国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

山梨酸鉀/氯化鉀復(fù)合相變材料制備及熱物性分析

2018-10-10 06:38章學(xué)來王迎輝劉俊名李玉洋韓興超徐笑鋒周孫希
農(nóng)業(yè)工程學(xué)報 2018年18期
關(guān)鍵詞:潛熱氯化鉀水溶液

章學(xué)來,王迎輝,紀(jì) 珺,劉俊名,李玉洋, 韓興超,徐笑鋒,周孫希,劉 璐,劉 升

?

山梨酸鉀/氯化鉀復(fù)合相變材料制備及熱物性分析

章學(xué)來1,王迎輝1,紀(jì) 珺1,劉俊名2,李玉洋1, 韓興超1,徐笑鋒1,周孫希1,劉 璐1,劉 升3

(1. 上海海事大學(xué)蓄冷技術(shù)研究所,上海 201306;2. 中建安裝工程有限公司,南京 210000 3. 北京市農(nóng)林科學(xué)院蔬菜研究中心,北京 100097)

為開發(fā)出高效、性能穩(wěn)定的微凍保鮮用相變蓄冷劑,保證運輸中肉制品等農(nóng)產(chǎn)品的品質(zhì),以山梨酸鉀水溶液為主基液,探究添加氯化鉀后相變蓄冷材料的熱物性及熱循環(huán)穩(wěn)定性。對比30 g/L山梨酸鉀溶液,當(dāng)再添加氯化鉀濃度為5 g/L時,相變溫度為-2.8 ℃,潛熱為254.6 J/g,熱導(dǎo)率為1.012 W/(m·K),熱擴散率為1.01 mm2/s。添加氯化鉀對相變溫度和潛熱幾乎沒有影響;溶液的熱導(dǎo)率提高了23.32 %;熱擴散率提高了151.37%。經(jīng)200次凍融循環(huán)后,未添加氯化鉀的相變?nèi)芤撼霈F(xiàn)了-5.3 ℃的過冷度,含氯化鉀的相變?nèi)芤簺]有過冷度,氯化鉀在山梨酸鉀相變過程中體現(xiàn)出了其良好的成核作用,使得該復(fù)合相變蓄冷劑具有優(yōu)異的熱穩(wěn)定性。試驗表明,山梨酸鉀/氯化鉀復(fù)合相變蓄冷劑適合于農(nóng)產(chǎn)品的微凍保鮮用。

冷藏;相變材料;熱力學(xué)性質(zhì);穩(wěn)定性

0 引 言

農(nóng)產(chǎn)品是食品冷鏈物流中的主要銷售對象,由于產(chǎn)品本身的特性,極易出現(xiàn)損害和腐爛,造成嚴(yán)重的損失[1]。隨著生活水平的提高,人們對于肉制品、果蔬等微凍保鮮的質(zhì)量需求增加,為迎合社會發(fā)展趨勢,在農(nóng)產(chǎn)品最先一公里和最后一公里中開發(fā)出更高效的冷發(fā)電和儲存技術(shù)尤為關(guān)鍵。相變材料在吸放熱時的相變潛熱可以對能量進行高效地儲存,這使得其在食品冷藏保鮮[2-5]、溫室應(yīng)用[6-8]、疫苗低溫儲運[9-11]等系統(tǒng)中得到廣泛的研究與應(yīng)用。相變材料作為儲能技術(shù)的重中之重,國內(nèi)外學(xué)者對此展開了大量的研究,集中于有機復(fù)合[12-15]、無機復(fù)合[16-17]、有機–無機復(fù)合相變材料的研究[18-19]等。一些鹽溶液由于其較大的潛熱以及合適的相變溫度,被廣泛應(yīng)用為蓄冷材料[20-21],但由于部分材料過冷度較大且易于相分離、熱穩(wěn)定性差,成為鹽溶液作為理想相變蓄冷材料的主要棘手問題[22]。

有機鹽溶液[23-25]克服了有機物的低熱導(dǎo)率和較小潛熱、無機材料過冷度大和相分離的缺點。紀(jì)珺等[26]通過試驗測試知質(zhì)量分?jǐn)?shù)29.4 %的甲酸鈉水溶液相變溫度為-16℃,潛熱250.4 J/g,熱導(dǎo)率為0.938 W/m·K,遠高于有機酸類相變材料,且經(jīng)過多次循環(huán)試驗后確定有機鹽的熔融和結(jié)晶性能良好。應(yīng)鐵進等[27]通過調(diào)節(jié)甘氨酸濃度,得到相變溫度及潛熱可調(diào)的系列有機物水溶液相變蓄冷劑,且無明顯過冷和相分離現(xiàn)象。

