotics discovery. Curr Opin Microbiol, 2017, 39: 113–120.
[61] Lin DM, Koskella B, Lin HC. Phage therapy: An alternative to antibiotics in the age of multi-drug resistance. World J Gastrointest Pharmacol Ther, 2017, 8(3): 162–173.
[62] Abedon ST. Bacteriophage clinical use as antibacterial “Drugs”: utility and precedent. Microbiol Spectr, 2017, 5(4), doi: 10.1128/microbiolspec.BAD- 0003-2016.
[63] Forde A, Hill C. Phages of life - the path to pharma. Br J Pharmacol, 2018, 175(3): 412–418.
[64] Czaplewski L, Bax R, Clokie M, et al. Alternatives to antibiotics-a pipeline portfolio review. Lancet Infect Dis, 2016, 16(2): 239–251.
[65] Yan JL, Mao JX, Xie JP. Bacteriophage polysaccharide depolymerases and biomedical applications. BioDrugs, 2014, 28(3): 265–274.
[66] Drulis-Kawa Z, Majkowska-Skrobek G, Maciejewska B. Bacteriophages and phage-derived proteins—applicationapproaches. Curr Med Chem, 2015, 22(14): 1757–1773.
[67] Pires DP, Oliveira H, Melo LD, et al. Bacteriophage-encoded depolymerases: their diversity and biotechnological applications. Appl Microbiol Biotechnol, 2016, 100(5): 2141–2151.
[68] Latka A, Maciejewska B, Majkowska-Skrobek G, et al. Bacteriophage-encoded virion-associated enzymes to overcome the carbohydrate barriers during the infection process. Appl Microbiol Biotechnol, 2017, 101(8): 3103–3119.
[69] Clift C, Salisbury DM. Enhancing the role of vaccines in combatting antimicrobial resistance. Vaccine, 2017, 35(48 Pt B): 6591–6593.
[70] Laverde D, Probst I, Romero-Saavedra F, et al. Targeting type IV secretion system proteins to combat multidrug-resistant gram-positive pathogens. J Infect Dis, 2017, 215(12): 1836–1845.
[71] Sassone-Corsi M, Chairatana P, Zheng TF, et al. Siderophore-based immunization strategy to inhibit growth of enteric pathogens. Proc Natl Acad Sci USA, 2016, 113(47): 13462–13467.
[72] Fleming-Dutra KE, Hersh AL, Shapiro DJ, et al. Prevalence of inappropriate antibiotic prescriptions among US ambulatory care visits, 2010–2011. JAMA, 2016, 315(17): 1864–1873.
[73] Kwong JC, Maaten S, Upshur RE, et al. The effect of universal influenza immunization on antibiotic prescriptions: an ecological study. Clin Infect Dis, 2009, 49(5): 750–756.
[74] Lipsitch M, Siber GR. How can vaccines contribute to solving the antimicrobial resistance problem? mBio, 2016, 7(3): e00428-16.
[75] Tomczyk S, Lynfield R, Schaffner W, et al. Prevention of antibiotic-nonsusceptible invasive pneumococcal disease with the 13-valent pneumococcal conjugate vaccine. Clin Infect Dis, 2016, 62(9): 1119–1125.
[76] von Gottberg A, de Gouveia L, Tempia S, et al. Effects of vaccination on invasive pneumococcal disease in South Africa. N Engl J Med, 2014, 371(20): 1889–1899.
[77] Anthouard R, DiRita VJ. Chemical biology applied to the study of bacterial pathogens. Infect Immun, 2015, 83(2): 456–469.
[78] Dickey SW, Cheung GYC, Otto M. Different drugs for bad bugs: antivirulence strategies in the age of antibiotic resistance. Nat Rev Drug Discov, 2017, 16(7): 457–471.
[79] Gupta PD, Birdi TJ. Development of botanicals to combat antibiotic resistance. J Ayurveda Integr Med, 2017, 8(4): 266–275.
