国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

瓜類蔬菜斜插式嫁接砧木子葉自適應壓持機構(gòu)設計與試驗

2018-10-10 07:21樓建忠陳駿煬麻桂楊李建平
農(nóng)業(yè)工程學報 2018年18期
關鍵詞:瓜類壓塊生長點

樓建忠,吳 康,陳駿煬,麻桂楊,李建平,3※

?

瓜類蔬菜斜插式嫁接砧木子葉自適應壓持機構(gòu)設計與試驗

樓建忠1,2,吳 康1,陳駿煬1,麻桂楊4,李建平1,3※

(1.浙江大學生物系統(tǒng)工程系,杭州 310029;2.浙江機電職業(yè)技術學院機械技術系,杭州 310053;3.農(nóng)業(yè)部設施農(nóng)業(yè)裝備與信息化重點實驗室,杭州 310029;4.華納圣龍(寧波)有限公司 寧波 315104)

針對現(xiàn)有瓜類蔬菜嫁接機在砧木子葉壓持過程中容易導致子葉根部折斷,或由于壓持力過大導致砧木子葉損傷等問題,以葫蘆苗為試驗對象,通過測定砧木苗子葉特征參數(shù),設計制作了一種適用于瓜類蔬菜嫁接的砧木子葉壓持機構(gòu),壓持機構(gòu)中的仿形墊塊形態(tài)曲線與砧木苗子葉自然形態(tài)接近,防止子葉根部折斷;在子葉壓持過程中,壓持機構(gòu)的壓輥能在仿形自適應墊塊上自動滑移以實現(xiàn)壓緊力自動調(diào)節(jié),避免砧木子葉表面損傷。取60株苗齡15 d的葫蘆苗進行子葉壓持試驗,并與沒有加仿形墊塊的砧木子葉壓持機構(gòu)進行比較,試驗結(jié)果表明:加仿形墊塊的壓持機構(gòu)子葉壓持成功率為100%,無子葉根部折斷和子葉表面損傷現(xiàn)象,生長點去除率達到98.3%,說明所設計的子葉自適應壓持機構(gòu)是可行的,該研究為解決蔬菜嫁接砧木子葉壓持提供了設計參考。

農(nóng)業(yè)機械;設計;嫁接;瓜類蔬菜;嫁接機;子葉壓持;自適應;仿型

0 引 言

瓜類蔬菜嫁接栽培利用砧木根系發(fā)達、耐熱、抗病和吸肥力強等特點,能有效克服連茬病害,增強植株的抗病能力,減少施肥量,被廣泛用于蔬菜規(guī)?;N植中[1-3]。斜插式嫁接法是瓜類蔬菜常用的一種插接方法,嫁接時只需將經(jīng)切削的穗木苗直接插入已去除生長點并打好孔的砧木中,無需對嫁接苗進行固定,操作簡便,可避免貼接法因切除一片砧木子葉使砧木營養(yǎng)成分流失而影響嫁接苗成活率,被廣泛應用于瓜類蔬菜嫁接種植中[4-6],而機械嫁接可克服手工嫁接效率低、成活率不高的缺點,減輕農(nóng)民的勞動強度,提高作業(yè)生產(chǎn)率[7-10]。斜插式嫁接機作業(yè)時,砧木苗的子葉壓持是斜插式瓜類蔬菜嫁接機設計需重點考慮的問題之一。嫁接時,若壓持機構(gòu)設計不合理,將導致砧木子葉在根部折斷且損傷砧木子葉表面,直接影響嫁接的作業(yè)質(zhì)量和嫁接苗的成活率[11-15]。

日本和韓國等國家于20世紀后期已對瓜類蔬菜嫁接機各機構(gòu)進行了研究[16-18];在國內(nèi)張鐵中[19-21]和辜松[22-24]等分別進行了瓜類蔬菜插接式嫁接機的研究,并開發(fā)了相應的設備,但由于砧木苗具有較柔軟的特性,夾持定位及固定較難、砧木苗子葉壓持和壓苗過程中易損傷、砧木苗打孔準確性差以及生長點不易去凈等問題依然存在[25-26],常規(guī)的砧木子葉壓持方法容易折斷和損傷子葉[8-9]。

