韓德俊 康振生
摘要
小麥條銹病是小麥重大病害,利用抗病品種是防治小麥條銹病的有效措施。新中國(guó)成立以來(lái),中國(guó)科學(xué)家們廣泛開(kāi)展了小麥條銹病防控方面的研究,并取得顯著成績(jī)。大量抗源被篩選、鑒定,但由于抗源自身農(nóng)藝性狀差等原因,能應(yīng)用于小麥育種的抗源親本非常少,抗源利用不合理,導(dǎo)致生產(chǎn)品種抗病基因單一,病原菌流行小種很快形成,抗病品種在生產(chǎn)上可利用的壽命太短。本文介紹了國(guó)內(nèi)外抗條銹病基因發(fā)掘情況,以及我國(guó)小麥抗條銹病育種抗病基因使用概況,通過(guò)回述1B/1R(Yr9)和Yr24/Yr26抗源的興衰周期,總結(jié)了抗源利用的教訓(xùn)和經(jīng)驗(yàn),探討了我國(guó)小麥抗條銹病育種中存在的問(wèn)題和今后抗病基因合理利用的發(fā)展方向。
關(guān)鍵詞
小麥抗條銹育種; 抗病基因興衰周期; 抗病品種持久利用策略
中圖分類號(hào):
S 435.121.42
文獻(xiàn)標(biāo)識(shí)碼: A
DOI: 10.16688/j.zwbh.2018342
Current status and future strategy in breeding wheat for
resistance to stripe rust in China
HAN Dejun KANG Zhensheng2
(1. State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F
University, Yangling 712100, China; 2.State Key Laboratory of Crop Stress Biology for Arid Areas,
College of Plant Protection, Northwest A & F University, Yangling 712100, China)
Abstract
Wheat is an important staple food, which suffers considerable yield loss due to fungal foliar diseases like stripe rust caused by Puccinia striiformis West. f.sp. tritici Eriks. & Henn. (Pst). The management and sustainable control of the disease has been studied and great progress has been achieved since the founding of new China. Abundant resistance genes in wheat germplasms were identified. However, only a few race-specific resistance genes can be used for improving stripe rust resistance in commercially cultivars because of the undesirable agronomic traits or lack of efficient molecular markers. The mono-resistance gene in wheat varieties resulted in rapidly emerging new races of stripe rust pathogens and losing the R gene-mediated disease resistance of wheat cultivars.By retrospective historical events of “boom-bust cycle” of the resistance sources of 1B/1R (Yr9) and Yr24/Yr26, the over used resistance genes for stripe rust in China, the experiences and lessons were summarized. In addition, the strategies for durable (long-lasting) disease resistance are discussed.
Key words
breeding wheat for stripe rust resistance; boom-bust cycle of resistance gene; strategy for long-lasting resistance