有機鹽山梨酸鉀(C5H7COOK)是一種廣泛而有效的防腐劑[28],易溶于水,密封狀態(tài)下穩(wěn)定且不易分解,有很強的抑制腐敗菌和霉菌作用,且價格低廉易得。但是作為相變蓄冷材料,C5H7COOK卻少有涉及。氯化鉀(KCl)作為常用的低溫蓄冷材料之一,作為相變溫度調(diào)節(jié)劑的使用研究居多[29-31]。本文將以目前食品冷鏈物流研究領(lǐng)域有限的介于水溫冷藏區(qū)的-2~-3℃為目標(biāo)溫度,采用有機物和無機物復(fù)合,以C5H7COOK、KCl和H2O構(gòu)成的三元復(fù)合物作為復(fù)合相變蓄冷劑,通過調(diào)整配比,研制一種相變溫度(Onset溫度)在-2~-3℃的蓄冷劑,并通過一系列試驗探究該復(fù)合相變材料的熱物性及熱穩(wěn)定性,旨在為農(nóng)產(chǎn)品的水溫冷藏儲運技術(shù)的深入研究和應(yīng)用提供參考。

1 材料和方法

1.1 試劑與儀器

C5H7COOK、KCl,均為AR分析純;山梨酸鉀是國際糧農(nóng)組織和衛(wèi)生組織推薦的高效安全的防腐保鮮劑,廣泛應(yīng)用于食品、飲料、農(nóng)藥等行業(yè),有效地解決了蓄冷劑在長期使用下存在的細(xì)菌滋生問題。

試驗儀器主要有:電子分析天平(精度0.1 mg);安捷倫溫度時間采集儀;T型熱電偶(精度± 0.01 ℃);數(shù)顯磁力恒溫攪拌器;差示掃描量熱儀DSC200 F3(溫度精度0.1 ℃,熱焓精度0.1 %,量熱靈敏度0.1W);熱常數(shù)分析儀Hot Disk TPS 2500S型(誤差2%);熱成像儀FLIR(熱靈敏度< 0.05℃,測溫準(zhǔn)確度1.0 ℃);低溫恒溫槽;高低溫交變試驗箱YSGJW-100C型。

1.2 試驗方法

1.2.1 C5H7COOK的濃度優(yōu)選

本文選擇C5H7COOK水溶液作為主儲能劑,利用高精度電子天平稱取不同質(zhì)量的山梨酸鉀,配制50 mL C5H7COOK濃度分別為10、20、30、40、50、60 g/L的水溶液,并將其分別放在磁力攪拌器上加熱至30℃,并用磁性粒子攪拌30 min使其混合均勻。通過C5H7COOK溶液的步冷曲線確定試驗蓄冷工況,通過DSC曲線圖確定滿足水溫冷藏區(qū)溫度要求的濃度。

1)步冷試驗:根據(jù)試驗要求,搭建的試驗平臺如圖1所示,量取50 mL充分混合的復(fù)合相變材料置于100 mL燒杯中放入-30℃的低溫恒溫槽中,將T型熱電偶插入燒杯后做好密封處理。按3 s的時間間隔記錄樣品溫度變化,并根據(jù)溫度與時間關(guān)系,繪制步冷曲線。

圖1 步冷試驗裝置圖

2)DSC測試:稱量5~10 mg樣品放置在鋁制坩堝中心部分,壓機密封后放入儀器。為了消除試樣的熱歷史,對樣品在-30℃(溫度下限)與20℃(溫度上限)之間以20 ℃/min的速率降升溫2次即可。在溫度降至-30℃時恒溫3 min確保材料完全凝固后,以5 ℃/min的速率升溫至20℃。在得到的DSC融解曲線中,吸熱峰的最大斜率與基線相交得到的溫度即為相變溫度(Onset溫度),雖然Onset溫度不是起始融解溫度,但是Onset溫度之后才開始大量吸熱,所以考察Onset溫度更符合實際意義[32]。

1.2.2 C5H7COOK/KCl制備與性能測試

向30 g/L C5H7COOK溶液中分別添加不同質(zhì)量的KCl,制備的KCl濃度分別為3、5、7、10和20 g/L的復(fù)合相變蓄冷劑,使用磁力恒溫攪拌器將其混合均勻。通過DSC試驗結(jié)果得到滿足條件的C5H7COOK/KCl最佳配比,通過測量其熱導(dǎo)率、蓄冷特性以及熱循環(huán)穩(wěn)定性分析C5H7COOK/KCl復(fù)合相變材料熱性能。