本文設計了一種瓜類蔬菜砧木子葉自適應壓持機構(gòu)。通過在作者所設計的交叉夾持機構(gòu)[8]上加設仿型墊塊,適應砧木苗形態(tài)特點,在壓持過程中,壓持機構(gòu)的壓輥能在仿形墊塊上沿墊塊表面自動滑移以調(diào)節(jié)壓緊力,避免損傷砧木子葉,以期實現(xiàn)砧木苗子葉的無損壓持,再利用作者所設計的生長點去除機構(gòu)[27],成功實現(xiàn)砧木苗生長點的去除。

1 砧木苗形態(tài)特征及壓持機構(gòu)原理

1.1 砧木苗形態(tài)特征

如圖1所示為砧木苗實物圖,砧木苗由子葉、生長點和苗莖3部分組成。葫蘆苗在苗齡在12~15 d時生長點柔嫩且容易被去除,適合于嫁接,但由于砧木苗子葉比較柔嫩,壓持時容易受到損傷。苗齡在12~15 d時的砧木苗子葉尚未完全展開,形狀呈Y型,由于生長點嵌于兩片子葉之間,所以子葉往兩邊拉伸,將生長點完全暴露于子葉外面,將有助于生長點去除。

1.2 砧木子葉特征參數(shù)測定

砧木苗子葉特征參數(shù)是砧木子葉壓持機構(gòu)設計的主要依據(jù)[28-30]。圖2為砧木苗各特征參數(shù)示意圖,葫蘆苗特征參數(shù)測量結(jié)果見表1。

圖1 砧木苗實物圖

注:a為砧木子葉伸展跨距,mm;b為砧木子葉寬度,mm;θ為子葉展開角度,(o)

表1 砧木苗子葉特征參數(shù)

注:葫蘆苗培育時間為15 d,樣本數(shù)為60。

Note: Seedling age of cucurbit is 15 d, sample number is 60.

2 砧木苗子葉自適應壓持機構(gòu)設計

2.1 砧木子葉自適應壓持機構(gòu)原理

砧木子葉壓持機構(gòu)原理圖如圖3所示,其結(jié)構(gòu)由仿形墊塊、壓緊機構(gòu)兩部分組成。仿形墊塊由左、右兩塊組成,采用透明有機玻璃材料制作,在中間部位鉆一與砧木苗莖直徑大致相同的孔,仿形墊塊安裝于作者所設計的砧木夾持機構(gòu)[8]上,隨夾持機構(gòu)一起運動。砧木子葉壓緊機構(gòu)結(jié)構(gòu)如圖4所示,砧木子葉壓緊機構(gòu)由壓臂、壓輥、壓塊、導套和彈簧等部分組成。

圖3 砧木子葉壓持機構(gòu)原理圖

壓緊機構(gòu)的壓塊通過導套安裝于導桿上,沿導桿上下滑動,兩壓臂之間裝有彈簧,當壓緊機構(gòu)下降至墊塊時,壓輥壓于子葉上向外滾動,同時促使壓臂撐開;當壓緊機構(gòu)上升時,壓臂在彈簧作用下收回。壓臂通過連接板安裝于壓塊上,連接板上安裝有兩個限位銷,用于限制壓臂的位置。

圖4 砧木子葉壓緊機構(gòu)結(jié)構(gòu)圖

2.2 砧木子葉自適應壓持機構(gòu)力學分析

砧木苗放入夾持機構(gòu)[8]后,能較好地實現(xiàn)砧木苗莖部的定位對中與夾持固定,但嫁接期的砧木苗子葉展開呈Y型,生長點陷于2片子葉之間,使得生長點去除機構(gòu)[27]很難將生長點摳除干凈,若所設計的壓持機構(gòu)能使子葉往外伸展,則可以使生長點充分暴露于子葉外部,方便將生長點去除。

圖5為砧木子葉壓緊機構(gòu)受力分析圖,則有:

式中ΣF為方向的合力,N;ΣF為方向的合力,N;Σ0為繞點的合力矩,N.m;為彈簧拉力,N;P為方向上作用于壓臂的外力,N;P為方向上作用于壓臂的外力,N;F為子葉與壓輥之間的摩擦力,N;F為子葉對壓輥的支撐力,N;為子葉對壓輥的支撐力與垂直面之間的夾角,(o);為壓臂的重力,N;為壓輥的半徑,mm;為2壓臂所夾的夾角,(o);為壓臂的長度,mm;1為的長度,mm;2為的長度,mm。