小麥?zhǔn)鞘澜缧缘募Z食作物,為全球約35%~40%人口的主食[1]。中國(guó)是全球最大的小麥生產(chǎn)國(guó)和消費(fèi)國(guó),每年小麥種植面積在2 400萬(wàn)hm2左右,約占糧食作物總面積的1/4,常年總產(chǎn)量為1.3億t左右,約占全球總產(chǎn)量的17%[2-3]。因此,小麥生產(chǎn)安全是關(guān)系國(guó)民經(jīng)濟(jì)發(fā)展、社會(huì)穩(wěn)定和國(guó)家自立的重大戰(zhàn)略問(wèn)題。中國(guó)小麥生產(chǎn)雖已實(shí)現(xiàn)了歷史性跨越,但隨著氣候變化影響的日益明顯,極端溫度、干旱和洪澇等災(zāi)害頻繁發(fā)生,條銹病、赤霉病等多種病害日趨嚴(yán)重,化肥、農(nóng)藥過(guò)量使用導(dǎo)致農(nóng)業(yè)生產(chǎn)成本較快上漲,同時(shí)造成環(huán)境污染。當(dāng)前新形勢(shì)下,農(nóng)業(yè)生產(chǎn)發(fā)展面臨提升產(chǎn)量和質(zhì)量、降低成本和保護(hù)環(huán)境等多重挑戰(zhàn)[4],如何實(shí)現(xiàn)糧食安全與資源利用、環(huán)境保護(hù)之間的平衡,提升農(nóng)業(yè)可持續(xù)發(fā)展能力,是擺在面前的一項(xiàng)刻不容緩的戰(zhàn)略議題。
1 條銹病嚴(yán)重威脅小麥安全生產(chǎn)
由條形柄銹菌小麥專化型Puccinia striiformis West. f.sp. tritici Eriks.& Henn.(Pst)引起的小麥條銹病,是世界性流行的真菌病害,危害我國(guó)廣大麥區(qū)[5]。小麥條銹菌喜好冷涼潮濕環(huán)境,可通過(guò)高空氣流遠(yuǎn)距離傳播,隨降雨或結(jié)露侵染小麥而引發(fā)病害。條銹病一般可造成 0.5% ~5%的產(chǎn)量損失,大流行可導(dǎo)致5%~25%的產(chǎn)量損失、甚至絕收。中國(guó)是世界上小麥條銹病最大的流行區(qū)域。新中國(guó)成立以來(lái),小麥條銹病在中國(guó)每年均有不同程度的發(fā)生和危害,年均發(fā)生面積約400萬(wàn) hm2。歷史上小麥條銹病4次(1950年、1964年、1990年和2002年)大流行均導(dǎo)致100萬(wàn)t以上的產(chǎn)量損失,損失小麥總計(jì)約1 200萬(wàn)t,其中1950年條銹病造成的產(chǎn)量損失占全國(guó)小麥總產(chǎn)量的41.4%[6-7]。近年來(lái),隨著氣候變化和耕作制度的調(diào)整,西北、華北和長(zhǎng)江中下游等我國(guó)主產(chǎn)麥區(qū),條銹病、赤霉病和白粉病等病害發(fā)生規(guī)律和發(fā)病范圍也發(fā)生相應(yīng)改變,多種病害交替發(fā)生,甚至同時(shí)發(fā)生[8-9]。因此,目前對(duì)小麥生產(chǎn)品種抗病性的要求也越來(lái)越高,有效防控小麥條銹病等病害,對(duì)確保小麥安全生產(chǎn)意義重大。
2 抗病品種是控制條銹病最為經(jīng)濟(jì)有效、綠色環(huán)保的措施
目前小麥條銹病的防治主要依靠化學(xué)農(nóng)藥和種植抗病品種兩種途徑?;瘜W(xué)農(nóng)藥在病害應(yīng)急防治中發(fā)揮了重要作用,但農(nóng)藥的不合理使用不僅導(dǎo)致了生產(chǎn)成本提高,還帶來(lái)了環(huán)境污染問(wèn)題[1,5,10]。大量研究與生產(chǎn)實(shí)踐表明,培育、推廣抗病小麥品種一直是最為經(jīng)濟(jì)有效且綠色環(huán)保的防控措施。
2.1 小麥條銹病抗源的發(fā)掘與抗性基因鑒定
國(guó)內(nèi)外在抗源收集、鑒定和新基因發(fā)掘等方面開(kāi)展了大量研究,取得了一系列重要研究成果并應(yīng)用于生產(chǎn)實(shí)踐[5-13]。1962年,Lupton和Macer對(duì)7個(gè)小麥抗條銹病品種進(jìn)行遺傳分析,并首次采用Yr(yellow rust resistance)定名小麥抗條銹病基因,此后該命名一直沿用至今。截至2018年6月,國(guó)際上正式命名的抗條銹基因已有80個(gè),即Yr1~Yr80[11-12]。這些抗條銹基因主要來(lái)源于普通小麥,還有一部分來(lái)自于小麥的近緣屬種(表1)。目前已發(fā)現(xiàn)的基因中,絕大多數(shù)基因?qū)儆谛》N?;娜诳剐曰?,少部分是成株期抗性基因如Yr11、Yr12、Yr13、Yr14、Yr16、Yr18、Yr29、Yr30、Yr34、Yr46、Yr48、Yr49、Yr58、Yr60、Yr68、Yr71、Yr75或高溫成株期抗性基因(HTAP)如Yr36、Yr39、Yr52、Yr59、Yr62及QTL如Yr54、Yr77、Yr78、Yr79、Yr80。
表1 已被正式命名的抗條銹病基因1)
Table 1 Officially named stripe rust resistance genes
1) RS: ?;剐? AS:全生育期抗性; AP:成株期抗性; HTAP:高溫成株期抗性。
RS: Race specific resistance;AS: All-stage resistance;AP: Adult plant resistance;HTAP: High-temperature adult plant resistance.
