劉海濤,許倫,郝思鵬,張潮,高宇
(1.南京工程學(xué)院,南京 211167; 2.國網(wǎng)江蘇省電力有限公司江都區(qū)供電分公司,江蘇 揚州 225200)
伴著光伏發(fā)電技術(shù)不斷提高、成本持續(xù)降低,以及國家一系列促進光伏電站發(fā)展政策的出臺,加深了全社會對于光伏發(fā)電產(chǎn)業(yè)的認同感,使得用戶加入分布式光伏發(fā)電成為可能[1]。農(nóng)村地區(qū)由于大量閑置的面積,建設(shè)屋頂光伏電站潛力巨大??紤]到未來的光伏能源的發(fā)展,城市地區(qū)安裝條件的限制,以及農(nóng)村負荷對于供電質(zhì)量的要求不斷提高等因素,進行農(nóng)村配電網(wǎng)分布式屋頂光伏電站優(yōu)化配置具有必要性。
在已有文獻中,針對小容量的屋頂光伏電站接入配電網(wǎng)選址定容分析還屬于空白,亟待填補。文獻[2-3]針對外部因素對屋頂光伏電站發(fā)電效率影響進行了分析,文獻[4]針對安陽市20 kW工程實際案例,綜合考慮光伏安裝地區(qū)的溫度、濕度、光照輻射、安裝傾斜角,分別分析了工程經(jīng)濟效益、環(huán)境效益、社會效益。文獻[5]以小容量光伏電站的收益率、投資回收期、全壽命凈收益為指標(biāo),建立經(jīng)濟性分析模型,并以用戶為中心進行分析驗證。文獻[6]通過PVsyst軟件模擬小容量光伏電站的發(fā)電量,結(jié)合上海地區(qū)實際用電類型、屋頂安裝方式以及補貼政策進行經(jīng)濟性分析。
以上文獻都是以小容量光伏電站的經(jīng)濟性指標(biāo)為主結(jié)合其他因素進行分析,未考慮到大規(guī)模屋頂光伏電站接入配電網(wǎng)后對系統(tǒng)的影響。文獻[7]為簡化分布式發(fā)電選址定容分析模型,一階段采用經(jīng)濟性指標(biāo)結(jié)合權(quán)值系數(shù)得到選址結(jié)果,二階段應(yīng)用粒子群算法以經(jīng)濟成本為目標(biāo)函數(shù)確定配置容量,這種方法雖然簡化了選址定容的計算復(fù)雜度,但選址和定容過程沒有同時進行,容易忽略最優(yōu)解。文獻[8]考慮了分布式電源和負荷的時序特性,結(jié)合峰谷電價,以配電網(wǎng)網(wǎng)損費用最小為目標(biāo)函數(shù)進行選址定容分析,這種方法可以精確反映配電網(wǎng)運行特征,使得選址定容結(jié)果更為合理,但是本文所研究的屋頂光伏電站單個容量遠遠低于傳統(tǒng)分布式電源容量,其時序性對配電網(wǎng)的影響較小,為簡化分析過程可以忽略。
基于以上分析,以IEEE-33節(jié)點配電系統(tǒng)為構(gòu)架,以屋頂光伏電站建設(shè)投資成本最小化和系統(tǒng)網(wǎng)絡(luò)損耗最小化同時進行優(yōu)化,綜合考慮農(nóng)村地區(qū)安裝面積限制和配電網(wǎng)運行約束,構(gòu)建了含大規(guī)模屋頂光伏電站接入農(nóng)村配電網(wǎng)雙目標(biāo)優(yōu)化配置模型,并且應(yīng)用針對高維度解改進的NSGA-II算法進行優(yōu)化,最終通過模糊貼近度篩選出最優(yōu)方案,并通過算例驗證該方案在滿足經(jīng)濟性的同時對供電可靠性的影響。
在文獻[9]的成本模型基礎(chǔ)上,考慮工程的收益周期,引入資金時間價值和設(shè)備殘值以及維護費用,更加準(zhǔn)確地反映屋頂光伏電站建設(shè)運行投資的實際情況:
Call=C1+C2+C3
(1)
式中Call為屋頂光伏電站建設(shè)運行投資;C1為初始投資成本;C2為運行成本;C3為報廢時設(shè)備殘值。初始投資成本C1主要取決于配件成本和裝機容量,即:
C1=Csp·n+Cst+Civ+Cec+Cp
(2)
式中C1為光伏電站初始投資成本;Csp為太陽能電池板單位瓦數(shù)價格;n為屋頂光伏電站容量;Cst為支架總成本;Civ為逆變器價格;Cec為輸配設(shè)施價格;Cp為底座成本。
運行成本C2主要由設(shè)備維護成本構(gòu)成,并且考慮資金時間價值,即:
(3)
Cma=C1K
(4)
報廢時設(shè)備殘值C3主要由初始投資決定,即:
(5)
在考慮農(nóng)村配電網(wǎng)中屋頂光伏電站的接入位置以及容量時,以系統(tǒng)網(wǎng)絡(luò)損耗為衡量農(nóng)村配電網(wǎng)電能質(zhì)量的指標(biāo),有:
(6)
式中Ploss為配電系統(tǒng)網(wǎng)絡(luò)損耗;l為系統(tǒng)支路數(shù);rk為系統(tǒng)k支路電阻;Ik為系統(tǒng)k支路通過的電流。
對于n個節(jié)點構(gòu)成的配電網(wǎng)絡(luò),采用0-1整數(shù)規(guī)劃配置模型的位置,用n維向量x=[x1,x2,…,xn]表示屋頂光伏的配置情況[10]。其中:
(7)
(1)功率平衡約束
(8)
式中Pi、Qi為節(jié)點i向系統(tǒng)注入的有功功率、無功功率;n為系統(tǒng)的節(jié)點數(shù);Ui、Uj為節(jié)點i、j電壓向量的幅值;Gij為節(jié)點導(dǎo)納矩陣元素Yij的實部;Bij為節(jié)點導(dǎo)納矩陣元素Yij的虛部;δij=δi-δj,為i、j兩節(jié)點電壓的相角差。
(2)電壓約束
UminUUmax
(9)
式中Umin和Umax為節(jié)點電壓允許的上下限,一般電壓正、負偏差的絕對值之和不超過額定值10%。
(3)屋頂光伏電站容量約束
設(shè)定屋頂光伏電站功率在15 kW以下,為了保證供電可靠性,接入節(jié)點的屋頂光伏有功功率不能超過節(jié)點負荷的30%,總的屋頂光伏有功功率不能超過總負荷的15%。
PiDG≤15 kW
(10)
PiDG≤30%PIL
(11)
(12)
式中PiDG為i節(jié)點接入屋頂光伏的有功功率;PiL為i節(jié)點負荷功率;m為接入屋頂光伏的節(jié)點個數(shù)。
帶精英策略的非支配排序算法(NSGA-II)采用快速非支配排序,對個體間的支配關(guān)系進行分層;采用虛擬適應(yīng)度(dummy fitness)刪除過于集中的個體;引入精英策略,使父代和其產(chǎn)生的子代共同競爭產(chǎn)生下一代種群[12]。
應(yīng)用NSGA-II算法對多目標(biāo)函數(shù)進行優(yōu)化主要包括4個步驟:
(1)快速非支配排序。賦予個體i兩個指標(biāo):其他個體支配個體i的數(shù)量ni;被個體i支配的其他個體的集合Si。排序過程中,把不被種群中其他個體支配的個體,即當(dāng)前最優(yōu)個體存入Frank,并賦予其非支配序rank,每次排序前,都需要將前次排序產(chǎn)生的Frank中的個體從種群中刪除;
(2)虛擬適應(yīng)度計算。為了稀釋過于集中的個體,使得所有個體均勻地分布在Pareto前沿上,需要計算同非支配序rank下的所有個體之間的局部擁擠距離。
其計算步驟如下:
①對于邊界上的個體,其擁擠距離為無窮,即Pd(0)=Pd(End)=;
②對于排序在中間的個體i,其擁擠距離計算公式為:
(13)
式中Pd(i)為解i的擁擠距離;fk(i+1)為個體i+1的第k個分目標(biāo)函數(shù)值;fk(i-1)為個體i-1的第k個分目標(biāo)函數(shù)值;