由于

則式(5)可簡化為

注:G為壓塊的重力,N;為壓臂的重力,N;P為方向上作用于壓臂的外力,N;P為方向上作用于壓臂的外力,N;F為砧木子葉與壓輥之間的摩擦力,N;F為砧木子葉對壓輥的支撐力,N;為彈簧拉力,N;為2壓臂的夾角,(°);為砧木子葉對壓輥的支撐力與垂直面之間的夾角,(°);點為左壓臂與壓塊連接處;點為右壓臂與壓塊連接處;點為壓臂與彈簧連接點;點為壓臂重心;點為壓臂與壓輥連接點;l為壓臂的長度,mm;1為的長度,mm;2為的長度,mm。

Note:Gis the gravity of pressing block, N:is the gravity of pressing arm, N;Pis the forces acting on the arm indirection, N;Pis the forces acting on the arm indirection, N;Fis the friction between cotyledon and pressing rod, N;Fis supporting force on pressing rod, N;is spring tension, N;is the angle between two clamping arms,(°),is the angle between supporting force on pressing rod and vertical face,(°);is connected point of pressing arm and left pressing block;is connected point of pressing arm and right pressing block;is connected point of pressing arm and spring;is the centre of gravity of pressing arm;is connected point of pressing arm and pressing rod;lis the length of pressing arm, mm;1is the length of, mm;2is the length of, mm.

圖5 壓緊機構(gòu)受力分析圖

Fig.5 Stress analysis of compacting mechanism

則式(6)可簡化為

將1、2代入(8)得

由式(2)可得

由式(10)可得

注:O1為壓塊運動至最高點時壓臂與壓塊連接點;O2為壓塊運動至最低點時壓臂與壓塊連接點;K1為壓塊運動至最高點時壓輥與墊塊接觸處;K2為壓塊運動至最低點時壓輥與墊塊接觸處;K為運動過程中壓輥與墊塊接觸處;α1為壓塊運動至最高點時壓輥與墊塊接觸處法線方向與垂直方向的夾角,(°);α2為壓塊運動至最低點時壓輥與墊塊接觸處法線方向與垂直方向的夾角,(°);α即為壓輥接觸處法線方向與垂直方向的夾角,(°)。

式中

根據(jù)作用力與反作用力,壓臂上的合力矩S0使得砧木苗子葉獲得一個從中心向兩邊拉葉子的摩擦力(見圖7),從圖7還可以看出,在子葉向外伸展的過程中,子葉背面與墊塊接觸處會產(chǎn)生阻礙子葉向外伸展的阻力F2,由于子葉厚度不大,可認為與F2在同一線上,但方向相反,當F>F2時,子葉向外伸展,子葉貼合在仿形墊塊上,使生長點充分暴露方便去除。

注:F f1為壓輥作用于砧木的摩擦力,N;Ff2為砧木子葉與墊塊之間的摩擦力,N;Ff3為砧木苗與夾持片之間的摩擦力,N;FN1為壓輥對砧木苗的壓力,N;FN2為墊塊對砧木苗的支撐力,N;FN3為夾持片對砧木苗的夾緊力,N;G'為砧木的重力,N。

2.3 砧木子葉壓持機構(gòu)結(jié)構(gòu)設計

仿形墊塊的結(jié)構(gòu)參數(shù)對砧木子葉的壓持有較大影響,仿形墊塊的結(jié)構(gòu)如圖8所示。

注: l為左、右2壓持墊塊閉合后總長度,mm;d為壓持墊塊的寬度,mm;h為壓持墊塊的高度,mm。

根據(jù)表1測定的砧木參數(shù),取左、右兩壓持墊塊閉合后總長度為110mm,寬度為25mm。

由幾何關系

結(jié)果分析:從左至右,樣品依次編號為1-10號,最右列為2000bp的對照Marker,此電泳結(jié)果為B組致病菌的電泳條帶:首先所有樣品均在1176bp處出現(xiàn)內(nèi)對照條帶。其中1、4、6、8-10號分別在695bp處出現(xiàn)特異性條帶,檢測結(jié)果為大腸埃希氏菌特異性基因。