2.2 小麥抗條銹病基因有效性評(píng)價(jià)
系統(tǒng)評(píng)估抗源和抗病基因的有效性,有助于為育種家提供精準(zhǔn)的育種親本選擇信息,并結(jié)合病原菌流行小種動(dòng)態(tài)變化趨勢(shì),開(kāi)展預(yù)見(jiàn)性抗病育種。Zeng等[13]利用當(dāng)前流行小種(CYR32、CYR33和CYR34)和隴南自然誘發(fā)病圃,對(duì)90份已知Yr基因的載體品種或單基因系材料進(jìn)行抗病有效性評(píng)價(jià)。結(jié)果表明只有Yr5、Yr15、Yr61對(duì)當(dāng)前中國(guó)所有條銹菌流行小種表現(xiàn)抗病,并建議這些基因應(yīng)在我國(guó)條銹菌冬繁區(qū)應(yīng)用,杜絕在越夏易變區(qū)使用;抗源‘周8425B雖然對(duì)3個(gè)流行小種具有全生育期抗性,但是在天水苗期和成株期都為感病,表明在自然界已經(jīng)出現(xiàn)了對(duì)‘周8425B具有毒性的小種,這一抗源應(yīng)限定區(qū)域利用以避免對(duì)其毒性小種的定向選擇;Yr10、Yr24、Yr26雖然對(duì)CYR32和CYR33都具有較好抗病性,但對(duì)新小種CYR34(V26)在苗期和成株期均表現(xiàn)為感病,因此,這些基因今后應(yīng)慎重使用; Yr32、YrTr1和YrTye(=Yr76)基因具有較強(qiáng)的成株期抗病性,可在適宜地區(qū)使用;Yr11、Yr12、Yr13、Yr14、Yr16、Yr17、Yr18等表現(xiàn)為成株期部分抗病性,建議與其他Yr基因聚合使用。其他Yr基因Yr1、Yr2、Yr6、Yr7、Yr8、Yr9、Yr21、Yr27、Yr28、Yr29、Yr31、Yr36、Yr39、Yr41、Yr43、Yr44、YrA、YrExp2和YrSP等,不具有單獨(dú)使用價(jià)值,宜通過(guò)基因聚合后利用。值得關(guān)注的是,Yr基因組合利用對(duì)條銹菌有非常好的抗性效果,如,攜帶不同Yr基因組合的抗源:Ibis(Yr1+Yr2)、Maris Huntsman(Yr2+Yr3a+Yr4a+Yr13)、Mega(Yr3a+Yr4a+Yr12)、Lee(Yr7+Yr22+Yr23)、Compare(Yr8+Yr19)、Hobbit(Yr14+YrHⅦ)、Hyak(Yr17+YrTye)、HyakCarstensV(YrCV1+YrCV2+YrCV3)及Express(YrExp1+YrExp2)等,都表現(xiàn)出非常好的成株期抗病性。其他Yr基因,如Yr46、Yr48、Yr50、Yr52、Yr59、Yr62、Yr69等對(duì)中國(guó)小麥條銹菌有成株期抗性[13,58,72]。
3 病原菌毒性變異導(dǎo)致抗病品種喪失生產(chǎn)利用價(jià)值