[80] Markowiak P, ?li?ewska K. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients, 2017, 9(9): 1021.
[81] Jamalifar H, Rahimi HR, Samadi N, et al. Antimicrobial activity of differentspecies against multi-drug resistant clinical isolates of. Iran J Microbiol, 2011, 3(1): 21–25.
[82] Mirnejad R, Vahdati AR, Rashidiani J, et al. The antimicrobial effect ofculture supernatant against multiple drug resistant clinical isolates ofand. Iran Red Crescent Med J, 2013, 15(2): 122–126.
[83] Téllez G, Lauková A, Latorre JD, et al. Food-producing animals and their health in relation to human health. Microb Ecol Health Dis, 2015, 26: 25876, doi: 10.3402/mehd.v26.25876.
[84] Manges AR, Steiner TS, Wright AJ. Fecal microbiota transplantation for the intestinal decolonization of extensively antimicrobial-resistant opportunistic pathogens: a review. Infect Dis (Lond), 2016, 48(8): 587–592.
[85] Pieterse R, Todorov SD, Dicks MT. Mode of action andsusceptibility of mastitis pathogens to macedocin ST91KM and preparation of a teat seal containing the bacteriocin. Braz J Microbiol, 2010, 41(1): 133–145.
[86] Nes IF, Johnsborg O. Exploration of antimicrobial potential in LAB by genomics. Curr Opin Biotechnol, 2004, 15(2): 100–104.
[87] Kuwano K, Tanaka N, Shimizu T, et al. Dual antibacterial mechanisms of nisin Z against Gram-positive and Gram-negative bacteria. Int J Antimicrob Agents, 2005, 26(5): 396–402.
[88] Field D, O’Connor R, Cotter PD, et al.activities of nisin and nisin derivatives alone and in combination with antibiotics againstbiofilms. Front Microbiol, 2016, 7: 508.
[89] Field D, Gaudin N, Lyons F, et al. A bioengineered nisin derivative to control biofilms of. PLoS ONE, 2015, 10(3): e0119684.
[90] Xhindoli D, Pacor S, Benincasa M, et al. The human cathelicidin LL-37—A pore-forming antibacterial peptide and host-cell modulator. Biochim Biophys Acta (BBA)-Biomemb, 2016, 1858(3): 546–566.
[91] Propheter DC, Chara AL, Harris TA, et al. Resistin-like molecule β is a bactericidal protein that promotes spatial segregation of the microbiota and the colonic epithelium. Proc Natl Acad Sci USA, 2017, 114(42): 11027–11033.
[92] Sully EK, Geller BL. Antisense antimicrobial therapeutics. Curr Opin Microbiol, 2016, 33: 47–55.
[93] Mondhe M, Chessher A, Goh S, et al. Species-selective killing of bacteria by antimicrobial peptide-PNAs. PLoS ONE, 2014, 9(2): e89082.
[94] Hajipour MJ, Fromm KM, Ashkarran AA, et al. Antibacterial properties of nanoparticles. Trends Biotechnol, 2012, 30(10): 499–511.
[95] Seil JT, Webster TJ. Antimicrobial applications of nanotechnology: methods and literature. Int J Nanomedicine, 2012, 7: 2767–2781.
[96] Gomes F, Henriques M. Control of bovine mastitis: old and recent therapeutic approaches. Curr Microbiol, 2016, 72(4): 377–382.
[97] Veerapandian M, Yun K. Functionalization of biomolecules on nanoparticles: specialized for antibacterial applications. Appl Microbiol Biotechnol, 2011, 90(5): 1655–1667.
[98] Faraji AH, Wipf P. Nanoparticles in cellular drug delivery. Bioorg Med Chem, 2009, 17(8): 2950–2962.
[99] Gaucher G, Marchessault RH, Leroux JC. Polyester-based micelles and nanoparticles for the parenteral delivery of taxanes. J Control Release, 2010, 143: 2–12.