可得為21.33mm,取高度為20mm。仿形墊塊外形與砧木苗子葉舒展時的形態(tài)特征。

壓緊機構(gòu)的幾何關系如圖9所示。壓輥由銷釘和套筒組成,銷釘固定于壓臂上,選用外徑為5mm的套筒套于銷釘上,套筒外套0.5mm厚的柔性橡膠套,套筒外套柔性橡膠套目的是防止壓輥對砧木子葉的損傷。壓緊機構(gòu)通過凸輪推動壓塊作周期性運動[9]。

由于仿形墊塊表面為曲線,故有

設計l的長度為10mm。

由于

其中l為段的長度,mm。設計l'的長度為10 mm。

注:O點為左側(cè)壓臂與壓塊連接處;O'點為右側(cè)壓臂與壓塊連接處;A點為左側(cè)壓臂與彈簧連接點;A'點為右側(cè)壓臂與彈簧連接點;C點為壓臂與壓輥連接點;F點為過O點作垂線與彈簧的交點;D為過C點作OC的垂線與OF延長線的交點;為壓臂張開角度,(°)。

取彈簧自由長度為20 mm,壓臂的初始位置通過兩側(cè)定位銷進行定位(結(jié)構(gòu)見圖4)。

3 砧木子葉壓持試驗

3.1 試驗條件與方法

砧木子葉的壓持試驗如圖10所示。取60株苗齡在15 d的葫蘆苗,將無仿形墊塊壓持機構(gòu)[8](圖10a)與加仿形墊塊壓持機構(gòu)(圖10b)2種壓持機構(gòu)進行比較試驗,比較子葉壓持成功率、子葉折斷率、子葉表面損傷率和生長點去除率。

圖10 砧木子葉壓持試驗

其中:子葉壓持成功率為試驗中子葉沒有扭曲并貼緊仿形墊塊的砧木數(shù)與用于試驗的砧木苗總數(shù)之比,%;子葉折斷率為壓持過程中子葉根部折斷的砧木數(shù)與用于試驗的砧木苗總數(shù)之比,%;子葉損傷率為壓持過程中子葉表面有明顯壓痕的砧木數(shù)與用于試驗的砧木苗總數(shù)之比,%;生長點去除率為生長點被成功去除的砧木苗數(shù)與用于試驗的砧木苗總數(shù)之比,%。即

工作時,利用凸輪機構(gòu)(圖10c)頂起子葉壓緊機構(gòu)(圖10d),由于仿形墊塊安裝于夾持片上,當夾持片隨夾持機構(gòu)打開的同時,2片砧木子葉仿形墊塊也同時分開,手工放入砧木苗,調(diào)整砧木苗子葉展開方向使其與仿形墊塊保持一致,利用砧木苗自重控制夾持機構(gòu)閉合,砧木苗夾持后的狀態(tài)如圖10e所示;壓緊機構(gòu)隨凸輪降下壓緊子葉,為生長點去除提供有利條件,用本課題組設計的生長點去除機構(gòu)除去生長點[27]。整體試驗裝置如圖10f所示。

3.2 試驗結(jié)果

砧木子葉壓持試驗情況如表2所示。通過試驗可知,未加砧木仿形墊塊的砧木苗子葉容易折斷,其折斷率為13.3%,而加仿形壓持墊塊后砧木子葉在設定的工況下子葉根部無折斷現(xiàn)象,子葉壓持成功率為100%;未加仿形墊塊的砧木苗子葉表面壓持損傷率為21.6%,加仿形壓持墊塊后子葉表面無明顯壓痕現(xiàn)象;加仿形壓持墊塊后生長點能較好地被去除,比未加砧木仿形墊塊的生長點去除率提高81.6個百分點,達到98.3%,分析生長點未被去除的砧木苗,發(fā)現(xiàn)這些砧木苗具有較大的畸變。所設計的砧木仿形自適應壓持機構(gòu)能較好地滿足瓜類蔬菜嫁接的要求。

表2 砧木子葉壓持試驗結(jié)果

注:葫蘆苗培育時間為15 d,樣本數(shù)每組60。

Note: Seedling age of cucurbit is 15 d, sample number is 60.

