陳建國,李彥明,覃程錦,劉成良
?
小麥播種量電容法檢測系統(tǒng)設(shè)計(jì)與試驗(yàn)
陳建國,李彥明※,覃程錦,劉成良
(上海交通大學(xué)機(jī)械與動力工程學(xué)院,上海,200240)
為實(shí)現(xiàn)小麥播種機(jī)播種量的精準(zhǔn)檢測,該文基于電容法設(shè)計(jì)了一套用于小麥播種量檢測的系統(tǒng),由檢測分辨率和排種輪轉(zhuǎn)速與采樣頻率約束關(guān)系確定傳感器結(jié)構(gòu)尺寸,建立了種子數(shù)量與電容變化量之間的線性關(guān)系。在采樣周期為15 ms、排種輪轉(zhuǎn)數(shù)20 r/min條件下,基于時(shí)間窗口建立了小麥播種量實(shí)時(shí)檢測最小二乘回歸模型。為了使檢測系統(tǒng)適用于不同的排種輪轉(zhuǎn)速,提出了一種通過改變采樣周期的檢測方法,即排種輪速度每增加5 r/min時(shí),采樣周期相應(yīng)減少0.4 ms,則上述建立的最小二乘回歸模型仍適用,對不同的排種輪轉(zhuǎn)速均具有較高的檢測精度,相對誤差介于-2.26%~2.17%之間。本文所設(shè)計(jì)的檢測系統(tǒng)為實(shí)現(xiàn)小麥播種量的精準(zhǔn)檢測提供了一種有效途徑,具有較好的實(shí)用性和經(jīng)濟(jì)性。
農(nóng)業(yè)機(jī)械;傳感器;設(shè)計(jì);播種量;電容法;最小二乘回歸模型
精量播種是現(xiàn)代播種技術(shù)體系的重要組成部分,是規(guī)?;a(chǎn)實(shí)現(xiàn)節(jié)本增效的重要手段[1-2]。播種機(jī)播種量的實(shí)時(shí)精確檢測是實(shí)施精量播種的基礎(chǔ)與關(guān)鍵,國內(nèi)外學(xué)者對此進(jìn)行了諸多研究。
目前,檢測谷物播種量的方法主要有光電法[3-13]、圖像法[14-20]和電容法[21-28]。李雷霞等[3]采用3對并列排布的紅外發(fā)光二極管和光敏三極管分別作為光電傳感器的發(fā)射端和接收端,實(shí)現(xiàn)多行播種的全程監(jiān)測。張繼成等[4]采用光電傳感技術(shù),以紅色高亮度發(fā)光二極管和光敏電阻為對象,設(shè)計(jì)制作了光敏式種肥監(jiān)測裝置,實(shí)現(xiàn)對播種施肥機(jī)作業(yè)狀態(tài)的監(jiān)測。朱瑞祥等[5]針對大籽粒作物精量播種機(jī)普遍存在的漏播現(xiàn)象,采用激光光電傳感器和霍爾傳感器分別監(jiān)測漏種和排種器速度。然而,光電傳感器易受振動、光線、溫度等因素的影響,農(nóng)田復(fù)雜的環(huán)境影響了光電傳感器的檢測精度,同時(shí),光電傳感器自身存在的散射現(xiàn)象制約了其對多粒種子同時(shí)下落的精確檢測。圖像法是運(yùn)用高速攝像系統(tǒng)對精密排種器的播種過程進(jìn)行圖像采集,對采集的圖像進(jìn)行處理以獲得谷物的播種信息。該方法對播種量的檢測具有較高的精度,為改善精密排種器性能提供了一條新途徑。但是,圖像處理技術(shù)需要專門設(shè)備,成本較高,且相機(jī)容易受外界光線等干擾,很難在農(nóng)田等復(fù)雜工況下普及應(yīng)用。電容法播種量檢測是近年來的一個研究熱點(diǎn),主要是利用電容隨極板間介電常數(shù)變化而變化的原理實(shí)現(xiàn)播種量檢測。周利明等[21]研制了一種電容式播種量傳感器,但試驗(yàn)表明對于不同的排種速度,該傳感器檢測播種量的誤差較大。為了提高玉米播種機(jī)播種量檢測的可靠性,周利明等[22]設(shè)計(jì)了一種基于電容信號播種性能監(jiān)測系統(tǒng),然而,該系統(tǒng)不能對多粒(大于2粒)種子同時(shí)下落時(shí)進(jìn)行檢測。針對勺鏈?zhǔn)今R鈴薯排種器存在的漏種問題,孫偉等[23]提出了一種基于電容測量的漏種檢測方法,但是,該檢測方法不適用于檢測小顆粒谷物。
綜上所述,電容法播種量檢測相對于光電法與圖像法而言受光線、灰塵的影響較小,有較強(qiáng)的環(huán)境適應(yīng)性,但在多粒同時(shí)檢測的精度、不同排種速度的影響等方面還有待于進(jìn)一步研究。本文基于電容法設(shè)計(jì)了一套用于小麥播種量檢測的系統(tǒng),首先對同時(shí)下落種子數(shù)量與電容變化量之間的線性關(guān)系進(jìn)行建模,然后通過時(shí)間窗口采樣統(tǒng)計(jì)分析,建立了播種量監(jiān)測實(shí)時(shí)檢測模型,并建立了基于排種輪轉(zhuǎn)速和采樣頻率關(guān)系的精度補(bǔ)償算法,使播種量檢測精度不受排種輪轉(zhuǎn)速的影響,對不同的排種輪轉(zhuǎn)速均具有較高的播種量檢測精度。所設(shè)計(jì)的檢測系統(tǒng)為實(shí)現(xiàn)小麥播種量的精準(zhǔn)檢測提供了一種有效途徑,具有較好的實(shí)用性和經(jīng)濟(jì)性。