[100] Subbiah R, Veerapandian M, Yun KS. Nanoparticles: functionalization and multifunctional applications in biomedical sciences. Curr Med Chem, 2010, 17(36): 4559–4577.
[101] Allahverdiyev AM, Kon KV, Abamor ES, et al. Coping with antibiotic resistance: combining nanoparticles with antibiotics and other antimicrobial agents. Expert Rev Anti Infect Ther, 2011, 9(11): 1035–1052.
[102] Santos RS, Figueiredo C, Azevedo NF, et al. Nanomaterials and molecular transporters to overcome the bacterial envelope barrier: Towards advanced delivery of antibiotics. Adv Drug Deliv Rev, 2017, doi: 10.1016/j.addr.2017.12.010.
[103] Allison KR, Brynildsen MP, Collins JJ. Metabolite-enabled eradication of bacterial persisters by aminoglycosides. Nature, 2011, 473(7346): 216–220.
[104] Bryan LE, van den Elzen HM. Effects of membrane-energy mutations and cations on streptomycin and gentamicin accumulation by bacteria: a model for entry of streptomycin and gentamicin in susceptible and resistant bacteria. Antimicrob Agents Chemother, 1977, 12(2): 163–177.
[105] Kohanski MA, Dwyer DJ, Hayete B, et al. A common mechanism of cellular death induced by bactericidal antibiotics. Cell, 2007, 130(5): 797–810.
[106] Martínez JL, Rojo F. Metabolic regulation of antibiotic resistance. FEMS Microbiol Rev, 2011, 35(5): 768–789.
[107] Peng B, Su YB, Li H, et al. Exogenous alanine and/or glucose plus kanamycin kills antibiotic-resistant bacteria. Cell Metab, 2015, 21(2): 249–262.
[108] Alonso A, Morales G, Escalante R, et al. Overexpression of the multidrug efflux pump SmeDEF impairsphysiology. J Antimicrob Chemother, 2004, 53(3): 432–434.
[109] Stickland HG, Davenport PW, Lilley KS, et al. Mutation ofcauses global changes in the physiology and metabolism of. J Proteome Res, 2010, 9(6): 2957–2967.
[110] Citorik RJ, Mimee M, Lu TK. Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat Biotechnol, 2014, 32(11): 1141–1145.
[111] Bikard D, Euler CW, Jiang WY, et al. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat Biotechnol, 2014, 32(11): 1146–1150.
[112] Gomaa AA, Klumpe HE, Luo ML, et al. Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems. mBio, 2014, 5(1): e00928–13.
[113] Yosef I, Manor M, Kiro R, et al. Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria. Proc Natl Acad Sci USA, 2015, 112(23): 7267–7272.
[114] Ahmed I, Fang Y, Lu M, et al. Recent patents on light-based anti-infective approaches. Recent Pat Antiinfect Drug Discov, 2017, doi: 10.2174/1872213X11666171108104104.
[115] Kwenda S, Gorshkov V, Ramesh AM, et al. Discovery and profiling of small RNAs responsive to stress conditions in the plant pathogen Pectobacterium atrosepticum. BMC Genomics, 2016, 17: 47.
[116] Molina-Santiago C, Daddaoua A, Gómez-Lozano M, et al. Differential transcriptional response to antibiotics byDOT-T1E. Environ Microbiol, 2015, 17(9): 3251–3262.
[117] Howden BP, Beaume M, Harrison PF, et al. Analysis of the small RNA transcriptional response in multidrug-resistantafter antimicrobial exposure. Antimicrob Agents Chemother, 2013, 57(8): 3864–3874.
[118] Yu J, Schneiders T. Tigecycline challenge triggers sRNA production in Salmonella enterica serovar Typhimurium. BMC Microbiol, 2012, 12: 195.
[119] Chen Y, Indurthi DC, Jones SW, et al. Small RNAs in the genus. mBio, 2011, 2(1): e00340–10.
