孫遜沙 吳潔瑩 陳勁松 陸琰 喻秋霞 李茹 王丹 李焱 吳韶清
[摘要] 目的 探討環(huán)狀RNA在人胎盤絨毛膜間充質(zhì)干細胞低氧預處理和常氧培養(yǎng)中表達譜的差異。 方法 利用芯片技術(shù)檢測3例低氧預處理人胎盤絨毛膜間充質(zhì)干細胞及其相應對照的常氧培養(yǎng)細胞的環(huán)狀RNA表達,分析兩者差異表達的環(huán)狀RNA及其結(jié)合miRNA。 結(jié)果 在檢測的13 617條環(huán)狀RNA中,有分析結(jié)果的環(huán)狀RNA 12 114條,低氧和常氧培養(yǎng)人胎盤間充質(zhì)干細胞差異表達環(huán)狀RNA共102條,其中低氧中表達上調(diào)的85條,下調(diào)的17條(倍數(shù)變化>1.5倍且P < 0.05),而表達差異倍數(shù)變化大于2倍以上的環(huán)狀RNA有27條,且均為上調(diào)表達。每個環(huán)狀RNA預測到5個結(jié)合miRNA。 結(jié)論 低氧預處理使得人胎盤絨毛膜間充質(zhì)干細胞的環(huán)狀RNA表達譜發(fā)生了顯著變化,這些環(huán)狀RNA可能和低氧預處理有關(guān)。
[關(guān)鍵詞] 低氧;人胎盤絨毛膜間充質(zhì)干細胞;環(huán)狀RNA;表達譜
[中圖分類號] R394.2 [文獻標識碼] A [文章編號] 1673-7210(2018)06(c)-0009-03
[Abstract] Objective To analyze the expression profile variation of circular RNA (circRNA) between hypoxia preconditioned human placenta chorionic mesenchymal stem cells (H-hpcMSCs) and normoxic preconditioned hpcMSCs (N-hpcMSCs). Methods Human circRNA microarray was performed to detect the difference of circRNA expression between 3 paired specimens of H-hpcMSCs and its N-hpcMSCs. The circRNA differental expression and the predicted miRNA of differentially expressed circRNA were analyzed. Results Of the 13 617 circRNAs, 12 114 circRNAs with analytical results. In H-hpcMSCs, a total of 102 circRNAs showed differentially expressed which have more than 1.5 times variation and significant difference (P < 0.05). Among them, 85 increased and change′s fold more than 1.5 times, while 17 reduced and change′s fold more than 1.5 times, a total of 27 circRNAs showed a greater than 2-fold change and all were up-regulated. Five miRNAs of each with differentially expressed circRNA were predicted according to specific base pairing. Conclusion The circRNA expression profile of H-hpcMSCs changed significantly in comparison with N-hpcMSCs, the circRNA may be associated with the hypoxia precondition.
[Key words] Hypoxia precondition; Human placenta chorionic mesenchymal stem cells; Circular RNA; Expression profile
環(huán)狀RNA是一類特殊的內(nèi)源性RNA分子,大量存在于真核生物細胞中,是RNA領域最新的研究熱點之一[1-3]。已有研究表明,circRNA參與了多種疾病、衰老等生理病理現(xiàn)象的發(fā)生發(fā)展過程[4]。目前,circRNA參與調(diào)控間充質(zhì)干細胞生理過程的研究報道較少,而低氧預處理對間充質(zhì)干細胞中circRNA表達的影響未見報道。因此,本研究預期篩選出低氧預處理人胎盤絨毛膜間充質(zhì)干細胞差異表達的circRNA,為circRNA參與間充質(zhì)干細胞的生物學功能提供實驗數(shù)據(jù)。
1 材料與方法
1.1 試劑與儀器
TRIzol試劑(Invitrogen life technologies),無RNA酶的水(Invitrogen life technologies),RNase R(Epicentre),人circRNA芯片v2.0(Arraystar),Arraystar Supper RNA Labeling試劑盒(Arraystar),二氧化氮培養(yǎng)箱(Labotect),基因芯片掃描儀(Agilent),計算機圖像分析系統(tǒng)(Leica),基因芯片雜交儀(Illumina)
1.2 標本收集和分組
人胎盤絨毛膜間充質(zhì)干細胞按照已有實驗室方法提取并驗證為合格的間充質(zhì)干細胞[5]。本研究中,復溫3例不同孕婦胎盤來源的P3代人胎盤絨毛膜間充質(zhì)干細胞,接種培養(yǎng)至80%融合時消化傳代,1∶2分離培養(yǎng),一瓶置于1%體積分數(shù)CO2培養(yǎng)箱中培養(yǎng),為本次研究的實驗組;一瓶置于21%體積分數(shù)CO2培養(yǎng)箱中培養(yǎng),為本次研究的對照組。
