張 凱,白美健,李益農(nóng),章少輝,杜太生
?
聯(lián)合收割機(jī)生產(chǎn)率計(jì)算模型與適宜作業(yè)路線分析
張 凱1,2,白美健1※,李益農(nóng)1,章少輝1,杜太生2
(1. 中國水利水電科學(xué)研究院流域水循環(huán)模擬與調(diào)控國家重點(diǎn)實(shí)驗(yàn)室,北京 100038;2. 中國農(nóng)業(yè)大學(xué)水利與土木工程學(xué)院,北京 100083)
提高農(nóng)業(yè)機(jī)械生產(chǎn)率可大大節(jié)約農(nóng)業(yè)生產(chǎn)成本。本文將田間試驗(yàn)與數(shù)值模擬相結(jié)合,首先在綜合分析收割機(jī)作業(yè)時(shí)間構(gòu)成的基礎(chǔ)上,構(gòu)建了不同作業(yè)路線下收割機(jī)生產(chǎn)率計(jì)算模型;其次實(shí)測(cè)了3種型號(hào)收割機(jī)在不同田塊條件下整個(gè)收割過程中各個(gè)作業(yè)環(huán)節(jié)的時(shí)間及其工作特性參數(shù);最后基于計(jì)算模型和實(shí)測(cè)參數(shù),采用MATLAB進(jìn)行編程,模擬分析了不同型號(hào)收割機(jī)、作業(yè)路線和田塊面積下收割機(jī)生產(chǎn)率的變化規(guī)律。結(jié)果表明,收割機(jī)生產(chǎn)率隨田塊長寬比、田塊面積和割臺(tái)幅寬的增大而增大;采用“回”形和“U”形相結(jié)合的收割機(jī)作業(yè)路線,可提高收割機(jī)生產(chǎn)率8%以上。該結(jié)果可為農(nóng)機(jī)實(shí)際作業(yè)路線選擇和農(nóng)田系統(tǒng)優(yōu)化布局提供參考。
農(nóng)業(yè)機(jī)械;模型;試驗(yàn);生產(chǎn)率;作業(yè)路線;田塊條件
農(nóng)業(yè)機(jī)械化是農(nóng)業(yè)現(xiàn)代化的重要組成部分,作物收割機(jī)械化是農(nóng)業(yè)機(jī)械化的重要環(huán)節(jié)。農(nóng)業(yè)機(jī)械化不僅能減輕農(nóng)民負(fù)擔(dān),提高生產(chǎn)效率,增加農(nóng)民收益,更能推動(dòng)農(nóng)業(yè)向標(biāo)準(zhǔn)化、規(guī)?;?、產(chǎn)業(yè)化發(fā)展,促進(jìn)傳統(tǒng)農(nóng)業(yè)向現(xiàn)代農(nóng)業(yè)轉(zhuǎn)變。
農(nóng)機(jī)作業(yè)效率與農(nóng)機(jī)性能、農(nóng)田系統(tǒng)布局、農(nóng)機(jī)作業(yè)路線等因素相關(guān)。近年來,隨著國家在農(nóng)業(yè)機(jī)械化發(fā)展上的政策傾斜和資金投入力度加大,學(xué)者們針對(duì)如何降低農(nóng)業(yè)機(jī)械化成本和提高其工作效率展開了一系列研究。改進(jìn)機(jī)械性能方面:Veerangouda[1]和Vahedi[2]對(duì)收割機(jī)的作業(yè)質(zhì)量、工作效率、作業(yè)成本等進(jìn)行了對(duì)比分析;陳樹人等[3-5]對(duì)收割機(jī)割臺(tái)、整機(jī)振動(dòng)進(jìn)行了分析,并闡述了上述振動(dòng)對(duì)收割機(jī)可靠性的影響;Baruah等[6-7]建立了聯(lián)合收割機(jī)的能量需求模型,并以水稻、小麥為對(duì)象,對(duì)其進(jìn)行了應(yīng)用驗(yàn)證。機(jī)械設(shè)計(jì)方面:由于我國南北差異,南方稻田多以丘陵為主,田塊小而高低不齊,設(shè)計(jì)多以“小、輕、穩(wěn)”型的小動(dòng)力多功能耕地機(jī)具、手扶式插秧機(jī)和輕簡型水稻聯(lián)合收割機(jī)為主;北方地域廣闊、地勢(shì)平坦,主要以設(shè)計(jì)大型的系列化、乘座化、復(fù)式化的綜合型農(nóng)機(jī)具為主。在農(nóng)機(jī)選型和配備方面,有些專家[8-11]探討采用線性規(guī)劃或非線性規(guī)劃方法,有些專家采用模糊綜合評(píng)價(jià)方法進(jìn)行優(yōu)選[12-14]。