熱物性測試:采用熱常數(shù)分析儀測量材料的熱導(dǎo)率、熱擴散率、比熱。儀器預(yù)熱30 min,為防止空氣對流影響試驗結(jié)果,測量過程中將熱導(dǎo)率測量探頭C5465插入復(fù)合相變材料中并放置在密閉箱中,環(huán)境溫度維持在20 ℃。

熱循環(huán)穩(wěn)定性測試:為了準(zhǔn)確模擬夏季蓄冷材料的使用工況,用燒杯量取30 mL復(fù)合相變材料,密封處理后放入溫度段設(shè)置為-20~40 ℃的高低溫交變試驗箱內(nèi),循環(huán)周期為90 min。完成200次凍融循環(huán)后,對比溶液循環(huán)前后的熱性能變化。

2 結(jié)果與分析

2.1 C5H7COOK的濃度優(yōu)選

2.1.1 不同蓄冷工況下過冷度研究

過冷度作為相變材料的重要特性,蓄冷工況對相變材料的過冷度以及蓄冷時間有很大的影響。C5H7COOK水溶液步冷試驗結(jié)果如圖2所示,在-10℃的蓄冷環(huán)境下,濃度分別為10、20、30、40、50、60 g/L的C5H7COOK水溶液均存在著較大的過冷度,分別為7.754、7.333、6.23、4.411、6.276、6.067 ℃。在-20℃的蓄冷環(huán)境下,只有濃度為10 g/L的C5H7COOK溶液存在1.427 ℃的過冷,其余濃度的過冷度已經(jīng)消除,且相變蓄冷時間明顯縮短。在-30℃的蓄冷環(huán)境下,不同濃度的C5H7COOK溶液均無過冷現(xiàn)象。

圖2 不同蓄冷工況對山梨酸鉀水溶液過冷度的影響

出現(xiàn)該情況的原因可能是隨著蓄冷環(huán)境溫度的降低,促成C5H7COOK溶液在相變階段產(chǎn)生二次成核現(xiàn)象,該過程中成核基體的存在,可以大大降低成核位壘,使得成核在較小的過冷度下即可進行??紤]到耗能以及排除過冷度的影響因素,本文選擇-20℃為蓄冷工況進行以下試驗。

2.1.2 DSC測試

相變溫度和潛熱對蓄冷材料的應(yīng)用起到了關(guān)鍵性作用。山梨酸鉀水溶液的DSC(differencial scanning calorimentry)試驗結(jié)果如圖3、圖4所示。

圖3 不同濃度山梨酸鉀水溶液的DSC曲線

圖4 不同濃度的山梨酸鉀水溶液相變溫度及潛熱

由圖3的DSC曲線可知,該復(fù)合溶液相溶性較好,且隨著其濃度的增加,相變起始點逐漸向左偏移,曲線所圍成的面積也在逐漸減??;由圖4更加直觀地表達了隨著山梨酸鉀水溶液濃度的增加相變溫度及潛熱逐漸減小。這是由于山梨酸鉀水溶液中,水的相變潛熱較大,隨著山梨酸鉀濃度的增加,水的占比減小,其潛熱值也逐漸減小。

在濃度為10 ~60 g/L范圍內(nèi),山梨酸鉀水溶液的相變潛熱由307.9減小至197.7 J/g。為了篩選出符合水溫冷藏區(qū)所要求的溫度-2~-3 ℃,濃度為30、40 g/L的山梨酸鉀水溶液相變溫度都在該范圍內(nèi),選擇潛熱稍高的30 g/L山梨酸鉀水溶液作為復(fù)合相變材料主基液,其Onset溫度為-2.5 ℃,潛熱為256.2 J/g;且在-20 ℃蓄冷工況下,由步冷曲線知山梨酸鉀溶液在該濃度下無過冷。

2.2 C5H7COOK/KCl儲能劑復(fù)配

2.2.1 C5H7COOK/KCl最佳配比

C5H7COOK/KCl復(fù)合相變材料的DSC測試結(jié)果如圖5所示。當(dāng)KCl濃度為3和5 g/L時,復(fù)合相變材料DSC曲線只有1個峰,C5H7COOK與KCl的相溶性較好;當(dāng)KCl濃度為7 g/L時,DSC曲線開始出現(xiàn)2個峰,山梨酸鉀水溶液不能再溶解更多的KCl,在相變過程中開始發(fā)生相分離,隨著KCl濃度的增加,2個峰值越加明顯。當(dāng)KCl濃度為5 g/L時,Onset溫度為-2.8 ℃,潛熱為254.6 J/g;對比未添加KCl前,相變溫度降低了-0.3 ℃,潛熱降低了1.6 J/g,該變化符合濃度配比的線性關(guān)系,說明山梨酸鉀和KCl沒有發(fā)生化學(xué)反應(yīng)。綜上,較少量的KCl對山梨酸鉀水溶液的相變溫度及潛熱影響不大。因此,選擇山梨酸鉀、氯化鉀水溶液濃度分別為30、5 g/L作為復(fù)配材料的最佳濃度配比。