4 結(jié) 論

1)通過對砧木苗子葉特征參數(shù)的分析,設計了一種應用于瓜類蔬菜嫁接的斜插式砧木子葉自適應壓持機構(gòu),壓持機構(gòu)的仿形墊塊利用砧木苗子葉自然狀態(tài)時的形態(tài)特征,防止了砧木苗子葉在壓持過程中根部發(fā)生折斷。壓持機構(gòu)的壓輥能在仿形墊塊上沿墊塊表面自動滑移調(diào)節(jié)壓緊力,避免損傷砧木子葉,實現(xiàn)了砧木苗子葉的無損壓持。

2)通過對壓持機構(gòu)的受力分析可知,隨著壓持機構(gòu)的壓輥在仿形墊塊上由中間往外滾,砧木子葉對壓輥的支撐力值越來越小,即壓持機構(gòu)能自動調(diào)節(jié)壓輥對砧木子葉的壓力大小,防止砧木子葉表面損傷;同時壓輥作用下子葉充分向外伸展,方便生長點去除機構(gòu)摳除生長點。

3)取苗齡在15 d的葫蘆苗進行砧木子葉壓持試驗,在給定工況下,用加仿形墊塊與不加仿形墊塊2種壓持機構(gòu)進行比較試驗,結(jié)果顯示,加仿形墊塊后壓持成功率為100%,子葉根部無折斷現(xiàn)象,子葉表面無損傷情況,生長點生長點去除率達到98.3%,表明所設計的砧木自適應壓持機構(gòu)能較好地滿足砧木苗的壓持要求。

[1] 孫光聞,陳日遠,劉厚誠.設施蔬菜連作障礙原因及防治措施[J]. 農(nóng)業(yè)工程學報,2005,21(增刊):184-188.Sun Guangwen, Chen Riyuan, Liu Houcheng. Causes and control measures for continuous cropping obstacles in vegetable cultivation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005, 21(Supp.): 184-188. (in Chinese with English abstract)

[2] 鄒貴祖,辜松.果蔬機械化嫁接育苗生產(chǎn)[J].農(nóng)機化研究, 2009(2):235-237.Zou Guizu, Gu Song. The production of vegetables mechanized grafting seedling[J]. Agricultural Mechanization Research. 2009 (2): 235-237. (in Chinese with English abstract)

[3] 范雙喜,王紹輝. 高溫逆境下嫁接番茄耐熱特性研究[J].農(nóng)業(yè)工程學報,2005,21(增刊):60-63.Fan Shuangxi, Wang Shaohui. Endurance to high temperature stress of grafted tomato[J]. Transactions of the Chinese Society of Agricultural Engineering (Transitions of the CSAE), 2005, 21(Supp.): 60-63. (in Chinese with English abstract)

[4] 鹿令軍. 黃瓜嫁接苗與自根苗生長狀況的比較研究[J].現(xiàn)代農(nóng)業(yè)科技,2011(12):107-108.Lu Lingjun. Comparative study of grafted cucumber seedlings and own root growth conditions[J].Modern agricultural science and technology, 2011(12): 107-108. (in Chinese with English abstract)

[5] 李建平.斜插式蔬菜嫁接裝置:CN201010151585.9[P]. 2010-04-20.

[6] 李建平.蔬菜嫁接苗定位夾持機構(gòu):CN201010136744.8[P]. 2010-03-30.

[7] 劉愛群,李國強,趙麗麗. 不同苗齡砧木嫁接對黃瓜生長及產(chǎn)量的影響[J]. 遼寧農(nóng)業(yè)科學,2011(3):57-58.Liu Aiqun, Li Guoqiang, Zhao Lili. The effect of different ages rootstocks on the growth and yield of the cucumber [J]. Liaoning Agricultural Sciences, 2011(3) :57-58. (in Chinese with English abstract)

[8] 樓建忠,李建平,朱盤安,等. 斜插式蔬菜嫁接機砧木夾持機構(gòu)研制與試驗[J]. 農(nóng)業(yè)工程學報. 2013,29(7):30-35.Lou Jianzhong, Li Jianping, Zhu Pan’an, et al. Design and test of stock clamping mechanism for vegetable grafting[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(7): 30-35. (in Chinese with English abstract)

[9] 樓建忠. 斜插式瓜類蔬菜嫁接裝置機理研究及優(yōu)化設計[D]. 杭州:浙江大學,2014.Lou Jianzhong. Mechanism Study and Optimization Design of Inclined-insert Grafting Device of Cucurbita Vegetable[D]. Hangzhou: Zhejiang University, 2014.