1.3 環(huán)狀RNA芯片實驗操作流程
實驗組和對照組細胞培養(yǎng)至70%~80%融合度時,用TRIzol提取總RNA,經(jīng)RNase R處理,去除線性RNA,富集circRNA,然后用隨機引物對circRNA進行擴增并轉(zhuǎn)錄為熒光cRNA。cRNA純化后在circRNA芯片上65℃雜交17 h。雜交后的芯片洗片后,應用Agilent Scanner G2505C掃描。
1.4 數(shù)據(jù)采集與分析
將芯片掃描圖片導入Agilent Feature Extraction軟件提取原始數(shù)據(jù),應用R軟件包進行標準化和分析,兩組樣本間差異表達的circRNA通過變化倍數(shù)進行篩選。應用預測軟件TargetScan和miRanda,對于每個差異倍數(shù)大于1.5倍的circRNA預測5個高匹配值的miRNA。
1.5 統(tǒng)計學方法
采用Rv.3.3統(tǒng)計學軟件進行數(shù)據(jù)分析,以標準化處理后數(shù)據(jù)為基礎,兩組間比較采用t檢驗,以P < 0.05為差異有統(tǒng)計學意義;篩選出倍數(shù)變化大于1.5,P < 0.05的circRNA為差異表達circRNA。
2 結(jié)果
2.1 散點圖分析circRNA表達譜變化
用實驗組和對照組表達的circRNA繪制散點圖,平行于對角線的1.5倍線有效區(qū)分兩組樣本中表達一致和差異表達的circRNA。見圖1(封四)。
2.2 火山圖分析circRNA表達譜變化
用實驗組和對照組表達的環(huán)狀RNA繪制火山圖,紅色區(qū)域代表的circRNA符合差異表達條件的環(huán)狀RNA(倍數(shù)變化>1.5倍,且P < 0.05)。見圖2(封四)。
2.3 分層聚類分析circRNA表達譜的差異
用實驗組和對照組表達的circRNA進行分層聚類分析,紅色表示circRNA表達上調(diào),藍色表示circRNA表達下調(diào)。結(jié)果顯示分層聚類分析能夠正確區(qū)分實驗組和對照組中circRNA的差異表達。見圖3(封四)。
2.4 實驗組和對照組差異表達circRNA篩選
實驗組和對照組差異表達的circRNA共102條,其中實驗組中表達上調(diào)的85條,下調(diào)17條(倍數(shù)變化>1.5倍,P < 0.05),每條circRNA均預測5個高配值的miRNA。見表1。
3 討論
circRNAs(Circular RNAs,circRNA分子)是一類不具有5'末端帽子和3'末端poly(A)尾巴、并以共價鍵形成環(huán)形結(jié)構(gòu)的內(nèi)源性RNA分子。自從20世紀70年代Sanger等[6]首次在植物類病毒中發(fā)現(xiàn)circRNA以來,雖然經(jīng)過幾十年的發(fā)展,circRNA研究一直進展緩慢。隨著高通量測序技術(shù)和生物信息學的發(fā)展,人們在大規(guī)模研究轉(zhuǎn)錄組數(shù)據(jù)時,發(fā)現(xiàn)了大量的circRNA[7-9]。當Hansen等[10]報道circRNA作為分子“海綿”吸附miRNA從而影響基因功能,引起科研人員對circRNA的極大關(guān)注,circRNA不再被認為是基因轉(zhuǎn)錄后錯誤剪接的產(chǎn)物,使得circRNA成為目前生物醫(yī)學領域研究熱點之一[1-3]。已有研究表明,circRNA過高或過低表達,都與機體穩(wěn)態(tài)失衡以及疾病有關(guān),circRNA參與疾病發(fā)生發(fā)展、衰老等生理病理過程的研究成果不斷報道[11-13],但circRNA參與間充質(zhì)干細胞相關(guān)生理過程的研究報道較少[14-15],低氧預處理對間充質(zhì)干細胞circRNA表達的影響未見報道。
已有研究表明,低氧對MSCs的細胞周期、凋亡、遷移、增殖和分化均有影響[16-17]。在氧體積分數(shù)<5%時,低氧預處理可以作為在一定程度上克服MSCs的增殖緩慢、移植后遷移率低、基因不穩(wěn)定等細胞治療缺陷的有效手段,可以提高其臨床應用的有效性及安全性,對再生醫(yī)學的研究有至關(guān)重要的意義[18]。
本研究中,對13 617條circRNA進行檢測,獲得有檢測分析結(jié)果的circRNA為12 114條,通過同常氧條件下培養(yǎng)的hpcMSCs相比較分析,低氧條件下培養(yǎng)的hpcMSCs在circRNA表達譜上存在差異表達,按照差異表達倍數(shù)>1.5倍且P < 0.05的標準進行篩選,共獲得102條差異表達circRNA,其中表達上調(diào)的85條,下調(diào)17條,表達差異達到2倍以上的27條,均為表達上調(diào)。提示這些差異表達的circRNA可能參與低氧條件下hpcMSCs的各種生物過程和分子調(diào)控機制。通過生物信息學技術(shù)分析差異表達circRNA的靶結(jié)合位點,軟件預測顯示多個circRNA和miR-150結(jié)合。文獻檢索分析表明,miR-150是一個重要的分子元件,涉及到影響間充質(zhì)干細胞歸巢的SDF-1/CXCR4軸通路[19-20]。因此,在目前的基礎上,需要用qRT-PCR驗證獲得的circRNA,然后借助生物信息學技術(shù)、文獻檢索分析和LOF/GOF操作,上調(diào)或下調(diào)相關(guān)circRNA表達,觀察細胞的生物學特征和功能,以及進一步用實驗研究來驗證circRNA引起hpcMSCs產(chǎn)生的具體生物過程。這些有待開展的研究將闡明低氧培養(yǎng)條件下hpcMSCs發(fā)生變化的一系列生理生物過程的發(fā)生機制,為間充質(zhì)干細胞的臨床細胞治療提供科學依據(jù)。
[參考文獻]
[1] Holdt LM,Kohlmaier A,Teupser D. Molecular roles and function of circular RNAs in eukaryotic cells [J]. Cell Mol Life Sci,2018,75(6):1071-1098.