平行板電容的計(jì)算公式為
式中為電容量,F(xiàn);0為真空介電常數(shù)08.854×10-15F/mm;r為相對介電常數(shù);為2個平行板間相對覆蓋面積,mm2;為2個平行板間的距離,mm。
小麥種子與空氣的相對介電常數(shù)不同,當(dāng)小麥種子通過平行板電容傳感器時(shí),電容傳感器的介電常數(shù)會發(fā)生改變,導(dǎo)致輸出電容量發(fā)生變化。當(dāng)小麥種子通過平行板電容傳感器時(shí),電容傳感器的介電常數(shù)[21]為
式中1為小麥種子的相對介電常數(shù);2為空氣的相對介電常數(shù),2≈1.000585;1為小麥種子所占體積,mm3;2為空氣所占體積,mm3;為電容傳感器2個平行極板間的總體積,mm3。
當(dāng)傳感器內(nèi)有小麥種子通過時(shí),由式(1)和(2)可知,小麥種子引起的電容變化量Δ可表示為
式中1為有小麥種子通過時(shí)傳感器的電容量,F(xiàn);2為沒有小麥種子通過時(shí)傳感器的電容量,F(xiàn)。
由式(3)可知,當(dāng)溫度及濕度不變時(shí),電容的變化量與小麥種子所占的體積成正比,對于大小相近的小麥種子,可以通過檢測電容的變化量來檢測小麥種子的數(shù)目。
如圖1所示,精量播種傳感器由排種管接口、V型擋板、2片電容電極、信號檢測及處理電路和電路安裝盒等組成。
圖1 精量播種傳感器結(jié)構(gòu)簡圖
相對介電常數(shù)隨溫度升高而增大[28],為降低溫度對傳感器的影響,傳感器的極板材料應(yīng)選用溫度系數(shù)較低的金屬材料。為了減少邊緣效應(yīng)的影響,電容的極板要做得很薄。為保證傳感器在振動和溫差較大的工作環(huán)境中具有高的穩(wěn)定性,本文采用部分區(qū)域覆銅技術(shù),在1 mm厚的PVC板上制作電容傳感器的平行極板,覆銅區(qū)域的銅箔厚度為0.035 mm。
根據(jù)中國科學(xué)院電子學(xué)研究所對小麥相對介電常數(shù)的測量,小麥種子相對介電常數(shù)為2.5~3.0[29]。本文選取小麥種子相對介電常數(shù)中間值2.75,以便于后面進(jìn)行計(jì)算,確定電容傳感器的尺寸參數(shù)。通過大量實(shí)際測量得出小麥籽粒長約6.5 mm,直徑為3.4~3.8 mm,則單粒小麥種子的體積(小麥種子近似圓柱體)近似為
1≈ π·1.72·6.5 (4)
帶入式(3)有:
電容檢測芯片選用AD7746(電容模數(shù)轉(zhuǎn)換芯片),精度為0.004 pF,若要辨別出1粒小麥種子,則根據(jù)式(5)Δ需要滿足條件Δ>0.004,即
根據(jù)式(6),2個平行極板間距離設(shè)計(jì)為=15 mm。
電容極板的尺寸與傳感器和排種輪的安裝位置有關(guān)。如圖2所示,忽略外部振動和摩擦等因素的影響,可以認(rèn)為種子在排種器的同一高度沿著排種器排種輪的切線方向以一定速度排出并在重力作用下運(yùn)動[22]。
注:H為排種口至平行極板上邊界的距離,mm;V為種子的初始速度,mm/s;θ為排種角,即小麥種子初始速度V方向與水平方向之間的夾角,rad;b為平行極板的長度,mm;d為兩平行極板間的距離,mm。
為了保證檢測精度,應(yīng)盡可能使小麥種子在通過電容傳感器平行極板時(shí)被采樣1次,種子通過平行極板時(shí)被采樣1次的約束條件為:
t< Δ< 2 t(7)
式中t為采樣周期,即2次采樣之間的時(shí)間間隔,s;Δ為小麥種子通過平行極板的時(shí)間,s。
種子通過平行極板的時(shí)間Δ由種子到平行極板上邊界的速度1和平行極板的長度決定,滿足公式
解得
種子到達(dá)平行極板上邊界的速度1由小麥種子的初始速度、排種口至平行極板上邊界的距離和排種角決定。
式中為排種輪半徑,mm;為排種輪的角速度,rad/s;1為種子到平行極板上邊界的時(shí)間,s;為重力加速度,9.8×103mm/s2。
根據(jù)式(8)、(9)和(10)求得種子通過平行極板的時(shí)間為
常用小麥排種器排種輪實(shí)測參數(shù)為=27 mm,= 1.047 2 rad;=147 mm,根據(jù)式(11)、、電容模數(shù)轉(zhuǎn)換時(shí)間等綜合考慮,確定平行極板的長度=30 mm,寬度=30 mm。當(dāng)排種輪轉(zhuǎn)速為20 r/min時(shí),由式(11)求得Δ16.85 ms,根據(jù)式(7)初步設(shè)定采樣周期為15 ms。
小麥種子通過電容傳感器引起的電容變化量較小,檢測精度會受到寄生電容和環(huán)境的影響,為實(shí)現(xiàn)高精度的測量,選用模數(shù)轉(zhuǎn)換芯片AD7746,可以有效地降低這些因素帶來的影響。小麥排種精密檢測信號采集與處理電路原理如圖3所示。該電路由STM8單片機(jī)、電容模數(shù)轉(zhuǎn)換芯片AD7746等組成。STM8單片機(jī)主要任務(wù)是對電容模數(shù)轉(zhuǎn)換芯片AD7746進(jìn)行初始化配置,設(shè)置轉(zhuǎn)化速率為66.7 Hz(采樣周期為15 ms),采集電容的變化值,將采集的數(shù)據(jù)進(jìn)行預(yù)處理和存儲,并將數(shù)據(jù)傳送給上位機(jī)。