諾貝爾獎(jiǎng)得主諾曼·博勞格(Norman Borlaug)有一句經(jīng)典名言“Rust never sleeps”(銹菌永不眠),告誡大家要時(shí)刻警惕銹菌新小種的出現(xiàn)。早期研究認(rèn)為,小麥條銹菌通過(guò)突變和異核作用,致使其致病性變異。2010年,美國(guó)學(xué)者Jin通過(guò)室內(nèi)人工接種的方法,發(fā)現(xiàn)小檗Berberis chinensis可作為小麥條銹菌的轉(zhuǎn)主寄主[73]。本團(tuán)隊(duì)研究表明:小檗在我國(guó)種類多、分布廣;自然條件下可以作為條銹菌轉(zhuǎn)主寄主,完成有性生殖[74];小檗在條銹菌毒性變異、新小種形成和病害流行中具有特殊作用;有性生殖是條銹菌毒性變異的主要途徑;轉(zhuǎn)主寄主小檗的廣泛分布與有性生殖的常年發(fā)生是我國(guó)條銹菌“易變區(qū)”形成的主要原因[5, 74-75]。
對(duì)于專性寄生性病害體系來(lái)講,病原菌與寄主間相互施加選擇壓力,始終進(jìn)行著病原物致病基因和寄主抗病基因遺傳迭代(genetic iteration)的協(xié)同進(jìn)化(co-evolution)[76-77]。在現(xiàn)代農(nóng)業(yè)生產(chǎn)中,如果大規(guī)模使用同一抗源,將有利于促成優(yōu)勢(shì)小種的形成。由于條銹菌致病性變異頻繁,新致病小種不斷出現(xiàn),常導(dǎo)致小麥抗病品種“喪失”其抗條銹性,而失去利用價(jià)值[78-81]。一般情況下,小麥品種在生產(chǎn)上使用 3~5 年便“喪失” 其抗銹性。歷史資料表明,我國(guó)小麥條銹菌新毒性小種的產(chǎn)生和流行,都是與小麥抗病品種(基因)的不合理利用“相伴而生”的[5-8](表2)。
表2 中國(guó)小麥主要抗病品種(Yr基因)抗病性“喪失”與條銹菌新小種更替
Table 2 The iteration of elite wheat cultivars(Yr genes)vs the emerging races of stripe rust
4 中國(guó)小麥品種抗條銹病水平和抗源使用
4.1 小麥主栽品種和后備品種抗病性水平
全面了解我國(guó)小麥品種抗條銹病水平,不僅為當(dāng)前小麥條銹病預(yù)測(cè)預(yù)報(bào)和精準(zhǔn)防控提供準(zhǔn)確信息,而且可為開(kāi)展預(yù)見(jiàn)性小麥抗病育種和抗病基因布局提供依據(jù)。自2008年以來(lái),本實(shí)驗(yàn)室依托國(guó)家小麥產(chǎn)業(yè)技術(shù)體系,每年征集全國(guó)各個(gè)麥區(qū)的小麥品種及育種高代系材料進(jìn)行苗期和成株期多地點(diǎn)的抗病性評(píng)估。韓德俊等[9]和Zeng等[72]對(duì)2003-2008年期間的主栽品種(330份)和高代育種材料(194份)進(jìn)行了抗病性鑒定,結(jié)果顯示只有16份材料(3.2%)為全生育期抗性,99份(20.0%)和28份(5.7%)分別表現(xiàn)成株期抗性和慢銹性,351份呈現(xiàn)感?。?1.1%)。薛文波等[82]對(duì)全國(guó)74個(gè)主栽小麥品種抗條銹性鑒定,結(jié)果表明,當(dāng)前主栽小麥品種幾乎沒(méi)有全生育期抗病品種,僅有4個(gè)成株期抗病品種,另外有10個(gè)品種僅在成株期表現(xiàn)為中感-中抗水平;其余60 個(gè)品種苗期和成株期都高度感病。本實(shí)驗(yàn)室對(duì)2013-2017年期間全國(guó)1550余份小麥高代系材料鑒定結(jié)果表明,對(duì)當(dāng)前主要流行小種(CYR32、CYR33和CYR34)具有全生育期抗病材料僅51份,占3.3%;成株期抗銹性110份,占7.1%;其余1 300余份材料都表現(xiàn)為不同程度感病,占89.6%。