農(nóng)田系統(tǒng)優(yōu)化布局方面:X.P.Gonzalez綜合了土地規(guī)模、形狀、分散性對(duì)生產(chǎn)率的影響,提出了一種評(píng)估土地分布的方法,并應(yīng)用于土地整合和優(yōu)化方面[15]。在適宜的農(nóng)機(jī)型號(hào)的選擇方面,在探討單個(gè)田塊面積與機(jī)械可能作業(yè)面積間相關(guān)關(guān)系的基礎(chǔ)上,得到不同田塊面積下的規(guī)模效應(yīng)及其單日生產(chǎn)率,并以收割機(jī)生產(chǎn)率為指標(biāo)確定不同型號(hào)收割機(jī)對(duì)應(yīng)的田塊面積適宜值[16]。
已有針對(duì)提高農(nóng)機(jī)生產(chǎn)率的研究,多數(shù)側(cè)重在對(duì)農(nóng)機(jī)本身的改進(jìn),而對(duì)于如何通過優(yōu)化農(nóng)田系統(tǒng)布局和農(nóng)機(jī)作業(yè)路線來提高其生產(chǎn)率方面可借鑒的成果較少。為此,本文以水稻收割機(jī)作業(yè)為例,通過對(duì)不同型號(hào)收割機(jī)、不同田塊條件下農(nóng)機(jī)作業(yè)過程的詳細(xì)觀測(cè)和分析,提出了3種常見的農(nóng)機(jī)作業(yè)路線及相應(yīng)的農(nóng)機(jī)作業(yè)時(shí)間估算模型,模擬分析了不同型號(hào)收割機(jī)生產(chǎn)率對(duì)農(nóng)機(jī)作業(yè)路線、田塊條件(面積和長寬比)的響應(yīng)關(guān)系,以期可為收割機(jī)作業(yè)路線優(yōu)選和農(nóng)田系統(tǒng)優(yōu)化布局提供技術(shù)參考。
收割機(jī)生產(chǎn)率是指收割機(jī)械在一定條件下在單位時(shí)間內(nèi)能完成的工作量。生產(chǎn)率可分為理論生產(chǎn)率、技術(shù)生產(chǎn)率和實(shí)際生產(chǎn)率。理論生產(chǎn)率是制造廠家根據(jù)機(jī)械的結(jié)構(gòu)和性能,不考慮外界影響因素提供的生產(chǎn)率數(shù)據(jù)。技術(shù)生產(chǎn)率僅考慮了不同的工作對(duì)象,而未考慮停歇時(shí)間。實(shí)際生產(chǎn)率是實(shí)際完成工作量與所用總時(shí)間的比,是農(nóng)業(yè)生產(chǎn)中的重要指標(biāo)[17-19],計(jì)算公式見式(1)。
收割機(jī)在作業(yè)過程中可能采用不同的卸糧方式,由于收割機(jī)卸糧方式受到地理?xiàng)l件、道路條件、駕駛員技術(shù)水平、收割機(jī)技術(shù)參數(shù)等條件的限制[20-21],為使研究結(jié)論具有通用性,本研究采取一臺(tái)收割機(jī)配一名工人在收割機(jī)出糧口用口袋接糧。
收割機(jī)在矩形田塊作業(yè)時(shí),常采用圖1所示的3種作業(yè)路線,路線Ⅰ為“U”形作業(yè),路線Ⅱ?yàn)椤盎亍毙巫鳂I(yè),路線Ⅲ為先進(jìn)行“回”形作業(yè),再采用“U”形作業(yè)。
圖1 矩形田塊的收割機(jī)常用作業(yè)路線
在單個(gè)田塊中,收割機(jī)作業(yè)時(shí)間由非恒速行駛作業(yè)時(shí)間(包括收割機(jī)進(jìn)入地頭,駛出地尾,轉(zhuǎn)彎前減速,轉(zhuǎn)彎后加速4個(gè)環(huán)節(jié)),恒速行駛作業(yè)時(shí)間,收割機(jī)總轉(zhuǎn)彎時(shí)間3部分構(gòu)成,收割機(jī)作業(yè)總時(shí)間為各階段作業(yè)時(shí)間之和[17,22-23],計(jì)算公式見式(2)。