[2] Hsiao KY,Sun HS,Tsai SJ. Circular RNA-New member of noncoding RNA with novel functions [J]. Exp Biol Med (Maywood),2017,242(11):1136-1141.
[3] Kulcheski FR,Christoff AP,Margis R. Circular RNAs are miRNA sponges and can be used as a new class of biom-arker [J]. J Biotechnol,2016,238:42-51.
[4] Meng X,Li X,Zhang P,et al. Circular RNA:an emerging key player in RNA world [J]. Brief Bioinform,2017,18(4):547-557.
[5] 唐國一,吳潔瑩,陸琰,等.改良原代培養(yǎng)方法提高人胎盤絨毛膜間充質(zhì)干細胞的產(chǎn)量[J].國際生物醫(yī)學工程雜志,2017,40(3):1673-4181.
[6] Sanger HL,Klotz G,Riesner D,et al. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures [J]. Proc Natl Acad Sci USA,1976,73(11):3852-3856.
[7] Salzman J,Jiang H,Wong WH. Statistical Modeling of RNA-Seq Data [J]. Stat Sci,2011,26(1):62-83.
[8] Memczak S,Jens M,Elefsinioti A,et al. Circular RNAs are a large class of animal RNAs with regulatory potency [J]. Nature,2013,495(7441):333-338.
[9] Jeck WR,Sorrentino JA,Wang K,et al. Circular RNAs are abundant,conserved,and associated with ALU repeats [J]. RNA,2013,19(2):141-157.
[10] Hansen TB,Jensen T,Clausen BH,et al. Natural RNA circles function as efficient microRNA sponges [J]. Nature,2013,495(7441):384-388.
[11] Barrett SP,Salzman J. Circular RNAs:analysis,expression and potential functions [J]. Development,2016,143(11):1838-1847.
[12] Chen Y,Li C,Tan C,et al. Circular RNAs:a new frontier in the study of human diseases [J]. J Med Genet,2016, 53(6):359-365.
[13] Peng L,Yuan XQ,Li GC. The emerging landscape of circular RNA ciRS-7 in cancer (Review) [J]. Oncol Rep,2015,33(6):2669-2674.
[14] Maass PG,Gla?觩ar P,Memczak S,et al. A map of human circular RNAs in clinically relevant tissues [J]. J Mol Med (Berl),2017,95(11):1179-1189.
[15] Li X,Peng B,Zhu X,et al. Changes in related circular RNAs following ERβ knockdown and the relationship to rBMSC osteogenesis [J]. Biochem Biophys Res Commun,2017,493(1):100-107.
[16] Ejtehadifar M,Shamsasenjan K,Movassaghpour A,et al. The Effect of Hypoxia on Mesenchymal Stem Cell Biology [J]. Adv Pharm Bull,2015,5(2):141-149.
[17] Kelly TJ,Souza AL,Clish CB,et al. A hypoxia-induced positive feedback loop promotes hypoxia-inducible factor 1alpha stability through miR-210 suppression of glycerol-3-phosphate dehydrogenase 1-like [J]. Mol Cell Biol,2011,31(13):2696-2706.
[18] Won YW,Patel AN,Bull DA. Cell surface engineering to enhance mesenchymal stem cell migration toward an SDF-1 gradient [J]. Biomaterials,2014,35(21):5627-5635.
[19] 武天慧,彭睿,孫艷,等.miR-150對糖尿病腎病小鼠MSCs中遷移相關(guān)蛋白表達的影響[J].基礎醫(yī)學與臨床,2016,36(7):929-933.
[20] Liu CH,Sun Y,Li J,et al. Endothelial microRNA-150 is an intrinsic suppressor of pathologic ocular neovascularization [J]. Proc Natl Acad Sci U S A,2015,112(39):12 163-12 168.