[120] Kim T, Bak G, Lee J, et al. Systematic analysis of the role of bacterial Hfq-interacting sRNAs in the response to antibiotics. J Antimicrob Chemother, 2015, 70(6): 1659–1668.
[121] Ramos CG, Grilo AM, Sousa SA, et al. Regulation of Hfq mRNA and protein levels inandby theMtvR sRNA. PLoS ONE, 2014, 9(6): e98813.
[122] Jeeves RE, Marriott AAN, Pullan ST, et al.is resistant to isoniazid at a slow growth rate by single nucleotide polymorphisms incodon Ser315. PLoS ONE, 2015, 10(9): e0138253.
[123] Kim JN, Kwon YM. Genetic and phenotypic characterization of the RyhB regulon intyphimurium. Microbiol Res, 2013, 168(1): 41–49.
[124] Chan H, Ho J, Liu XD, et al. Potential and use of bacterial small RNAs to combat drug resistance: a systematic review. Infect Drug Resist, 2017, 10: 521–532.
[125] Greenberg DE, Marshall-Batty KR, Brinster LR, et al. Antisense phosphorodiamidate morpholino oligomers targeted to an essential gene inhibitcomplex. J Infect Dis, 2010, 201(12): 1822–1830.
[126] Geller BL, Deere JD, Stein DA, et al. Inhibition of gene expression inby antisense phosphorodiamidate morpholino oligomers. Antimicrob Agents Chemother, 2003, 47(10): 3233–3239.
[127] Geller BL, Marshall-Batty K, Schnell FJ, et al. Gene-silencing antisense oligomers inhibitgrowthand. J Infect Dis, 2013, 208(10): 1553–1560.
[128] Howard JJ, Sturge CR, Moustafa DA, et al. Inhibition ofby peptide-conjugated phosphorodiamidate morpholino oligomers. Antimicrob Agents Chemother, 2017, 61(4), doi: 10.1128/AAC.01938-16.
[129] Cox JAG, Worthington T. The ‘a(chǎn)ntibiotic apocalypse’-scaremongering or scientific reporting? Trends Microbiol, 2017, 25(3): 167–169.
[130] Sharma A, Kumar AD, Dua M, et al. Nano-technology for targeted drug delivery to combat antibiotic resistance. Expert Opin Drug Deliv, 2012, 9(11): 1325–1332.
(本文責編 陳宏宇)
Progress in strategies to combat antimicrobial resistance
Yeshi Yin, Huahai Chen, Linyan Cao, Lin Tang, and Fulin He
Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, Hunan, China
Antimicrobial resistance is on the rise while the number of antibiotics being brought to market continues to drop. Drug-resistant genes and drug-resistant bacteria infection have seriously threatened human health. Therefore, antimicrobial resistance presents an ongoing challenge that requires multifaceted approaches including: biomedical innovation; improved surveillance of antibiotic consumption and antimicrobial resistance generated rates; prevention of health-care-associated infections and transmission of multidrug-resistant bacteria and environmental dissemination; rapid microbiological diagnosis; and curtailed clinical and veterinary misuse. Fortunately, combating antimicrobial resistance has been highly valued and supported by the government, scientists and entrepreneurs of various countries. With the continuous introduction of new technologies, new products, and new management measures, the problem of antimicrobial resistance must be controlled and alleviated.
antibiotic, antimicrobial resistance, antibiotic-resistant bacteria, antibiotic-resistant gene
May 26, 2018;
Jun 14, 2018
National Natural Science Foundation of China (No. 31741109), Natural Science Foundation of Hunan Province (No. 2018JJ2146).
Yeshi Yin. Tel/Fax: +86-746-2382989; E-mail: yinyeshi@126.com Fulin He. Tel/Fax: +86-746-6381164; E-mail: 2339695475@qq.com
國家自然科學基金 (No. 31741109),湖南省自然科學基金 (No. 2018JJ2146) 資助。
10.13345/j.cjb.180223