收割機(jī)田間作業(yè)數(shù)據(jù)觀測(cè)在黑龍江省綏化市慶安國家灌溉試驗(yàn)重點(diǎn)站和東禾農(nóng)業(yè)集團(tuán)進(jìn)行,該地區(qū)是典型的寒區(qū)黑土分布區(qū),試驗(yàn)區(qū)種植品種為龍稻18,于2017年10月7日-10日開展收割試驗(yàn),試驗(yàn)選取3塊規(guī)模為50 m×200 m用于參數(shù)確定。參考文獻(xiàn)[24-25]的方法,選擇功率、幅寬不同的3種型號(hào)收割機(jī)(久保田PRO488、常發(fā)CF805N、雷沃谷神GF40)為試驗(yàn)對(duì)象,跟蹤其在圖1所示的3種不同作業(yè)路線時(shí)的作業(yè)過程,記錄3種作業(yè)路線下進(jìn)入地頭、駛出地尾的非恒速行駛作業(yè)時(shí)間、恒速行駛作業(yè)時(shí)間與相應(yīng)路程、作業(yè)中90°和180°轉(zhuǎn)彎時(shí)間及未作業(yè)180°轉(zhuǎn)彎時(shí)間共5種收割機(jī)作業(yè)詳細(xì)信息,每個(gè)試驗(yàn)設(shè)置3個(gè)重復(fù)。
收割機(jī)恒速行駛速度、種植密度和割臺(tái)幅寬是影響其喂入量的因素,而收割機(jī)的期望喂入量又與其本身的脫粒滾筒轉(zhuǎn)速有關(guān)[26]。因此對(duì)于某種型號(hào)收割機(jī)在相同種植密度稻田作業(yè)時(shí),其恒速行駛速度是與該型號(hào)收割機(jī)本身有關(guān)的參數(shù),具有普適性。非恒速行駛作業(yè)時(shí)間、轉(zhuǎn)彎時(shí)間均為只與收割機(jī)型號(hào)有關(guān)的參數(shù)。
采用常發(fā)CF805N收割機(jī)對(duì)17塊大小不同的田塊進(jìn)行模型驗(yàn)證試驗(yàn),田塊規(guī)模及對(duì)應(yīng)作業(yè)路線見表1。
表1 田塊規(guī)模表
表2 各收割機(jī)時(shí)間參數(shù)試驗(yàn)數(shù)據(jù)
由圖1a作業(yè)路線軌跡圖可知,收割機(jī)采用作業(yè)路線Ⅰ完成任一田塊的收割任務(wù)時(shí),所需總時(shí)間包括恒速行駛時(shí)間,非恒速行駛時(shí)間和轉(zhuǎn)彎時(shí)間3部分。所需總時(shí)間則取決于完成整個(gè)田塊的作業(yè)行程數(shù)和完成每一行程時(shí)各作業(yè)環(huán)節(jié)所需時(shí)間。
2.1.1 作業(yè)行程數(shù)
收割機(jī)完成田塊作業(yè)時(shí)的作業(yè)行程數(shù)是田塊寬度與收割機(jī)割臺(tái)幅寬之比。由于其比值可能是小數(shù),取整后剩余田塊寬度小于機(jī)組的作業(yè)幅寬,這種情況下,機(jī)組仍需再作業(yè)一個(gè)行程才能完成剩余作業(yè)任務(wù)[27]。故該比值需向上取整,可用式(3)表示
2.1.2 恒速行駛時(shí)間
2.1.3 非恒速行駛時(shí)間
由田間觀測(cè)可知作業(yè)路線Ⅰ下非恒速行駛時(shí)間主要為收割機(jī)進(jìn)入地頭和駛出地尾所需時(shí)間,收割機(jī)完成任一田塊谷物收割任務(wù)時(shí)非恒速作業(yè)所需總時(shí)間的估算見式(6)[28]。
2.1.4 轉(zhuǎn)彎時(shí)間
綜上,依據(jù)路線Ⅰ的分析,可得到路線Ⅰ下收割機(jī)生產(chǎn)率計(jì)算模型為
由圖1b可知,路線Ⅱ下收割機(jī)作業(yè)所需總時(shí)間除了路線Ⅰ的3部分外,還包括整個(gè)田塊最后不夠1圈時(shí)所需的時(shí)間。
2.2.1 作業(yè)行程數(shù)
路線Ⅱ中收割機(jī)作業(yè)行程數(shù)以圈來計(jì),收割機(jī)在田塊中完成1圈記作1次行程,因此收割完一塊地的作業(yè)行程數(shù)是田塊寬度與2倍收割機(jī)割臺(tái)幅寬之比。由于其比值可能是小數(shù),四舍五入取整后出現(xiàn)下面2種情況:當(dāng)出現(xiàn)“舍”的情況,收割機(jī)在收割完最后一圈后還需沿田塊長邊方向收割一段距離才能完全收割完畢,該段收割方式與路線Ⅰ相同,所需時(shí)間計(jì)算如式(9);當(dāng)出現(xiàn)“入”的情況,收割機(jī)在收割完最后一圈后收割完畢。因此,用式(10)表示行程數(shù),用分段函數(shù)(11)表示該過程。
2.2.2 轉(zhuǎn)彎時(shí)間
2.2.3 恒速行駛時(shí)間