圖3 檢測電路原理圖
振動、電磁干擾等因素對電容傳感器的影響較大。信號采集與處理電路和平行極板之間采用導(dǎo)線連接,為了避免導(dǎo)線振動而產(chǎn)生隨機(jī)噪聲電容,則需要盡可能縮短連接導(dǎo)線的長度并通過固體膠將連接導(dǎo)線與電路安裝盒固定。為了降低電磁干擾對檢測結(jié)果的影響,傳感器電路安裝盒為鐵質(zhì)材料制成的密閉空間,信號采集與處理電路和連接導(dǎo)線全部安裝于鐵質(zhì)金屬盒中,電容傳感器的電路通過航空接頭與外界進(jìn)行數(shù)據(jù)傳輸。
試驗(yàn)平臺由步進(jìn)電機(jī)及驅(qū)動器、種箱、排種輪、電容傳感器、接種盒和上位機(jī)等組成,其結(jié)構(gòu)如圖4a所示。57BYG250B步進(jìn)電機(jī)控制排種輪的轉(zhuǎn)速,進(jìn)而控制小麥種子的流量。電容傳感器用于電容值的采集,并將數(shù)據(jù)通過CAN總線傳送給上位機(jī)進(jìn)行處理。試驗(yàn)流程如圖4b所示。
圖4 小麥播種量檢測試驗(yàn)平臺及播種量檢測流程圖
3.2.1 確定基礎(chǔ)電容值
選用變地金生產(chǎn)的小麥種子進(jìn)行試驗(yàn),首先人工去除一些不飽滿的顆粒,選取大小相近的小麥種子進(jìn)行試驗(yàn)。每組試驗(yàn)前先啟動采樣程序采樣1 500個數(shù)據(jù)(沒有小麥種子流過時(shí)的電容值),對這1 500個數(shù)據(jù)求均值,作為檢測系統(tǒng)的基礎(chǔ)電容值C。
3.2.2 線性關(guān)系試驗(yàn)
設(shè)置系統(tǒng)的采樣周期為15 ms,分別以1、2、3、4、5和6粒種子同時(shí)下落進(jìn)行6組試驗(yàn),每組試驗(yàn)進(jìn)行100次。在每組試驗(yàn)中,對得到的100個電容變化量求均值,以均值作為對應(yīng)小麥數(shù)量引起的電容變化量。
對電容變化量與2個平行極板間小麥種子數(shù)量進(jìn)行最小二乘擬合,得到兩者之間的關(guān)系為:
電容變化量與2個平行極板間小麥種子數(shù)量最小二乘擬合直線如圖5所示,進(jìn)一步計(jì)算得到線性相關(guān)系數(shù)為0.996 6,這表明電容變化量與2個平行極板間小麥數(shù)量之間存在很高的線性相關(guān)性,在電容傳感器內(nèi)部,每粒小麥種子引起的電容變化量約為0.003 7 pF。
圖5 電容變化量與種子數(shù)量最小二乘擬合直線
3.3.1 小麥播種量檢測最小二乘回歸模型
當(dāng)小麥種子通過電容傳感器時(shí),會形成脈沖信號,對于單個采樣點(diǎn)而言,由種子數(shù)量與電容變化量線性關(guān)系試驗(yàn)可知電容變化量與小麥數(shù)量成正比。啟動電機(jī)帶動排種輪轉(zhuǎn)動后,在檢測小麥播種量的過程中,系統(tǒng)的檢測結(jié)果會伴有微小波動,波動范圍在0.001 5 pF以內(nèi),為此設(shè)定判斷閾值,只有滿足閾值條件的脈沖峰值才被認(rèn)為是有效的,即需滿足下式:
式中C為第采樣點(diǎn)的電容值,pF;C為傳感器的基礎(chǔ)電容;為判斷閾值。
正常單粒小麥種子經(jīng)過電容傳感器引起的電容變化值約為0.003 7 pF,通過多次重復(fù)預(yù)試驗(yàn)確定閾值0.002 8,以排除電容自身微小波動引起的誤判。
在每組采樣試驗(yàn)中,采樣周期設(shè)置為15 ms,采樣點(diǎn)數(shù)設(shè)置為1 500個,排種輪轉(zhuǎn)速(步進(jìn)電機(jī)輸出轉(zhuǎn)速)設(shè)置為20 r/min,為準(zhǔn)確獲取小麥種子通過電容傳感器時(shí)引起的電容變化量,在啟動采樣命令后再控制步進(jìn)電機(jī)帶動排種輪轉(zhuǎn)動,在系統(tǒng)采樣完成前關(guān)閉步進(jìn)電機(jī)。小麥種子通過電容傳感器時(shí),電容值會明顯增大,根據(jù)這個特征提取小麥通過電容傳感器時(shí)對應(yīng)的電容值數(shù)據(jù),一共進(jìn)行40組試驗(yàn)(以下試驗(yàn)數(shù)據(jù)采樣均采用此方法)。將滿足式(13)條件的所有采樣點(diǎn)處的電容值進(jìn)行積分,同時(shí)人工統(tǒng)計(jì)出經(jīng)過電容傳感器的小麥種子粒數(shù)如表1所示。
將滿足式(13)條件的所有采樣點(diǎn)處的電容值進(jìn)行積分