[10] 趙勻,武傳宇,胡旭東,等.農(nóng)業(yè)機器人的研究進展及存在的問題[J].農(nóng)業(yè)工程學報,2003,19(1):20-24.Zhao Yun, Wu ChuanYu, Hu Xudong, et a1. Research progress and problems of agricultural robot[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2003, 19(1): 20-24. (in Chinese with English abstract)

[11] 樓建忠,李建平,朱盤安,等. 斜插式蔬菜嫁接機穗木氣吸吸頭優(yōu)化設計[J]. 農(nóng)業(yè)機械學報,2012,43(2):63-68.Lou Jianzhong, Li Jianping, Zhu Pan'an, et a1. Optimization of suction head of scion clamping mechanism in vegetable grafting[J]. Transactions of the Chinese Society of Agricultural Machinery, 2012, 43(2): 63-68. (in Chinese with English abstract).

[12] 李明,戴思慧,湯楚宙,等. 苗木嫁接機器人切削機構(gòu)模擬實驗[J].農(nóng)業(yè)工程學報.2008,24(6):129-132.Li Ming, Dai Sihui, Tang Chuzhou, et a1. Simulation test on plantlet-cutting mechanism of grafting robot[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(6): 129-132.

[13] 索瑞英,鄒貴,辜松. 旋轉(zhuǎn)嫁接機的人機工程學設計[J]. 農(nóng)機化研究.2009,(2):87-89.Shuo Ruiying, Zhou Gui, Gu Song. Design of the rotary grafting machine according to the man-machine engineering[J].Journal of Agricultural Mechanization Research, 2009,(2): 87-89. (in Chinese with English abstract)

[14] 趙燕平,張鐵中,王紅英. 樹苗自動嫁接機砧木切削機構(gòu)研究[J]. 農(nóng)業(yè)工程學報,2008,24(9):79-83.Zhao Yanping, Zhang Tiezhong, Wang Hongying. Cutting mechanism of root parental stock in automatic machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Translations of the CSAE), 2008, 24(9): 79-83. (in Chinese with English abstract)

[15] 呂谷來. 蔬菜嫁接機器人關鍵技術的研究[D].杭州:浙江大學,2010.Lv Gulai. Study on the Key Technology of Vegetable Grafting robot[D]. Hangzhou: Zhejiang University, 2010.(in Chinese with English abstract)

[16] Amada H, Buno S, Koga H, et al. Development of a grafting robot[C]//Proc. International Symposium on Automation and Robotics in Bio-production and Processing. Kobe, Japan: 1995:241-248.

[17] Miyanaga T, Fukumori I, Susawa K, et al. Technical report of the institute of agricultural machinery[R]. Omiya, Saitama, Japan. 1998.

[18] Ryu K H, Kim G, Han J S. Development of a robotic transplanter for bedding plants [J]. Agric Eng Res, 2001, 78(2): 141-146.

[19] 趙穎,孫群,張鐵中. 營養(yǎng)缽茄苗嫁接機器人機械系統(tǒng)設計與實驗[J].農(nóng)業(yè)機械化學報,2007(9):94-97.Zhao Ying, Sun Qun, Zhang Tiezhong. Mechanical system design of grafting robot for nutritional bowl eggplant seedlings[J]. Transactions of the Chinese Society for Agricultural Machinery, 2007(9): 94-97. (in Chinese with English abstract)

[20] 楊麗,劉長青,張鐵中. 雙臂蔬菜嫁接機設計與試驗[J].農(nóng)業(yè)機械學報.2009,40(9):175-181.Yang Li, Liu Changqing, Zhang Tiezhong. Design and experiment of vegetable grafting machine with double manipulators[J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(9): 175-181. (in Chinese with English abstract)

[21] 徐麗明,張鐵中,劉長青.蔬菜自動嫁接機器人系統(tǒng): 旋轉(zhuǎn)切削機構(gòu)設計[J]. 中國農(nóng)業(yè)大學學報,2000,2(2):34-36.Xu Liming, Zhang Tiezhong, Liu Changqing. Vegetables automatic grafting robot systems: rotating cutting mechanism design[J]. Journal of China Agricultural University, 2000, 45(2): 34-36. (in Chinese with English abstract)