路線Ⅱ中,收割機(jī)恒速行駛作業(yè)速度與路線Ⅰ相同,根據(jù)其行進(jìn)特征,單行程的恒速行駛作業(yè)時(shí)間計(jì)算模型可用式(13)表示,總恒速行駛作業(yè)時(shí)間可用式(14)表示。
2.2.4 非恒速行駛時(shí)間
綜上可得,路線Ⅱ下收割機(jī)生產(chǎn)率計(jì)算模型為
路線Ⅰ與路線Ⅱ的收割機(jī)行進(jìn)方式結(jié)合形成路線Ⅲ,唯一不同的是,路線Ⅰ中收割機(jī)轉(zhuǎn)180°時(shí)需要作業(yè),而路線Ⅲ轉(zhuǎn)180°時(shí)不需要作業(yè)。因此路線Ⅲ需要確定收割機(jī)轉(zhuǎn)180°需要的寬度,經(jīng)實(shí)測(cè)大約需要收割機(jī)長度1.5倍左右的空間,而收割機(jī)割臺(tái)幅寬約為長度的一半,故路線Ⅲ至少先進(jìn)行3圈“回”形路線作業(yè)。
“U”形路線恒速行駛作業(yè)時(shí)間可以表示為式(19)
綜上,依據(jù)路線Ⅲ的行進(jìn)方式,可以得到相應(yīng)的收割機(jī)生產(chǎn)率計(jì)算模型為
由不同作業(yè)路線下收割機(jī)生產(chǎn)率計(jì)算公式(8)、(15)和(21)可知,不同作業(yè)路線下收割機(jī)生產(chǎn)率的差異主要取決于完成相同作業(yè)面積時(shí)轉(zhuǎn)彎次數(shù)、轉(zhuǎn)彎角度和轉(zhuǎn)彎時(shí)間。轉(zhuǎn)彎次數(shù)越多、轉(zhuǎn)彎時(shí)間越長,收割機(jī)生產(chǎn)率越低。
圖2給出了采用常發(fā)CF805N收割機(jī)對(duì)17個(gè)試驗(yàn)稻田進(jìn)行收割時(shí),實(shí)測(cè)所得的收割機(jī)生產(chǎn)率與采用生產(chǎn)率模型模擬所得值的對(duì)比情況。根據(jù)現(xiàn)有的田塊數(shù)量和面積,選取6個(gè)試驗(yàn)田塊采用路線Ⅰ,6個(gè)試驗(yàn)田塊采用路線Ⅱ,5個(gè)試驗(yàn)田塊采用路線Ⅲ,每種路線生產(chǎn)率模型驗(yàn)證所選取的田塊面積盡量均衡。3種路線生產(chǎn)率實(shí)測(cè)值和模擬值相對(duì)誤差分別在在8%以內(nèi),平均相對(duì)誤差在5%以內(nèi),3種路線下實(shí)測(cè)值與模擬值相關(guān)系數(shù)達(dá)0.96以上,該結(jié)果說明本文所建模型的計(jì)算值與實(shí)測(cè)值一致性良好。
圖2 收割機(jī)不同作業(yè)路線生產(chǎn)率模擬值和實(shí)測(cè)值
收割機(jī)作業(yè)過程中與其有關(guān)的收割機(jī)型號(hào),收割機(jī)作業(yè)路線、田塊面積和田塊長寬比是影響收割機(jī)生產(chǎn)率的因素[28-31]。為了進(jìn)一步了解生產(chǎn)率對(duì)各影響因素變化的響應(yīng)規(guī)律。本文借助數(shù)值模擬試驗(yàn)進(jìn)行分析。數(shù)值模擬考慮了3種機(jī)型,3種作業(yè)路線,2種田塊面積(經(jīng)調(diào)研,田塊面積0.3 hm2、1 hm2分別為當(dāng)?shù)厣?、農(nóng)場(chǎng)常見面積),長寬比(1~10),共計(jì)474種組合方案。基于本文構(gòu)建的收割機(jī)生產(chǎn)率模型,利用MATLAB編制計(jì)算程序,模擬獲得所有試驗(yàn)組合方案下的收割機(jī)生產(chǎn)率。
圖3給出了不同型號(hào)收割機(jī)、作業(yè)路線和田塊面積下,生產(chǎn)率隨田塊長寬比的變化趨勢(shì)圖。結(jié)果表明,任意田塊面積、收割機(jī)作業(yè)路線和型號(hào)下,收割機(jī)生產(chǎn)率對(duì)田塊長寬比的響應(yīng)規(guī)律相似,均隨著田塊長寬比的增加而顯著增加,并呈較好的指數(shù)關(guān)系。說明增大田塊長寬比能顯著提高收割機(jī)生產(chǎn)率,其原因是較大的長寬比會(huì)減少收割機(jī)轉(zhuǎn)彎次數(shù),提高恒速行駛收割距離。隨著長寬比值的增大收割機(jī)生產(chǎn)率的增長趨勢(shì)減緩,其原因是當(dāng)長寬比達(dá)到較高水平后,再增加長寬比減少的收割轉(zhuǎn)彎、加減速次數(shù)減少,生產(chǎn)率極大值為除進(jìn)出地頭外其余均為恒速行駛作業(yè)的情況。