將表1中實(shí)際經(jīng)過電容傳感器的小麥籽粒數(shù)與電容積分值進(jìn)行最小二乘擬合,得到兩者之間的關(guān)系為:
式中為根據(jù)公式(14)計(jì)算得到的電容積分值,pF。
小麥籽粒數(shù)與電容積分值最小二乘擬合直線如圖6所示,計(jì)算得到線性相關(guān)系數(shù)為0.993 6,這表明實(shí)際經(jīng)過電容傳感器的小麥種子粒數(shù)與電容積分值之間存在很高的線性相關(guān)性。
表1 每組采樣中電容積分值和實(shí)際小麥粒數(shù)
圖6 小麥籽粒數(shù)與電容積分值最小二乘擬合直線
3.3.2 不同排種輪轉(zhuǎn)速下播種量實(shí)時(shí)檢測試驗(yàn)
為進(jìn)一步檢驗(yàn)該系統(tǒng)的可靠性和檢測精度,分別在20、25和35 r/min三種排種輪轉(zhuǎn)速下進(jìn)行試驗(yàn)。設(shè)置系統(tǒng)采樣周期為15 ms,每種轉(zhuǎn)速下進(jìn)行6組試驗(yàn)。在每組試驗(yàn)的采樣數(shù)據(jù)中,將滿足式(13)的所有采樣點(diǎn)處的電容值進(jìn)行積分,再根據(jù)式(15)計(jì)算出小麥籽粒數(shù),由計(jì)算出的籽粒數(shù)與人工統(tǒng)計(jì)的實(shí)際籽粒數(shù)相對比,計(jì)算相對誤差,其結(jié)果如表2所示。
由表2可以發(fā)現(xiàn):采樣周期保持15 ms情況下,在排種輪轉(zhuǎn)速為20 r/min時(shí),利用擬合關(guān)系式(15)計(jì)算得到的小麥籽粒數(shù)與實(shí)際籽粒數(shù)兩者之間的相對誤差較小,介于-1.57%~1.37%之間。然而,在排種輪轉(zhuǎn)速為25和35 r/min時(shí),利用擬合關(guān)系式(15)計(jì)算得到的小麥籽粒數(shù)與實(shí)際籽粒數(shù)兩者之間的相對誤差較大,而且隨著轉(zhuǎn)速的提高,相對誤差逐漸增大,其偏離程度如圖7所示。
表2 不同排種輪轉(zhuǎn)速下播種量實(shí)時(shí)檢測結(jié)果(采樣周期15 ms)
3.3.3 改變采樣周期下播種量實(shí)時(shí)檢測試驗(yàn)
在理想情況下,小麥種子通過平行極板時(shí)被電容傳感器采樣一次。試驗(yàn)表明在同一轉(zhuǎn)速下,實(shí)際經(jīng)過電容傳感器的小麥籽粒數(shù)與電容積分值之間存在很高的線性相關(guān)性,這是因?yàn)榉N子通過平行極板時(shí)被采樣的次數(shù)符合同一分布。然而,對于不同的轉(zhuǎn)速,根據(jù)(11)式可知種子通過平行極板的時(shí)間Δ會發(fā)生變化,這會影響種子通過平行極板時(shí)被采樣次數(shù)的分布情況。這就是在同一采樣周期下,排種輪轉(zhuǎn)速逐漸提高時(shí),利用擬合關(guān)系式(15)計(jì)算得到的小麥籽粒數(shù)與實(shí)際籽粒數(shù)之間相對誤差逐漸增大的原因。
為使得該系統(tǒng)滿足較大的排種輪轉(zhuǎn)速范圍播種量檢測,本文通過試驗(yàn)發(fā)現(xiàn),當(dāng)排種輪轉(zhuǎn)速每增加5 r/min時(shí),采樣周期相應(yīng)減少0.4 ms,則擬合關(guān)系式(15)仍可以使用。為檢驗(yàn)不同轉(zhuǎn)速條件下,通過改變采樣周期,使用擬合關(guān)系式(15)的精度,分別在排種輪轉(zhuǎn)速25、30、35、40、45、50、55和60 r/min下進(jìn)行試驗(yàn)。對應(yīng)的采樣周期從14.6 ms開始依次減少0.4 ms,每種轉(zhuǎn)速下進(jìn)行5組試驗(yàn)。在每組試驗(yàn)的采樣數(shù)據(jù)中,將滿足式(13)條件的所有采樣點(diǎn)處的電容值進(jìn)行積分,再根據(jù)式(15)計(jì)算出小麥籽粒數(shù),由計(jì)算出的小麥籽粒數(shù)與實(shí)際籽粒數(shù)相比較,計(jì)算相對誤差,其結(jié)果如表3所示。由表3可知:在排種輪轉(zhuǎn)速25、30、35 r/min等8種下,改變對應(yīng)的采樣周期,根據(jù)式(15)計(jì)算出該系統(tǒng)的相對誤差介于-2.26%~2.17%之間。這表明通過改變對應(yīng)的采樣周期,該系統(tǒng)對不同排種輪轉(zhuǎn)速均具有較高的檢測精度。
圖7 采樣周期為15 ms時(shí)不同排種輪轉(zhuǎn)速下小麥籽粒數(shù)
表3 不同排種輪轉(zhuǎn)速和采樣周期下播種量實(shí)時(shí)檢測結(jié)果
1)基于電容法設(shè)計(jì)了小麥精量播種機(jī)播種量實(shí)時(shí)檢測系統(tǒng)。由檢測分辨率和排種速度與采樣頻率約束關(guān)系確定了傳感器結(jié)構(gòu)尺寸,確定了實(shí)現(xiàn)精量檢測的結(jié)構(gòu)基礎(chǔ)。