圖5 30 g·L-1山梨酸鉀復(fù)配不同濃度KCl的DSC曲線

2.2.2 C5H7COOK/KCl熱性能

對最佳配比的C5H7COOK/KCl溶液在-20℃的蓄冷工況下進行步冷曲線的測試結(jié)果如圖6所示,添加KCl后,溶液的Onset溫度稍有降低,符合DSC測試結(jié)果。C5H7COOK/KCl溶液的熱導(dǎo)率、熱擴散率和比熱由熱常數(shù)分析儀Hot Disk測量結(jié)果如表1所示。

圖6 -20℃蓄冷工況下有無添加KCl的蓄冷劑步冷曲線對比

以30 g/L C5H7COOK為主基液的相變蓄冷劑,內(nèi)含5 g/L KCl的溶液熱導(dǎo)率為1.012 W/(m·K),增大了23.32%;比熱容為1.002 MJ/(m3·K),降低了50.95%,結(jié)合步冷曲線可知,比熱越小,降低相同的溫度釋放的熱量越少,越易降溫;由/(),熱導(dǎo)率增大,比熱減小,則熱擴散率增大。由表1知,添加5 g/L 濃度KCl的C5H7COOK水溶液的熱擴散率為1.01 mm2/s,較未添加KCl增大了151.37%。從物體溫度變化的角度看,熱擴散率越大,表示物體內(nèi)部溫度變化傳播得越快速。圖7所示的6張熱成像圖是每隔3 s拍攝,從圖中可以明顯地看出添加少量KCl的相變?nèi)芤涸谙嗤沫h(huán)境溫度下明顯釋冷更快,該現(xiàn)象也進一步驗證了Hot Disk試驗結(jié)果的準(zhǔn)確性。

表1 溶液的熱物性測量數(shù)據(jù)

2.2.3 C5H7COOK/KCl熱穩(wěn)定性

試驗樣品經(jīng)過200次凍融循環(huán)試驗后,由DSC的分析軟件獲得C5H7COOK/KCl溶液的相變潛熱、峰溫及相變起始與結(jié)束溫度。如圖8所示,C5H7COOK/KCl溶液相變起始溫度為-2.6 ℃,較循環(huán)前增加了0.2 ℃;潛熱值為236 J/g,較循環(huán)前降低了7.31 %;相變溫度及潛熱經(jīng)過200次循環(huán)試驗后變化不大。

注:圖中A1~A6指未添加氯化鉀的30 g/L山梨酸鉀水溶液、B1~B6指含0.5 g/L氯化鉀的30 g/L山梨酸鉀水溶液

圖8 凍融循環(huán)200次后C5H7COOK/KCl水溶液的DSC曲線

為了進一步研究C5H7COOK/KCl水溶液的熱穩(wěn)定性,在-20 ℃的蓄冷工況下凍融循環(huán)200次后C5H7COOK水溶液和C5H7COOK/KCl水溶液的步冷曲線如圖9所示,未添加KCl的復(fù)合相變材料出現(xiàn)了-5.3 ℃的過冷度,該現(xiàn)象說明30 g/L C5H7COOK溶液并不具備良好的熱穩(wěn)定性,而含5 g/L KCl的復(fù)合相變?nèi)芤阂廊粵]有出現(xiàn)過冷度,對比循環(huán)試驗表明KCl在C5H7COOK溶液相變過程中起到良好的成核作用,使得該復(fù)合相變蓄冷劑在循環(huán)使用過程中保持優(yōu)異的熱穩(wěn)定性。

圖9 蓄冷劑凍融循環(huán)試驗步冷曲線

3 結(jié) 論

為了尋求微凍保鮮用相變蓄冷劑,試驗以山梨酸鉀水溶液為主蓄冷劑,探究了添加少量KCl前后蓄冷劑的熱性能。本文通過試驗研究主要得出結(jié)論如下:

1)不同的蓄冷工況對山梨酸鉀水溶液的過冷度影響較大。山梨酸鉀水溶液濃度為30 g/L時,-20 ℃的蓄冷工況下沒有過冷度,此時相變溫度為-2.5 ℃,潛熱為256.2 J/g;