在長寬比不變的情況下,生產(chǎn)率隨著田塊面積和收割機(jī)幅寬的增大而增大,說明增大面積或采用較大型號(hào)的收割機(jī)能夠提高收割機(jī)生產(chǎn)率。對(duì)比3種作業(yè)路線,在長寬比不變的情況下,不同田塊面積下收割機(jī)生產(chǎn)率對(duì)行進(jìn)路線的響應(yīng)規(guī)律相似,均是路線Ⅲ生產(chǎn)率明顯大于另外2種作業(yè)路線下的值,路線Ⅱ與路線Ⅰ差距不明顯。路線Ⅲ和路線Ⅱ、路線Ⅰ收割機(jī)生產(chǎn)率的差值與收割機(jī)型號(hào)和田塊面積有關(guān),當(dāng)田塊面積一定時(shí),其差值隨著收割機(jī)幅寬增大而增大;收割機(jī)型號(hào)一定時(shí),其差值隨著田塊面積增大而增大。面積為0.3和1 hm2時(shí),3種型號(hào)收割機(jī)在路線Ⅲ作業(yè)模式下比同組較低生產(chǎn)率作業(yè)路線的增幅分別為8%、11%、17%,和18%、20%、22%?!盎亍毙巫鳂I(yè)與“U”形作業(yè)相結(jié)合的收割機(jī)作業(yè)路線可顯著提高生產(chǎn)率。
圖3 三種作業(yè)路線下不同收割機(jī)的生產(chǎn)率與田塊長寬比關(guān)系曲線
1)本研究在對(duì)不同條件下收割機(jī)作業(yè)過程進(jìn)行詳細(xì)跟蹤觀測(cè)的基礎(chǔ)上,提出了不同作業(yè)路線下收割機(jī)作業(yè)時(shí)間構(gòu)成,及其相應(yīng)的計(jì)算公式,建立了不同作業(yè)路線下收割機(jī)生產(chǎn)率計(jì)算模型。3種路線生產(chǎn)率實(shí)測(cè)值和模擬值相對(duì)誤差分別在在8%以內(nèi),平均相對(duì)誤差在5%以內(nèi),三種路線下實(shí)測(cè)值與模擬值相關(guān)系數(shù)達(dá)0.96以上,所建模型的計(jì)算值與實(shí)測(cè)值一致性良好。
2)通過474組方案的模擬結(jié)果可以得知,影響收割機(jī)生產(chǎn)率的主要因素為收割機(jī)型號(hào)和作業(yè)路線,田塊面積和長寬比;適當(dāng)增大田塊面積、田塊長寬比和收割機(jī)幅寬,選擇適宜的作業(yè)路線均可提高收割機(jī)生產(chǎn)率。田塊面積為0.3 hm2和1 hm2的條件下,“回”形作業(yè)與“U”形作業(yè)相結(jié)合的收割機(jī)作業(yè)路線可提高其生產(chǎn)率8%以上。
本研究所得的收割機(jī)生產(chǎn)率計(jì)算模型,可為農(nóng)機(jī)實(shí)際作業(yè)和農(nóng)田系統(tǒng)優(yōu)化布局提供一定的技術(shù)參考,但農(nóng)田灌溉系統(tǒng)布局除考慮機(jī)械作業(yè)效率外,還需要考慮灌溉水利用率、工程投資、以及農(nóng)業(yè)生產(chǎn)活動(dòng)的便利性等多個(gè)目標(biāo),故適宜的田塊面積和長寬比不是越大越好,還需要在下一步研究中進(jìn)行多目標(biāo)優(yōu)化確定。
[1] Veerangouda M, Sushilendr A, Parkashh K V, et al.Performance evaluation of tractor operated combine harvest er[J].Karnataka Journal of Agricultural Sciences, 2010, 23(2): 282-285.
[2] Vahedi A, Ghasempour A M.Farm study of harvester machinery performance in rice harvesting operation and com parison with traditional method[J].Ecology ,Environment &Conservation, 2008(14): 667-672.