整體評(píng)價(jià)認(rèn)為,在過(guò)去的十幾年中,我國(guó)小麥感病品種比例高達(dá)80%左右,不同麥區(qū)間存在差異,甘肅、四川等條銹病常發(fā)區(qū)小麥品種抗病性整體好于東部麥區(qū),高代系材料和后備品種的抗病性整體好于當(dāng)前主栽品種,全生育期抗病品種仍然嚴(yán)重不足,特別是苗期發(fā)病嚴(yán)重的隴南和川西北地區(qū)小麥品種,具有全生育期抗病性的品種不足5%。由此看來(lái),依賴藥劑防治秋季和早春條銹病的現(xiàn)狀,在較長(zhǎng)時(shí)間內(nèi)不會(huì)有明顯改變。
4.2 小麥品種(系)抗病基因利用情況
盡管如前文所述,國(guó)內(nèi)外目前已定位出80余個(gè)抗條銹病基因和近200余個(gè)抗病QTLs,但可用于小麥育種的仍只是少數(shù)幾個(gè)基因/QTL,如Yr1、Yr5、Yr9、Yr10、Yr15、Yr17、Yr18、Yr24/26等。周陽(yáng)等[83]對(duì)179份20世紀(jì)80年代的主栽小麥品種(系)鑒定發(fā)現(xiàn),38%的材料都含有1BL/1RS(即攜帶Yr9),尤以北方麥區(qū)和黃淮麥區(qū)各占59%和42%;李在峰[84]利用基因推導(dǎo),對(duì)全國(guó)145份小麥品種(系)進(jìn)行Yr基因分析發(fā)現(xiàn),Yr9(43%)和Yr26(20%)是利用率最高的抗條銹病基因,其他Yr基因較少應(yīng)用。
本實(shí)驗(yàn)室利用分子篩查并結(jié)合抗病性鑒定和系譜分析的方法,對(duì)2010年以來(lái)超過(guò)2 000份來(lái)自不同麥區(qū)的小麥品種和高代系進(jìn)行抗病基因分析[9, 72, 82, 85-86],結(jié)果表明,在抗病材料中(約占總數(shù)10%):超過(guò)30%的抗病材料可能含有Yr26;22%可能含Yr9;3%可能含Yr17。其中少數(shù)幾份抗病材料,可能是幾個(gè)已知基因的聚合結(jié)果,如:Yr9+Yr17,Yr26+ Yr18(或其他未知微效Yr基因)。未發(fā)現(xiàn)含Yr5、Yr10、Yr15的材料。不同麥區(qū)對(duì)抗病基因使用雖有一定差別,但在主效基因使用上差別不大:如隴南核心越夏區(qū)[9]和四川盆地冬繁區(qū)[85-86],最重要的抗病基因都是Yr26和Yr9,特別是攜帶Yr26的品種頻率都超過(guò)30%,在生產(chǎn)中這些品種累計(jì)播種面積都超過(guò)當(dāng)?shù)匦←湶シN面積的50%,為相應(yīng)毒性的小種(V26致病類群)的定向選擇提供了充足的哺育品種[85]。
5 抗源應(yīng)用中存在的問(wèn)題與對(duì)策
5.1 系統(tǒng)開(kāi)展抗源核心親本定向改良,打通抗源創(chuàng)制與抗病品種培育的中間環(huán)節(jié)