[22] 辜松,劉寶偉,王希英. 2JC-500型自動嫁接機西瓜苗嫁接效果生產(chǎn)試驗[J]. 農(nóng)業(yè)工程學報, 2008,24(12):84-87.Gu Song, Liu Baowei, Wang Xiying, et al. Production test of 2JC-500 automatic grafting machine for watermelon [J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(12): 84-88. (in Chinese with English abstract)

[23] 辜松. 2JC-350型蔬菜插接式自動嫁接機的研究[J], 農(nóng)業(yè)工程學報,2006,22(12):103-106.Gu Song. Development of 2JC-350 automatic grafting machine with cut grafting method for vegetable seeding[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(12): 103-106. (in Chinese with English abstract)

[24] 辜松,劉凱,杜月.電磁力在蔬菜自動嫁接機上的應用[J].農(nóng)業(yè)工程學報,2008,24(10):105-109. Gu Song, Liu Kai, Du Yue. Application of electromagnetic force on automatic vegetable grafting machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(10): 105-109. (in Chinese with English abstract)

[25] 姜凱,鄭文剛,張騫,等. 蔬菜嫁接機器人研制與試驗[J].農(nóng)業(yè)工程學報,2012,28(4):8-14. Jiang Kai, Zheng Wengang, Zhang Qian, et al. Development and experiment of vegetable grafting robot[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(4): 8-14. (in Chinese with English abstract)

[26] 馬稚昱,韋鴻鈺,牟英輝,等.頂芽斜插嫁接時砧木插孔角度的確定[J].農(nóng)業(yè)工程學報,2014,30(3):43-49. Ma Zhiyu, Wei Hongyu, Mu Yinghui, et al. Determination of insertion angle of hole-insertion grafting method by grafting machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014,30(3): 43-49. (in Chinese with English abstract)

[27] 樓建忠,李建平,朱盤安. 瓜類蔬菜嫁接砧木生長點去除機構(gòu)設計與試驗[J],農(nóng)業(yè)工程學報,2016,32(23):64-69.Lou Jianzhong, Li Jianping, Zhu Pan'an. Design and test on growing point removal mechanism of melon vegetable grafting stock[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(23): 64-69. (in Chinese with English abstract)

[28] 張雷,賀虎,武傳宇. 蔬菜嫁接機器人嫁接苗特征參數(shù)的視覺測量方法[J]. 農(nóng)業(yè)工程學報,2015,31(9):32-38. Zhang Lei, He Hu, Wu Chuanyu. Vision method for measuring grafted seedling properties of vegetable grafted robot[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(9): 32-38. (in Chinese with English abstract)

[29] 牟英輝,辜松,馬稚昱.瓜類嫁接苗生物力學特性的試驗分析[J].農(nóng)業(yè)工程學報,2012,28(4):15-20.Mu Yinghui, Gu Song, Ma Zhiyu. Experimental analysis on biomechanical properties of cucurbits grafted seedlings[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(4): 15-20. (in Chinese with English abstract)

[30] 熊丙全. 蔬菜嫁接育苗的主要方法及其技術要點[J]. 四川農(nóng)業(yè)科技,2008(12):30-31.Xiong Bingquan. Grafting methods and cultivation technology of vegetable seedling grafts[J]. Sixhuan Agricultural Science, 2008(12): 30-31. (in Chinese with English abstract)

Design and test of self-adaptive stock cotyledons pressing and clamping mechanism for oblique inserted grafting ofvegetables

Lou Jianzhong1,2, Wu Kang1, Chen Junyang1, Ma Guiyang4, Li Jianping1,3※

(1.,,310029,; 2.,,310053,; 3.,,310029,; 4315104, China)