[3] 陳樹人,盧強(qiáng),仇華錚.基于LabVIEW 的谷物聯(lián)合收獲機(jī)割臺(tái)振動(dòng)測(cè)試分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2011,42(S1):86-89,98. Chen Shuren, Lu Qiang, Qiu Huazheng. Header vibration analysis of grain combine harvester based on labVIEW[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(S1): 86-89, 98.(in Chinese with English abstract)
[4] 徐立章,李耀明,孫朋朋,等.履帶式全喂入水稻聯(lián)合收獲機(jī)振動(dòng)測(cè)試與分析[J].農(nóng)業(yè)工程學(xué)報(bào),2014,30(8):49-55. Xu Lizhang, Li Yaoming, Sun Pengpeng, et al. Vibration measurement and analysis of tracked-whole feeding rice combine harvester[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(8): 49-55. (in Chinese with English abstract)
[5] 王志.聯(lián)合收割機(jī)可靠性問題的研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2002,33(2):44-46. Wang Zhi. Reliability Improvement of a Combine[J]. Transactions of the Chinese Society for Agricultural Machinery. 2002, 33(2): 44-46. (in Chinese with English abstract)
[6] Baruah D C, Panesar B S. Energy requirement model for a combine harvester, Part 1: Development of component models[J] . Biosystems Engineering , 2005 , 90(1): 9-25 .
[7] Baruah D C, Panesar B S. Energy requirement model for combine harvester. Part 2:Integration of component models[J]. Biosystems Engineering , 2005, 90(2): 161-171.
[8] 王福林,戴有忠. 農(nóng)業(yè)機(jī)器系統(tǒng)配備的線性規(guī)劃法的建模方法改進(jìn)與分析[J]. 農(nóng)機(jī)化研究,1988(3):5-9. Wang Fulin, Dai Youzhong. Improvement and analysis of the linear programming method for the agricultural machine system[J]. Journal of Agricultural Mechanization Research, 1988(3): 5-9(in Chinese with English abstract).
[9] 王金武,楊廣林. 三江平原地區(qū)水稻聯(lián)合收割機(jī)選型問題的研究[J]. 農(nóng)機(jī)化研究,2005,27(3):59-61. Wang Jinwu, Yang Guanglin. Study on the selection of the rice combine in the Sanjiang plain region[J]. Journal of Agricultural Mechanization Research, 2005, 27(3): 59-61.(in Chinese with English abstract)
[10] 馬力,王福林,張浩. 農(nóng)機(jī)系統(tǒng)優(yōu)化配備研究面臨的新問題[J]. 農(nóng)機(jī)化研究,2009,31(8):231-234. Ma Li, Wang Fulin, Zhang Hao. The new problems of the farm machinery system optimization study[J]. Journal of Agricultural Mechanization Research, 2009, 31(8): 231-234.(in Chinese with English abstract)
[11] 周應(yīng)朝,高煥文. 農(nóng)業(yè)機(jī)器優(yōu)化配備的新方法:非線性規(guī)劃綜合配備法[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),1988,19(1):43-50. Zhou Yingchao, Gao Huanwen. New algorithms for the optimum disposition of farm machines: Integrated disposition algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery, 1988, 19(1): 43-50. (in Chinese with English abstract)
[12] 劉存香,劉學(xué)軍. 可拓評(píng)價(jià)方法在農(nóng)機(jī)選型評(píng)價(jià)中的應(yīng)用[J]. 農(nóng)機(jī)化研究,2009,31(12):183-185. Liu Cunxiang, Liu Xuejun. Appliance on evaluation of selection for agricultural machinery based on extension evaluation method[J]. Journal of Agricultural Mechanization Research, 2009, 31(12): 183 - 185. (in Chinese with English abstract)
[13] 喬金友,張曉丹,王奕嬌,等. 規(guī)模化大豆產(chǎn)區(qū)大豆聯(lián)合收獲機(jī)綜合評(píng)價(jià)與優(yōu)選[J]. 東北農(nóng)業(yè)大學(xué)學(xué)報(bào),2014,45(8):124-128. Qiao Jinyou, Zhang Xiaodan, Wang Yijiao, et al. Evaluation and selection on soybean combines in large-scale planting area[J]. Journal of Northeast Agricultural University, 2014, 45(8): 124-128. (in Chinese with English abstract)
[14] 黃玉祥,郭康權(quán),朱瑞祥,等. 基于證據(jù)理論的農(nóng)業(yè)機(jī)械選型風(fēng)險(xiǎn)因素評(píng)價(jià)方法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2008,24(4):135-141. Huang Yuxiang, Guo Kangquan, Zhu Ruixiang, et al. Method for evaluating the risk of selecting types of agricultural machinery based on evidence theory[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(4): 135-141. (in Chinese with English abstract)
[15] Gonzalez X P, Alvarze C J, Recente R C. Evaluation of land disteibutions with joint regard to plot size and shape[J]. Agricultural Systems, 2004, 82(1): 31-43.