2)30g/L C5H7COOK溶液內(nèi)含5 g/L KCl時,該復(fù)合溶液蓄冷性能最佳。此時C5H7COOK/KCl復(fù)合相變材料相變溫度為-2.8 ℃,潛熱為254.6 J/g,熱導(dǎo)率為1.012 W/(m·K),提高了23.32%;熱擴散率為1.01 mm2/s,提高了151.37%,熱擴散率越大,物體內(nèi)部溫度變化傳播得越快速;

3)經(jīng)200次凍融循環(huán)后,C5H7COOK/KCl復(fù)合溶液的相變溫度和潛熱變化不大。在-20℃的蓄冷工況下, KCl在C5H7COOK溶液中起到良好的成核作用,該復(fù)合相變蓄冷劑具有優(yōu)異的熱穩(wěn)定性。

[1] 郭亞楠,胡源坤. 我國農(nóng)產(chǎn)品冷鏈物流發(fā)展現(xiàn)狀及對策研究[J]. 物流工程與管理,2018,40(2):4?6+14. Guo Yanan, Hu Yuankun. Research on the present situation and countermeasures of Chinese agricultural cold-chain logistics [J]. Logistics Engineering and Management, 2018, 40(2): 4-6+14. (in Chinese with English abstract)

[2] 叢茜,陳廷坤,李楊,等. 利用相變釋能的農(nóng)產(chǎn)品冷藏設(shè)備主動防除冰方法[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(9): 276-281. Cong Qian, Chen Yankun, Li Yang, et al. Active anti-icing method for agricultural product refrigerated equipment based on phase change energy release [J]. Transactions of the Chinese Society of Agricultural Engineering(Transaction of the CSAE), 2017, 33(9): 276-281. (in Chinese with English abstract)

[3] 林婉玲,丁莫,王錦旭,等. 包裝方式和材料對調(diào)理脆肉鯇魚片冷藏過程品質(zhì)的影響[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(2):284-291. Lin Wanling, Ding Mo, Wang Jinxu, et al. Effects of packaging methods and materials on quality of prepared crisp grass carp () fillets during cold storage [J]. Transactions of the Chinese Society of Agricultural Engineering(Transaction of the CSAE), 2018, 34(2): 284-291. (in Chinese with English abstract)

[4] 徐笑鋒,章學(xué)來,Jotham Muthoka Munyalo,等. 十水硫酸鈉相變蓄冷保溫箱保冷特性的試驗研究[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(22):308-314. Xu Xiaofeng, Zhang Xuelai, Jotham Muthoka Munyalo, et al. Experimental study on cold retention characteristics of cold storage incubator using Na2SO4·10H2O as PCMs [J]. Transactions of the Chinese Society of Agricultural Engineering(Transaction of the CSAE), 2017, 33(22): 308-314. (in Chinese with English abstract)

[5] Kowata H, Sase S, Ishii M, et al. Cold water thermal storage with phase change materials using nocturnal radiative cooling for vegetable cooling [J]. Proceedings of the World Renewable Energy Congress WII, Cologne (Germany), 2002.

[6] 蔣自鵬,鐵生年. 芒硝基相變材料性能及其在簡易溫室中升溫效果試驗[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(20):209-216. Jiang Zipeng, Tie Shengnian. Property and heat storage performances of Glauber’s salt-based phase change materials for solar greenhouse in Qinghai-Tibet plateau [J]. Transactions of the Chinese Society of Agricultural Engineering(Transaction of the CSAE), 2016, 32(20): 209-216. (in Chinese with English abstract)

[7] 周瑩,王雙喜.復(fù)合相變儲能保溫砂漿在日光溫室中的應(yīng)用效果[J].農(nóng)業(yè)工程學(xué)報,2017,33(20):190-196. Zhou Ying, Wang Shuangxi. Application effect of composite phase change energy storage thermal insulation mortar in solar greenhouse [J]. Transactions of the Chinese Society of Agricultural Engineering(Transaction of the CSAE), 2017, 33(20): 190-196. (in Chinese with English abstract)

[8] 鮑恩財,鄒志榮,張勇. 日光溫室墻體用相變固化土性能測試及固化機理[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(16):203-210. Bao Encai, Zou Zhirong, Zhang Yong. Performance test and curing mechanism of phase change cured soil for solar greenhouse walls [J]. Transactions of the Chinese Society of Agricultural Engineering(Transaction of the CSAE), 2017, 33(16): 203-210. (in Chinese with English abstract)

[9] BelénZalba, José M a Mar??n, Luisa F, et al. Review on thermal energy storage with phase change: Materials, heat transfer analysis and applications [J]. Applied Thermal Engineering, 2003, 23(3): 251-283.