2)建立了采樣周期15 ms、排種輪轉(zhuǎn)數(shù)(步進(jìn)電機(jī)輸出轉(zhuǎn)速)20 r/min時(shí)的小麥籽粒數(shù)與電容積分值之間的最小二乘回歸模型,試驗(yàn)表明:排種輪轉(zhuǎn)數(shù)為20 r/min時(shí),使用該模型計(jì)算得到的小麥籽粒數(shù)與實(shí)際籽粒數(shù)兩者之間的相對誤差介于-1.57%~1.37%之間,然而,在排種輪轉(zhuǎn)數(shù)為25和35 r/min時(shí),使用該模型計(jì)算得到的小麥籽粒數(shù)與實(shí)際籽粒數(shù)兩者之間的相對誤差較大,而且隨著轉(zhuǎn)速的提高,相對誤差逐漸增大。
3)為了使得該模型適用于不同的排種輪轉(zhuǎn)數(shù),提出了一種通過改變采樣周期的方法,以使擬合關(guān)系式(15)適用于不同的排種輪轉(zhuǎn)速,試驗(yàn)表明當(dāng)排種輪轉(zhuǎn)數(shù)每增加5 r/min時(shí),將采樣周期相應(yīng)減少0.4 ms,則擬合關(guān)系式(15)仍可以使用,使用該擬合關(guān)系式計(jì)算得到的小麥籽粒數(shù)與實(shí)際籽粒數(shù)兩者之間的相對誤差介于-2.26%~2.17%之間。由此可見,對不同的排種輪轉(zhuǎn)速,本文所設(shè)計(jì)的檢測系統(tǒng)均具有較高的檢測精度,這為實(shí)現(xiàn)小麥播種量的精準(zhǔn)檢測提供了一種有效途徑。
[1] 楊麗,顏丙新,張東興,等. 玉米精密播種技術(shù)研究進(jìn)展[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(11):38-48. Yang Li, Yan Bingxin, Zhang Dongxing, et al. Research progress on precision planting technology of maize[J]. Transactions of The Chinese Society of Agricultural Machinery, 2016, 47(11): 38-48. (in Chinese with English abstract)
[2] 苑嚴(yán)偉,張小超,吳才聰,等. 玉米免耕播種施肥機(jī)精準(zhǔn)作業(yè)監(jiān)控系統(tǒng)[J].農(nóng)業(yè)工程學(xué)報(bào),2011,27(8):222-226. Yuan Yanwei, Zhang Xiaochao, Wu Caicong, et al. Precision control system of no-tillage corn planter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(8): 222-226. (in Chinese with English abstract)
[3] 李雷霞,郝志明,楊薇,等. 精密播種機(jī)排種性能檢測系統(tǒng)的研制[J].農(nóng)業(yè)工程學(xué)報(bào),2012,02(8):16-19.Li Leixia, Hao Zhiming, Yang Wei, et al. Design of seeding performance detection system for precision seeder[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2012, 02(8): 16-19. (in Chinese with English abstract)
[4] 張繼成,陳海濤,歐陽斌林,等. 基于光敏傳感器的精密播種機(jī)監(jiān)測裝置[J].清華大學(xué)學(xué)報(bào)(自然科學(xué)版),2013(2):265-268.
Zhang Jicheng, Chen Haitao, Ouyang Binlin, et al. Monitoring system for precision seeders based on a photosensitive sensor[J]. Tsinghua Science and Technology (Science and Technology),2013(2): 265-268 (in Chinese with English abstract)
[5] 朱瑞祥,葛世強(qiáng),翟長遠(yuǎn),等. 大籽粒作物漏播自補(bǔ)種裝置設(shè)計(jì)與試驗(yàn)[J].農(nóng)業(yè)工程學(xué)報(bào),2014,30(21):1-8.Zhu Ruixiang, Ge Shiqiang, Zhai Changyuan, et al. Design and experiment of automatic reseeding device for miss-seeding of crops with large grain [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2014, 30(21): 1-8. (in Chinese with English abstract)