[16] 土地改良事業(yè)計(jì)劃設(shè)計(jì)標(biāo)準(zhǔn)(水田)基準(zhǔn)書[M]. 日本,農(nóng)業(yè)土木學(xué)會(huì),2012.
[17] 余友泰. 農(nóng)業(yè)機(jī)械化工程[M]. 北京:中國展望出版社,1987.
[18] 高煥文. 農(nóng)業(yè)機(jī)械化生產(chǎn)學(xué):上冊(cè)[M]. 北京:中國農(nóng)業(yè)出版社,2002:28-29.
[19] Gao Huanwen, Hunt D R. Optimum combine fleet selection with power-based models[J]. Transaction of the ASAE, 1985(12): 45-48 .
[20] 孔德剛,常曉慧,張帥,等. 大馬力拖拉機(jī)作業(yè)機(jī)組故障的調(diào)查分析[J]. 東北農(nóng)業(yè)大學(xué)學(xué)報(bào),2009,40(10):109-114. Kong Degang, Chang Xiaohui, Zhang Shuai, et al. Investigation and analysis on fault of large horsepower tractor operating units[J]. Journal of Northeast Agricultural University, 2009, 40(10): 109-114.(in Chinese with English abstract)
[21] 萬鶴群,孟繁琪,王友權(quán),等. 確定機(jī)群最佳服務(wù)面積及根據(jù)服務(wù)面積選擇合理機(jī)群結(jié)構(gòu)的方法[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),1984,6(15):77-80. Wan Hequn, Meng Fanqi, Wang Youquan, et al. Methods to determine optimum service area for certain farm machinery group and to select reasonable group for given service area[J]. Transactions of the Chinese Society for Agricultural Machinery, 1984, 6(15): 77-80. (in Chinese with English abstract)
[22] 杜兵. 農(nóng)機(jī)作業(yè)班時(shí)間構(gòu)成項(xiàng)目分類的分析及改進(jìn)[J]. 北京農(nóng)業(yè)工程大學(xué)學(xué)報(bào),1995,15(1):64-68. Du Bing. Analysis and improvement of current classification of time in shift[J]. Journal of Beijing Agricultural Engineering University, 1995, 15(1): 64-68. (in Chinese with English abstract)
[23] 陳麗能. 拖拉機(jī)田間作業(yè)的最佳功率[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),1986, 17(2):41-44. Chen Lineng. The best power of the tractor field work[J]. Transactions of the Chinese Society for Agricultural Machinery, 1986, 17(2): 41-44. (in Chinese with English abstract)
[24] 孔德剛,張帥,楊明東,等. 大功率拖拉機(jī)播種作業(yè)效率與經(jīng)濟(jì)性的測(cè)試分析[J]. 東北農(nóng)業(yè)大學(xué)學(xué)報(bào),2008,39(4):7-13.Kong Degang, Zhang Shuai, Yang Mingdong, et al. Study on work efficiency and economy of impor t large power tr actor in sowing work[J]. Journal of Northeast Agricultural University, 2008, 39(4): 7-13. (in Chinese with English abstract)
[25] 孔德剛,趙永超,劉立意,等. 大功率農(nóng)機(jī)作業(yè)效率與機(jī)組合理運(yùn)用模式的研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2008,24(8):143-146. Kong Degang, Zhao Yongchao, Liu Liyi, et al. Investigation of work efficiency of high-power agricultural machinery and reasonable application pattern of tractor-implement units[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(8): 143-146.(in Chinese with English abstract)
[26] 祝青園. 基于最優(yōu)脫粒功率消耗的聯(lián)合收割機(jī)作業(yè)速度控制研究[D]. 北京:中國農(nóng)業(yè)大學(xué),2009.
Zhu Qingyuan. Research on Operation Speed Control of Combine Harvester Based on Optimal Threshing Power Consumption[D]. Beijing: China Agricultural University,2009.
[27] 田志宏,張桐華,朱瑞祥,等. 犁耕機(jī)組作業(yè)行程率計(jì)算機(jī)試驗(yàn)驗(yàn)證[J]. 西北農(nóng)業(yè)大學(xué)學(xué)報(bào),1996,24(2):5-55. Tian Zhihong, Zhang Tonghua, Zhu Ruixiang, et al. Fieldwork efficiency calculation of plowings and its experimental verification[J]. Journal of Northwest Agricultural University, 1996, 24(2): 51-55. (in Chinese with English abstract)
[28] 喬金友,韓兆楨,洪魁,等. 收獲機(jī)組技術(shù)生產(chǎn)率隨地塊條件的變化規(guī)律試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,34(7):43-50. Qiao Jinyou, Han Zhaozhen, Hong Kui, et al. Variation of technology productivity of harvesting outfit along with site conditions[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 34(7): 43-50. (in Chinese with English abstract)
[29] 韓兆楨. 收獲機(jī)組技術(shù)生產(chǎn)率隨地塊條件變化規(guī)律試驗(yàn)研究[D]. 哈爾濱:東北農(nóng)業(yè)大學(xué),2017. Han Zhaozhen. Variation of Technology Productivity of Harvesting Outfit Along With Site Conditions[D]. Harbin :Northeast Agricultural University, 2017.