[10] Jose Pereira da Cunha, Philip Eames. Thermal energy storage for low and medium temperature applications using phase change materials – A review [J]. Applied Energy, 2016, 177(177): 227-238.

[11] Manish K. Rathod, Jyotirmay Banerjee. Thermal stability of phase change materials used in latent heat energy storage systems: A review [J]. Renewable and Sustainable Energy Reviews, 2013, 18(18): 246-258.

[12] Liu C, Yuan Y, Zhang N, et al. A novel PCM of lauric–myristic–stearic acid/expanded graphite composite for thermal energy storage [J]. Materials Letters, 2014, 120(4): 43-46.

[13] Zhang N, Yuan Y, Yuan Y, et al. Effect of carbon nanotubes on the thermal behavior of palmitic–stearic acid eutectic mixtures as phase change materials for energy storage [J]. Solar Energy, 2014, 110: 64-70.

[14] 李玉洋,章學(xué)來,徐笑鋒,等. 正辛酸-肉豆蔻酸低溫相變材料的制備和循環(huán)性能[J].化工進展,2018,37(2):689-693. Li Yuyang, Zhang Xuelai, Xu Xiaofeng, et al. Preparation and cyclic properties of low temperature phase change materials of n-caprylic acid and myristic acid [J]. Chemical industry and engineering progress, 2018, 37(2): 689-693. (in Chinese with English abstract)

[15] 應(yīng)鐵進,蘇黨,白家瑋. 用于非冷凍低溫區(qū)運輸?shù)膹?fù)合有機物相變蓄冷劑[J]. 農(nóng)業(yè)機械學(xué)報,2017,48(8):309-314. Ying Tiejin, Su Dang, Bai Jiawei. Organic phase change compound materials for non-freezing cold chain [J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(8): 309?314. (in Chinese with English abstract)

[16] 展佳,秦善,高靜. 無機水合鹽中水的狀態(tài)與相變潛熱的關(guān)系[J]. 北京大學(xué)學(xué)報:自然科學(xué)版,2018,54(1):80-86. Zhan Jia, Qin Shan, Gao Jing. Storage of water in inorganic salt hydrates and the implications to latent heat in phase changes [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2018, 54(1): 80-86. (in Chinese with English abstract)

[17] 紀(jì)珺,陳躍,章學(xué)來,等. 甘露醇水溶液低溫儲能相變材料的制備及熱物性[J]. 化工進展,2018,37(3):1111-1117. Ji Jun, Chen Yue, Zhang Xuelai, et al. Preparation and thermophysical properties of mannitol aqueous solution PCMs for thermal energy storage [J]. Chemical Industry and Engineering Progress, 2018, 37(3): 1111-1117. (in Chinese with English abstract)

[18] Yu Q, Tchuenbou-Magaia F, Al-Duri B, et al. Thermo-mechanical analysis of microcapsules containing phase change materials for cold storage [J]. Applied Energy, 2018, 211: 1190-1202.

[19] 熊夢雅,馮妍卉,馮黛麗,等. 金屬有機骨架復(fù)合體的相變熱特性測試[J]. 工程熱物理學(xué)報,2018,39(1):165-171. Xiong Mengya, Feng Yanhui, Feng Daili, et al. Thermal properties of material organic frameworks composite with phase change [J]. Journal of Engineering Thermophysics, 2018, 39(1): 165-171. (in Chinese with English abstract)

[20] 徐笑鋒,章學(xué)來,陳躍,等. 不同球徑的多孔球?qū)觾?nèi)無機鹽溶液過冷度的試驗研究[J]. 化工學(xué)報,2018:69(15)-7. Xu Xiaofeng, Zhang Xuelai, Chen Yue, et.al. Experimental investigation on inorganic salt solution’s supercooling degree under porous spherical layer with different spherical diameters [J]. CIESC Journal, 2018: 69(15) 1-7. (in Chinese with English abstract)

[21] 陳文樸,章學(xué)來,黃艷,等. 甲酸鈉低溫相變材料的研制及其在蓄冷箱中的應(yīng)用[J]. 制冷學(xué)報,2017,38(1):68-72. Chen Wenpu, Zhang Xuelai, Huang Yan, et al. Sodium formate as low temperature phase change material in cold storage insulation box [J]. Journal of Refrigeration, 2017, 38(1): 68-72. (in Chinese with English abstract)

[22] 張仁元. 相變材料與相變儲能技術(shù)[M]. 北京:科學(xué)出版社,2009.

[23] 曾現(xiàn)煒. -19 ℃至-26 ℃低溫冰袋:CN103743184A [P]. 北京:標(biāo)準(zhǔn)出版社,2014-04-23.