The grafting and cultivation ofvegetables are characterized by the strong root system, heat resistance, disease resistance and good absorbing ability for soil fertility. Oblique grafting is a common method forvegetables. The pressing and clamping of the stock cotyledons is one of the important issues to be considered in the design of oblique inserted grafting machine. According to the problem that the existingvegetable grafting machine easy to break the petiole of cotyledons or damage the cotyledons in the process of cotyledons pressing, the stock cotyledons pressing and clamping mechanism used invegetable grafting was designed and developed by measuring the characteristic parameters of the cotyledons and by adding an imitation blocks on the cross clamp mechanism designed by the author before to adapt to the morphological characteristics of the stock cotyledons. The shape of the imitation blocks in the pressing and clamping mechanism was close to the natural shape of the cotyledons in order to prevent the breaking of the cotyledon. In the process of pressing the cotyledon, the pressing roll of the pressing and clamping mechanism could automatically slip on the imitation blocks to realize the automatic adjustment of the compression force and to avoid the damage of cotyledon. Then the growth point removal mechanism designed by the authors was used to successfully remove the growth point of rootstock seedlings. Through the force analysis of the pressing and clamping mechanism, it could be seen that the supporting force of the cotyledon to the pressing rod was getting smaller and smaller when the pressing rod rolled from middle to outside on the imitation blocks. That is, the pressing mechanism could automatically adjust the force on the cotyledon and prevent the cotyledon surface damage. At the same time, the pressing rod could extend the cotyledons to outside making the growth point fully exposed and convenient to be removed. The stock cotyledon pressing tests on 60 cucurbit seedlings were carried out by using the self-adaptive pressing and clamping mechanism and compared with that of without imitation blocks. The results showed that the success rate of the stock cotyledon pressing and clamping mechanism with the imitation blocks was 100%. It was also found that cotyledons could easily be broken by using the pressing and clamping mechanism without imitation blocks, and the breaking rate of cotyledons was 13.3%, but cotyledons was totally not broken by using the pressing and clamping with imitation blocks in the same condition. The damage rate of cotyledons surface was 21.6% by using the mechanism without imitation blocks, but it was totally not damaged by using the mechanism with imitation blocks in the same condition. The growth point of stock could easily be removed by using the mechanism with imitation blocks, and the remove rate of growth point was 98.3%, while it was only 16.7% by using the mechanism without imitation blocks. It indicated that the design of the stock cotyledon pressing and clamping mechanism with the imitation blocks was reasonable. It can better meet the requirements of the grafting and cultivation ofvegetables. The study provides a design reference for solving the problems on pressing cotyledons in the process ofvegetable grafting.

agricultural machinery; design, grafting;vegetable; grafting machine; cotyledons pressing and clamping; self-adaptive; imitating

10.11975/j.issn.1002-6819.2018.18.010

S233.74

A

1002-6819(2018)-18-0076-07

2018-04-02

2018-06-08

國家自然科學基金(51775490);浙江省科技廳公益基金項目(2014C32105);浙江省機電集團有限公司項目(2016JD004)聯(lián)合資助。

樓建忠,男,浙江諸暨人,副教授,博士生,主要從事農(nóng)業(yè)機械的研究。Email:loujz160@163.com

李建平,男,教授,博導,主要從事農(nóng)業(yè)機器人研究。Email:jpli@zju.edu.cn

樓建忠,吳 康,陳駿煬,麻桂楊,李建平. 瓜類蔬菜斜插式嫁接砧木子葉自適應壓持機構(gòu)設計與試驗[J]. 農(nóng)業(yè)工程學報,2018,34(18):76-82. doi:10.11975/j.issn.1002-6819.2018.18.010 http://www.tcsae.org

Lou Jianzhong, Wu Kang, Chen Junyang, Ma Guiyang, Li Jianping. Design and test of self-adaptive stockcotyledons pressing and clampingmechanism for oblique inserted grafting ofvegetables[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(18): 76-82. (in Chinese with English abstract) doi: 10.11975/j.issn.1002 -6819.2018.18.010 http://www.tcsae.org

猜你喜歡
瓜類壓塊生長點
基于ROV操作的深水多層水泥壓塊吊放裝置設計及應用
脫鋅熱態(tài)廢鋼壓塊的傳熱數(shù)值模擬研究
混合:教學模式的生長點
轉(zhuǎn)向器齒輪換向異響機理及其控制
三亞市冬種瓜菜死苗現(xiàn)象的發(fā)生原因及預防措施
瓜類炭疽病發(fā)病癥狀及其防治技術
瓜類嫁接育苗易出現(xiàn)的問題及解決對策
例說直接證明之分析法
直接證明分析法
深水海底管道水泥壓塊的安裝過程及檢驗要點