[6] 郝向澤,何旭鵬,鄒翌,等. 基于光電傳感器的精密播種機(jī)排種性能監(jiān)測系統(tǒng)的研究[J]. 華南農(nóng)業(yè)大學(xué)學(xué)報(bào),2017,38(1):120-124.
Hao Xiangze, He Xupeng, Zou Yi, et al. Research on the sowing performance monitoring system for precision seeders based on photoelectric sensor[J]. Journal of South China Agricultural University, 2017, 38(1): 120-124.(in Chinese with English abstract)
[7] 車宇,偉利國,劉婞韜,等. 免耕播種機(jī)播種質(zhì)量紅外監(jiān)測系統(tǒng)設(shè)計(jì)與試驗(yàn)[J].農(nóng)業(yè)工程學(xué)報(bào),2017,33(Supp.1):11-16.Che Yu, Wei Liguo, Liu Xingtao, et al. Design and experiment of seeding quality infrared monitoring system for no-tillage seeder[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2017, 33(Supp.1): 11-16. (in Chinese with English abstract)
[8] 宋鵬,張俊雄,李偉,等. 精密播種機(jī)工作性能實(shí)時(shí)監(jiān)測系統(tǒng)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2011,42(2):71-74.
Song Peng, Zhang Junxiong, Li Wei, et al. Real time monitoring system for accuracy of precision seeder [J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(2): 71-74. (in Chinese with English abstract)
[9] 鄭一平,花有清,陳麗能,等. 水稻直播機(jī)播種監(jiān)測器研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2005,21(4):77-80.
Zheng Yiping, Hua Youqing, Chen lineng, et al. Seeding detectors for rice drill [J]. Transactions of the Chinese Society for Agricultural Engineering (Transactions of the CSAE), 2005, 21(4): 77-80. (in Chinese with English abstract)
[10] Okopnik D L, Falate R. Usage of the DFRobot RB-DFR-49 infrared sensor to detect maize seed passage on a conveyor belt[M]. Elsevier Science Publishers B. V. 2014.
[11] Al-Mallahi A A, Kataoka T. Application of fibre sensor in grain drill to estimate seed flow under field operational conditions[M]. Elsevier Science Publishers B. V. 2016.
[12] Al-Mallahi A. Monitoring the flow of seeds in grain drill using fiber sensor[C] //Agricontrol, 2013: 311-314.
[13] Hoberge S M Z, Hilleringmann U, Jochheim C, et al. Piezoelectric sensor array with evaluation electronic for counting grains in seed drills[C] // Africon. IEEE, 2011: 1-6.