[30] 喬金友,韓兆楨,李傳磊,等. 不同收獲機(jī)組時(shí)間利用率規(guī)律的比較研究[J]. 農(nóng)機(jī)化研究,2016(10):133-138. Qiao Jinyou, Han Zhaozhen, Li Chuanglei, et al. Comparative research on the regularities of time utilization rate of different combines [J]. Journal of Agricultural Mechanization Research, 2016(10): 133-138. (in Chinese with English abstract)
[31] 盧林瑞,王慶喜,劉斌,等. 田間移動(dòng)機(jī)組的生產(chǎn)率[J]. 吉林農(nóng)業(yè)大學(xué)學(xué)報(bào),1992,14(2):71-73. Lu Linrui, Wang Qingxi, Liu Bin, et al. Productivity of field moving units [J]. Journal of Jinlin Agricultural University, 1992, 14(2): 71-73.(in Chinese with English abstract)
Combine harvester productivity calculation model and analysis of suitable operation route
Zhang Kai1,2, Bai Meijian1※, Li Yinong1, Zhang Shaohui1, Du Taisheng2
(1.,,, 100038; 2.,,100083,)
Agricultural mechanization is an important part of the agricultural modernization, mechanization of crop harvesting is an important link of agricultural mechanization, increasing productivity of agricultural machinery can greatly reduce the cost of agricultural production. In this thesis, field trial and numerical simulation were adopted to find agricultural machinery working routes with higher harvesting productivity. First of all, the “U”-shape working route, the “concentric square” working route, and the “concentric square” and “U”-shape combined operation modes were selected from the commonly used harvesting routes. These routes were combine harvester operating routes with higher theoretical productivity without repeated routes. Secondly, the working time composition of the combine harvester was comprehensively analyzed. The running time of the combine harvester consisted of 3 parts: non-constant speed driving time (including the combine harvester entering the farmland, driving out of the farmland, decelerating before turning, accelerating after turning), constant speed driving time and total turning time. The total running time of the combine harvester was the sum of the running time of each part. On this basis, the productivity calculation model of the combine harvester under different running routes was built. In order to obtain the time parameters of each part, 3 kinds of combines with different power and header width were selected as test objects, the operation process was tracked, and the agricultural machinery operation was recorded when 3 different operation routes were used in different specifications field. Finally, 3 working route models including calculation models and measurement parameters were written by MATLAB. In the numerical simulation, 3 models, 3 operating routes, 2 field sizes, and different aspect ratios were considered, for a total of 474 combinations, MATLAB program was used to simulate the productivity of the combine harvester under all experimental combinations. The results showed that the main factors affecting the production capacity of the combine harvester were its type and working route, the field area and the aspect ratio. The productivity of the harvester could be improved by appropriately increasing the field area, aspect ratio and working width of the harvester. Within the scope of the simulation conditions, the “concentric square” and “U”-shape combined operation modes could increase the productivity of the combine harvester by more than 8%. The research results can provide some technical references for the practical path selection of agricultural machinery and the optimal layout of farmland systems.
agricultural machinery; models; experiments; productivity; operation route; field condition
10.11975/j.issn.1002-6819.2018.18.005
S233.4
A
1002-6819(2018)-18-0037-07
2018-04-23
2018-08-02
國家重點(diǎn)研發(fā)計(jì)劃課題(2016YFCO400103);中國水利水電科學(xué)研究院專項(xiàng)(ID0145B082018)
張 凱,博士生,主要從事節(jié)水灌溉技術(shù)及相關(guān)理論研究。 Email:971057337@qq.com
白美健,教授級(jí)高工,博士,從事灌溉水管理和精細(xì)地面灌溉技術(shù)研究。Email:903247335@qq.com
張 凱,白美健,李益農(nóng),章少輝,杜太生. 聯(lián)合收割機(jī)生產(chǎn)率計(jì)算模型與適宜作業(yè)路線分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(18):37-43. doi:10.11975/j.issn.1002-6819.2018.18.005 http://www.tcsae.org
Zhang Kai, Bai Meijian, Li Yinong, Zhang Shaohui, Du Taisheng. Combine harvester productivity calculation model and analysis of suitable operation route[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(18): 37-43. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.18.005 http://www.tcsae.org