(3)選擇運算。經(jīng)過上述步驟,所有個體i都被賦予非支配序rank(i)和擁擠度Pd(i)。采用錦標(biāo)賽的方式,從種群中隨機選擇個體,通過比較其非支配序rank和虛擬適應(yīng)度Pd(i),保留較好個體,淘汰較差的個體;
(4)精英保留。將父代Pt和通過父代交叉、變異產(chǎn)生的子代Qt合并成一個種群Rt。按照快速非支配排序?qū)t進行分級,計算Rt中所有解的擁擠距離,按照非支配序rank進行排序,同一等級按照擁擠距離Pd排序,直至選取的個數(shù)達到外部檔案NS要求的數(shù)目,將選取的種群放入外部檔案NS,形成新一輪進化的父代種群Pt+1,通過下一輪的交叉、變異,形成新的子代Qt+1。
NSGA-II算法在二維空間里,采用擁擠距離是可以表示個體的擁擠程度,但是在三維或更高維度的空間里,常規(guī)的擁擠距離并不能很好地表示個體的擁擠程度。故文獻[13]基于這一缺點,引入模擬退火算法中的Metropolis抽樣對同一等級下的解的排序進行修正。本文參考文獻[13]的方法,針對高維度NSGA-II算法進行改進,建立接受概率p。
(14)
式中Pd(j)為解j的擁擠距離;Pd(i)為解i的擁擠距離;T為溫度。
通過虛擬適應(yīng)度篩選個體的過程中,每次個體間的篩選產(chǎn)生一個的介于0,1之間的隨機數(shù)ε,若ε小于概率p,則接受擁擠度較小的解,反之接受擁擠度較大的解。
采用Metropolis抽樣來修正虛擬適應(yīng)度可以優(yōu)化高維度空間中解的篩選,增強算法局部搜索能力。其實現(xiàn)流程如圖1所示。
多目標(biāo)優(yōu)化的結(jié)果是得到算法的非劣解集,最終的配置方案需要從集合中篩選出最優(yōu)方案。采用模糊貼近度,通過比較各個配置方案與各單目標(biāo)優(yōu)化的理想配置方案的貼近距離,得到最優(yōu)配置結(jié)果。
通過正態(tài)隸屬度函數(shù)對非劣解和理想解中各分目標(biāo)值的接近程度進行量化,其公式為:
圖1 改進NSGA-II算法流程圖
(15)
式中k為非劣解個數(shù);μ(frj)為第r組非劣解中的第j個目標(biāo)函數(shù)隸屬度輸出結(jié)果;frj為第r組非劣解中的第j個目標(biāo)函數(shù)值;fj*為理想解的第j個目標(biāo)函數(shù)值。
其中,理想解是針對各個分目標(biāo)函數(shù)進行單目標(biāo)優(yōu)化的結(jié)果。
將各個非劣解模糊化,以各分目標(biāo)函數(shù)的隸屬度為變量的建立模糊向量Fr:
Fr=[μ(fr1),μ(fr2),…,μ(frq)]
(16)
式中由隸屬度含義得理想解的模糊向量為F*=[1,1,…,1]。
式中Fr為第r組非劣解的模糊向量;q是目標(biāo)函數(shù)的個數(shù);k為非劣解的個數(shù)。
各非劣解模糊向量Fr和理想解模糊向量F*的貼近度可以表征兩個模糊向量的接近程度,采用式(17)計算:
(17)
式中σ(Fr,F(xiàn)*)為第r組非劣解的模糊向量Fr與理想解的模糊向量為F*的模糊貼近度。
σ(Fr,F(xiàn)*)值越大,表明Fr,F(xiàn)*越貼近;反之,則表明Fr,F(xiàn)*越遠離。
以IEEE-33節(jié)點配電系統(tǒng)算例進行屋頂光伏的優(yōu)化配置,如圖2所示。
圖2 IEEE-33節(jié)點配電系統(tǒng)
在本文中,所有的屋頂光伏電站都簡化為恒功率輸出的PQ節(jié)點,且其功率因數(shù)恒為0.9。