[14] 馬旭,王劍平,胡少興,等. 用圖像處理技術(shù)檢測精密排種器性能[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2001,32(4):34-37.Ma Xu, Wang Jianping, Hu Shaoxing, et al. Detection of a precision seedmeter performance using image processing technology[J]. Transactions of The Chinese Society of Agricultural Machinery, 2001, 32(4): 34-37. (in Chinese with English abstract)
[15] 廖慶喜,鄧在京,黃海東. 高速攝影在精密排種器性能檢測中的應(yīng)用[J]. 華中農(nóng)業(yè)大學(xué)學(xué)報(bào),2004,23(5):570-573.
Liao Qingxi, Deng Zaijing, Huang Haidong. Application of the high speed photography checking the precision metering performances[J]. Journal of Huazhong Agricultural University, 2004, 23(5): 570-573. (in Chinese with English abstract)
[16] 張海娜,馬玉芳. 基于圖像處理的機(jī)器播種參數(shù)檢測方法研究[J]. 測控技術(shù),2015,34(2):44-47.
Zhang Haina, Ma Yufang. Research on performance testing method of machine sowing based on image processing [J]. Measurement & Control Technology, 2015, 34(2): 44-47. (in Chinese with English abstract)
[17] 周茉,張學(xué)明,劉志剛. 基于高速攝像系統(tǒng)和圖像邊緣檢測的精密排種器設(shè)計(jì)[J]. 農(nóng)機(jī)化研究,2016(9):108-112.
Zhou Mo, Zhang Xueming, Liu Zhigang. Designn metering devic for precisioe based on high—speed camera and image edge detection[J]. Journal of Agricultural Mechanization Research, 2016(9): 108-112. (in Chinese with English abstract)
[18] 陳進(jìn),邊疆,李耀明,等. 基于高速攝像系統(tǒng)的精密排種器性能檢測試驗(yàn)[J].農(nóng)業(yè)工程學(xué)報(bào),2009,25(9):90-95.Chen Jin, Bian Jiang, Li Yaoming, et al. Performance detection experiment of precision seed metering device based on high-speed camera system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2009, 25(9): 90-95. (in Chinese with English abstract)
[19] Zhao X, Xu L, Wang Y, et al. Directional adsorption characteristics of corn seed based on fluent and high-speed photography[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(10): 103-109, 28.
[20] Karayel D, Wiesehoff M. Laboratory measurement of seed drill seed spacing and velocity of fall of seeds using high-speed camera system[J]. Computers & Electronics in Agriculture, 2006, 50(2): 89-96.
[21] 周利明,張小超,苑嚴(yán)偉. 小麥播種機(jī)電容式排種量傳感器設(shè)計(jì)[J].農(nóng)業(yè)工程學(xué)報(bào),2010,26(10):99-103.Zhou Liming, Zhang Xiaochao, Yuan Yanwei. Design of capacitance seed rate sensor of wheat planter [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2010, 26(10): 99-103. (in Chinese with English abstract)
[22] 周利明,王書茂,張小超,等. 基于電容信號的玉米播種機(jī)排種性能監(jiān)測系統(tǒng)[J].農(nóng)業(yè)工程學(xué)報(bào),2012,28(13):16-21.Zhou Liming, Wang Shumao, Zhang Xiaochao, et al. Seed monitoring system forcorn planter basedon capacitance signal [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2012, 28(13): 16-21. (in Chinese with English abstract)
[23] 孫偉,王關(guān)平,吳建民. 勺鏈?zhǔn)今R鈴薯排種器漏播檢測與補(bǔ)種系統(tǒng)的設(shè)計(jì)與試驗(yàn)[J].農(nóng)業(yè)工程學(xué)報(bào),2016,32(11):8-15.Sun Wei, Wang Guanping, Wu Jianmin. Design and experiment on loss sowing testing and compensation system of spoon-chain potato metering device[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2016, 32(11): 8-15. (in Chinese with English abstract)
[24] Kandala C V, Sundaram J. Nondestructive measurement of moisture content using a parallel-plate capacitance sensor for grain and nuts[J]. IEEE Sensors Journal, 2010, 10(7): 1282-1287.
[25] 周利明,李樹君,張小超,等. 基于電容法的棉管籽棉質(zhì)量流量檢測[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(6):47-52.Zhou Liming, Li Shujun, Zhang Xiaochao, et al. Detection of seedcotton mass flow based on capacitance approach[J]. Transactions of The Chinese Society of Agricultural Machinery, 2014, 45(6): 47-52. (in Chinese with English abstract)
[26] 郭文川,劉馳,楊軍. 小麥秸稈含水率測量儀的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29 (1):33-40.