[24] 楊穎,沈海英. 復(fù)合低溫相變蓄冷材料的試驗研究[J]. 低溫物理學(xué)報,2009,31(2):143-147. Yang Ying,Shen Haiying. Investigation on cryogenics cool thermal energy storage phase change composite material [J]. Low Temperature Physics, 2009, 31(2): 143-147. (in Chinese with English abstract)

[25] 唐娟. 低溫相變材料的熱物性及應(yīng)用研究[C]// 第九屆國家空調(diào)、制冷及壓縮會議報告文集,2008:233-238. Tang Juan. Thermal properties and application research of low temperature phase change materials[C]// The 9th National AirConditioner, Refrigerator, and Compressor Symposion, 2008: 233-238. (in Chinese with English abstract)

[26] 紀(jì)珺,任迎蕾,章學(xué)來,等. 甲酸鈉/氧化銅復(fù)合相變材料的制備與熱力學(xué)性能測試[J]. 傳感技術(shù)學(xué)報,2016,29(9):1351-1355. Ji Jun, Ren Yinglei, Zhang Xuelai, et al. Preparation and thermal performances of nano-copper oxide/sodium formate composite phase change material [J]. Chinese Journal of Sensors and Actuators, 2016, 29(9): 1351-1355. (in Chinese with English abstract)

[27] 應(yīng)鐵進,朱冰清,戚曉麗,等. 用于農(nóng)產(chǎn)品保鮮的有機物水溶液相變蓄冷劑[J]. 農(nóng)業(yè)機械學(xué)報,2015,46(2):208-212. Ying Tiejin, Zhu Bingqing, Qi Xiaoli, et al. Development of organics solution phase change materials for preservation of agricultural products [J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(2): 208-212. (in Chinese with English abstract)

[28] Engel F, Pinto L H, Del Ciampo L F, et al. Comparative toxicity of physiological and biochemical parameters in Euglena gracilis to short-term exposure to potassium sorbate[J]. Ecotoxicology, 2015, 24(1): 153-162.

[29] 王華,左承基.幾種相變蓄冷材料熱物性參數(shù)的對比分析[J]. 合肥工業(yè)大學(xué)學(xué)報(自然科學(xué)版),2012,35(6):748-749+761. Wang Hua, Zuo Chengji. Comparative analysis of thermal properties of several phase change materials for cool storage[J]. Journal of Hefei University of Technology (Natural Science), 2012, 35(6): 748-749+761. (in Chinese with English abstract)

[30] 韓麗蓉. 相變蓄熱材料十水硫酸鈉的改性及應(yīng)用研究[D]. 楊凌:西北農(nóng)林科技大學(xué),2014. Han Lirong. Modification and Application Research of Phase Change Heat Storage Material Glauber Salt [D]. Yangling: Northwest A&F University, 2014. (in Chinese with English abstract)

[31] 戚曉麗,朱冰清,牟望舒,等. 用于冷鏈運輸?shù)膹?fù)合相變蓄冷劑主儲能劑研制[J]. 中國食品學(xué)報, 2015,15(10):86-90. Qi Xiaoli, Zhu Bingqing, Mou Wangshu, et al. Development of main storage agent of composite phase change coolant for cold chain transportation [J]. Journal of Chinese Institute of Food Science and Technology, 2015, 15(10): 86-90. (in Chinese with English abstract)

[32] 戚曉麗. 復(fù)合相變蓄冷劑開發(fā)及在果蔬保鮮上的應(yīng)用研究[D]. 杭州:浙江大學(xué),2015. Qi Xiaoli. Development of Composite Phase-Changing Coolant and Its Application on Preservation of Fruit and Vegetables[D]. Hangzhou: Zhejiang University, 2015. (in Chinese with English abstract)

Preparation and thermal performance analysis of C5H7COOK/KCl composite phase change material

Zhang Xuelai1, Wang Yinghui1, Ji Jun1, Liu Junming2, Li Yuyang1, Han Xingchao1, Xu Xiaofeng1, Zhou Sunxi1, Liu Lu1, Liu Sheng3

(1.,201306;2..,,210000;3,100097,)