屋頂光伏電進行規(guī)劃時,太陽能電池板單位功率價格為3 500 元/kW,支架總成本為3 500 元/戶,逆變器價格為10 000 元/戶,輸配設(shè)施價格為500元/戶,底座成本為3 000 元/戶,折現(xiàn)率為6.7%,周期年限為20年,維護比例K為10%,殘值比例為5%。
設(shè)置節(jié)點2~33為待安裝節(jié)點,選擇安裝屋頂光伏電站的數(shù)量為18個。
算法參數(shù)設(shè)置:種群規(guī)模pop=800,迭代次數(shù)Maxlt=400,外部檔案Ns規(guī)模Scalce=70,交叉幾率Pc=0.8,變異幾率Pm=0.1。
采用單目標(biāo)遺傳算法對系統(tǒng)網(wǎng)絡(luò)損耗進行優(yōu)化,求取此目標(biāo)函數(shù)對應(yīng)的理想解f*。結(jié)果如圖3所示。
圖3 系統(tǒng)網(wǎng)絡(luò)損耗優(yōu)化結(jié)果
表1 單目標(biāo)-網(wǎng)損優(yōu)化配置方案
應(yīng)用第2節(jié)針對高維度改進NSGA-II算法優(yōu)化屋頂光伏電站配置結(jié)果的非劣解集在Pareto域分布如圖4所示。
圖4 Pareto前沿的分布情況
由分布情況可以看出,經(jīng)過改進后的算法優(yōu)化,非劣解均勻分布在整個Pareto前沿上,優(yōu)化結(jié)果較好。并且隨著投資成本的增加,屋頂光伏電站總?cè)萘吭龃?,系統(tǒng)網(wǎng)絡(luò)損耗不斷降低,符合實際情況。
經(jīng)上述改進NSGA-II算法優(yōu)化后,NO.48-NO.52組非劣解見表2,可見各個解是半有序的,無法比較優(yōu)劣。現(xiàn)用文中的模糊貼近度進行分析。
表2 Pareto解集中N0.44-48組非劣解
采用式(9)來計算各組非劣解對應(yīng)的隸屬度,形成模糊向量結(jié)果見表3。
表3 N0.44-48組模糊向量
采用式(12)計算各組模糊向量與理想解的貼近度,結(jié)果見表4。
表4 N0.44-48組模糊貼近度
經(jīng)改進NSGA-II算法優(yōu)化后,產(chǎn)生了70組非劣解,按上述步驟對70組非劣解的模糊貼近度進行計算。結(jié)果為第46組非劣解最優(yōu)。因此最優(yōu)解為:
F46=[178 0432,175.882]
此種情況下對應(yīng)的屋頂光伏配置見表5。
表5 最終配置方案
按此配置方案在IEEE-33節(jié)點系統(tǒng)中接入屋頂光伏,相對于未接入屋頂光伏電站的系統(tǒng),在保證經(jīng)濟性的同時,局部電壓水平得到改善,發(fā)揮了屋頂光伏電站對改善供電質(zhì)量的作用,如圖5所示。
圖5 配置屋頂光伏電站對節(jié)點電壓的影響
針對大規(guī)模屋頂光伏電站接入農(nóng)村配電網(wǎng)無序分布問題,首先建立了以系統(tǒng)網(wǎng)損最低和屋頂光伏電站建設(shè)運行總成本最低為目標(biāo)函數(shù)的雙目標(biāo)優(yōu)化模型,應(yīng)用針對高維度解的改進NSGA-II算法進行優(yōu)化,最后應(yīng)用模糊貼近度的思想針對非劣解集進行篩選,得到最終配置方案。優(yōu)化結(jié)果表明,文中采用的針對高維度解的改進NSGA-II算法使得種群均勻分布在整個Pareto前沿上,提高了傳統(tǒng)NSGA-II算法的精度。優(yōu)化得到的配置方案解決了屋頂光伏電站無序分布造成的分布式發(fā)電資源浪費的問題,在提高投資成本經(jīng)濟性的基礎(chǔ)上,發(fā)揮了屋頂光伏電站作為分布式電源的作用,改善系統(tǒng)的局部電壓,提高系統(tǒng)的供電可靠性。