Guo Wenchuan, Liu Chi, Yang Jun. Design and experiment on wheat straw moisture content meter[J]. Transactions of the Chinese Society for Agricultural Engineering, (Transactions of the CSAE) 2013, 29 (1): 33-40. (in Chinese with English abstract)
[27] 田雷,衣淑娟,堯李慧,等. 基于電容信號的排種監(jiān)測系統(tǒng)研究[J].農(nóng)機(jī)化研究,2018,40(1):189-194.Tian Lei, Yi Shuhuan, Yao Lihui, et al. Kind of monitoring system basedon capacitance signal research[J]. Jornual of Agricultural Mechanization Research, 2018, 40(1): 189-194. (in Chinese with English abstract)
[28] 周利明. 基于電容法的棉花產(chǎn)量和播種量檢測技術(shù)研究[D]. 北京:中國農(nóng)業(yè)大學(xué),2014.
Zhou Liming. Research on Detection of Yied and Seeding Rate of Cotton Based on Capacitive Method[D]. Beijing: China Agricultural University, 2014.
[29] 秦瑤,陳潔,方廣有,等. 微波透射法對小麥介電特性的測量[J].農(nóng)機(jī)化研究,2010,32(7):156-159. Qin Yao, Chen Jie, Fang Guangyou, et al. Microwave transmission method to detecting permittivity of wheat[J]. Jornual of Agricultural Mechanization Research, 2010, 32(7): 156-159. (in Chinese with English abstract)
Design and test of capacitive detection system for wheat seeding quantity
Chen Jianguo, Li Yanming※, Qin Chengjin, Liu Chengliang
(200240)
At present, the methods of seeding detection are photoelectric-based method, image-based method and capacitance-based method. For the photoelectric-based method, the detection accuracy of photoelectric sensor is affected by the vibration, light, temperature and other factors on the farmland. When multiple seeds fall simultaneously, the refraction phenomenon of photoelectric sensor also affects the accurate detection. For the image-based method, its high precision detection provides a new way to improve the performance of wheat-planter seeding. However, image processing technology requires special equipment with high cost, and cameras are easy to be interfered by external light. Consequently, it is difficult to be widely applied in the complex environment on the farmland. Compared with photoelectric-based and image-based methods, the capacitance-based method is less affected by light and dust and thus has a strong environmental adaptability. However, when multiple seeds fall simultaneously, the detection accuracy of the capacitance-based method still needs to be improved. In this paper, a precise detection system for wheat-planter seeding quantity was designed using the capacitance-based method. The detection resolution and the constraint relation between the seeding speed and the sampling frequency determine the structure size of the capacitance sensor. To guarantee the detection accuracy, every seed should be detected only once as far as possible when it passes through the parallel plate of capacitance sensor. Then the initial sampling period can be determined according to the above sampling method. Meanwhile, high detection accuracy is difficult to be achieved due to the small capacitance change in detection system and the influence of parasitic capacitance and environment in conditioning circuit. Therefore, the capacitance analog-to-digital conversion chip of AD7746 is utilized to effectively reduce the error caused by the above factors. The signal acquisition and processing circuit for precise detection of wheat-planter was designed based on the AD7746 and the single chip microprocessor of STM8. Ideally, the seed passing through the capacitor plate will be sampled only once by the capacitive sensor. However, the times of the seed passing through the parallel plate will be changed with different wheat-planter seeding speeds, which will affect the distribution of sampling times when the seed passes through the capacitor plate. The least squares regression model of the real-time wheat-planter seeding quantity detection was built under the condition with the sampling period of 15 ms and the wheat-planter speed of 20 r/min. The results showed that when the sampling period is 15 ms, the relative error between the number of seeds calculated by the least squares regression model and the actual number of seeds increases with the speed of the wheat planter. Consequently, to make the detection system suitable for the different seeding speeds, a detecting method was proposed by changing the sampling period, in which the sampling period was reduced by 0.4 ms when the wheat-planter speed was increased by 5 r/min. The least square regression model established above is still applicable for this case. The results showed that high detection accuracy can be obtained for different seeding speeds, and the relative error was between -2.26%-2.17%.
agricultural machinery; sensors; design; seeding quantity; capacitance method; least squares regression model
10.11975/j.issn.1002-6819.2018.18.007
S127
A
1002-6819(2018)-18-0051-08
2018-05-15
2018-06-21
國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2016YFD070030503);國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2016YFD0700505)
陳建國,男,博士生,主要從事高精度農(nóng)機(jī)方面研究。 Email:jianguo890811@163.com
李彥明,男,副教授,主要從事機(jī)電系統(tǒng)辨識及自適應(yīng)高精度控制方面研究。Email:ymli@sjtu.edu.cn
陳建國,李彥明,覃程錦,劉成良. 小麥播種量電容法檢測系統(tǒng)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(18):51-58. doi:10.11975/j.issn.1002-6819.2018.18.007 http://www.tcsae.org
Chen Jianguo, Li Yanming, Qin Chengjin, Liu Chengliang. Design and test of capacitive detection system for wheat seeding quantity[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(18): 51-58. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.18.007 http://www.tcsae.org