In the process of handover, strict logistics quality standards and inspection methods are lacking in food logistics enterprises. It makes the “broken chain” and “being not cold” of fresh and perishable low-temperature products become common phenomena during fresh and perishable low-temperature products’ transportation. At present, distribution of fresh food is not effective with the application of modern technology and the implementation of the “first mile” sorting and pre-cooling scheme, and the “l(fā)ast mile” is still dominated by the traditional ways of circulation model represented by “ice pack & plastic foam box”. Meanwhile, the cold storage, of which the main function is cargo-storing, often does not have the ability to sort, flow and process, so it restricts the effective improvement of the cold chain logistics’ service level seriously. It is particularly critical to develop more efficient storage technologies with respect to the “first mile” and the “l(fā)ast mile” of agricultural products. Water temperature refrigerated preservation(range from -2 to -3℃) belongs to the temperature interval of micro-frozen and fresh-keeping, and it is also a concept proposed for meat products, fruits and vegetables, etc. It can not only inhibit the growth of microorganisms effectively, but also keep food nutrients from being lost compared to traditional refrigeration technology. In order to develop a stable and efficient phase change coolants for micro-frozen and fresh-keeping to ensure the quality of agricultural products, such as meat products in transportation, the ternary complex composed of C5H7COOK, KCl and H2O was prepared in this article. Considering that the cold storage condition has a great influence on the supercooling degree and cooling rate, -20℃ was selected firstly as the cooling medium temperature in this article via testing the step cooling characteristics of the PCM under different cold storage conditions; the optimal concentration of main base solution was determined by DSC (Differential Scanning Calorimeter) experiment. Then mixing KCl with it, thermodynamic properties and thermal cycle stability of the composite material were studied by Hot Disk thermal constant analyzer, DSC, Agilent temperature time recorder, low-temperature thermostat bath and other equipment. When KCl was added, under concentration of 5 g/L, into the 3 g/L C5H7COOK solution, DSC results indicated that the onset temperature and latent heat were measured as -2.8℃ and 254.6 J/g, which were reduced by -0.3°C and 1.6 J/g respectively. It was indicated that there was no chemical reaction between C5H7COOK and KCl, since there shows a linear relationship between the change of properties and concentration ratio. The thermal conductivity of C5H7COOK/KCl solution was measured as 1.012 W/m·K with an increase of 23.32 %; the specific heat capacity was 1.002 MJ/m3K with a decrease of 50.95 %, and thermal diffusivity was 1.01 mm2/s with an increase of 151.37 %. From the point of view of temperature, the higher the thermal diffusivity, the faster the propagation of internal temperature variation. Thermal cycling test results revealed that the changes of the phase change temperature and latent heat of the C5H7COOK/KCl composite solution were not obvious after 200 freeze-thaw cycles. Under condition of -20℃ in cold storage, the composite PCM added with KCl showed great nucleation, which made the composite PCM has excellent thermal stability. In conclusion, the prepared C5H7COOK solution containing 5 g/L KCl composite PCM can be acted as a potential material for the refrigeration of agricultural products due to the appropriate and acceptable thermal properties, reliable thermal stability, and high thermal conductivity.

refrigeration; phase change materials; thermodynamic properties; stability

10.11975/j.issn.1002-6819.2018.18.034

TM306

A

1002-6819(2018)-18-0277-07

2018-05-28

2018-08-17

國家重點研發(fā)項目計劃(2018YFD0401300);國家自然科學(xué)基金(51376115);上海市科委項目(16040501600)

章學(xué)來,教授,博導(dǎo),研究方向為相變儲能技術(shù)。

Email:xlzhang@shmtu.edu.cn

章學(xué)來,王迎輝,紀(jì) 珺,劉俊名,李玉洋, 韓興超,徐笑鋒,周孫希,劉 璐,劉 升. 山梨酸鉀/氯化鉀復(fù)合相變材料制備及熱物性分析[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(18):277-283. doi:10.11975/j.issn.1002-6819.2018.18.034 http://www.tcsae.org

Zhang Xuelai, Wang Yinghui, Ji Jun, Liu Junming, Li Yuyang, Han Xingchao, Xu Xiaofeng, Zhou Sunxi, Liu Lu, Liu Sheng.Preparation and thermal performance analysis of C5H7COOK/KCl composite phase change material[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(18): 277-283. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.18.034 http://www.tcsae.org

猜你喜歡
潛熱氯化鉀水溶液
約旦APC與印度IPL簽署氯化鉀合同
東方鐵塔:氯化鉀產(chǎn)品供應(yīng)緊張
氯化鉀鍍鋅層發(fā)霧故障原因
掌握核心必考點 精準(zhǔn)突破水溶液
衛(wèi)星遙感降水潛熱的查表法和物理反演法簡介
Cu含量對Al-Cu-Si合金相變儲熱性能的影響
水溶液中的離子平衡圖像易錯題分析
判斷電解質(zhì)水溶液酸堿性的簡單模型
中國化肥信息(2019年2期)2019-04-04
工業(yè)革命時期蒸汽動力的應(yīng)用與熱力學(xué)理論的關(guān)系