經(jīng)過(guò)多年努力,篩選創(chuàng)制的小麥條銹病抗源雖然不少,如Yr5、Yr15和Yr61等,但多數(shù)抗源來(lái)自農(nóng)家種、國(guó)外種質(zhì)以及遠(yuǎn)緣雜交的衍生后代。由于綜合農(nóng)藝性狀較差,難以作為親本直接用于小麥品種改良,因此在育種中好用并發(fā)揮重要作用的抗源極少。迫切需要植病學(xué)家與育種家協(xié)作,系統(tǒng)開(kāi)展育種親本材料的創(chuàng)制和持續(xù)改良的前育種工作(pre-breeding),創(chuàng)造攜帶一系列已知抗病基因或基因組合的核心親本材料(elite lines),同時(shí)開(kāi)發(fā)相關(guān)Yr基因的輔助選擇標(biāo)記,著重創(chuàng)造抗病性狀優(yōu)異、綜合性狀好且有極高的配合力,在育種上“能用”且“好用”的抗源核心親本,既增加抗病基因的多樣性,又要提高抗源的可用性。同時(shí)要改革科研工作的評(píng)價(jià)機(jī)制,對(duì)從事定向改造創(chuàng)制核心中間材料的科研人員,在成果認(rèn)可和利益分配方面,給予保護(hù)和長(zhǎng)期支持。
5.2 抗病基因的“興衰周期”與持久利用
由于豐產(chǎn)性、生育期和適應(yīng)性等表現(xiàn)較差,很多抗源或Yr-基因的載體品種不被育種家青睞。然而一旦有好用的抗源親本,育種家們又會(huì)爭(zhēng)先使用,短時(shí)期就能創(chuàng)制大量具有同一個(gè)Yr-基因的抗病品種,并廣泛推廣種植(boom),其結(jié)果導(dǎo)致在病原菌群體中,有匹配毒性的菌株被選擇,并隨著哺育品種的面積增加而壯大,最終形成流行小種,致使抗病性被克服而喪失利用價(jià)值(bust),完結(jié)抗源的興衰循環(huán)周期(boom-bust cycle)[79, 81, 87]。攜帶Yr9的1B/1R抗源和攜帶Yr26的92R系和貴農(nóng)系抗源的興衰經(jīng)歷,闡釋了抗源/抗病基因利用的規(guī)律與教訓(xùn),為今后抗病基因合理使用提供借鑒。
20世紀(jì)20-30年代,兩個(gè)德國(guó)的育種項(xiàng)目用同一個(gè)冬黑麥品種(‘Petkus)與小麥雜交和復(fù)交,分別獨(dú)立獲得屬間1B(1R)異代換系‘Salzmunder14/44和‘Zorba,20世紀(jì)40年代,在‘Salzmunder14/44基礎(chǔ)上衍生‘牛朱特(Neuzucht,意為新品種)[88]。由于該1RS染色體攜帶一個(gè)抗病基因復(fù)合體(resistance gene complex)Pm8/ Yr9/ Lr26/ Sr31,對(duì)銹病和白粉病都具有良好抗性,且有較好的豐產(chǎn)性和適應(yīng)性,因此,這兩個(gè)1B(1R)異代換系于20世紀(jì)50年代在世界多地快速傳播和利用。‘牛朱特及其衍生后代在前蘇聯(lián)和羅馬尼亞等東歐國(guó)家利用,并于20世紀(jì)60-70年代培育了‘阿夫樂(lè)爾(Avrora)、‘高加索(Kavkaz)、‘早熟35(Skorospe1Ra 35)、‘山前麥2號(hào)(Predgornaya 2)、‘洛夫林(Lovrin)等一系列1B/1R易位系品種;而‘Zorba主要用于西歐國(guó)家[88-89]。
20世紀(jì)70年代初期,‘洛夫林等一大批1B/1R易位系的抗病品種被引入中國(guó),在甘、川、陜、青、晉、冀、魯、鄂、滇、黔等多地小麥生產(chǎn)和育種中同時(shí)扮演重要角色[6, 8]。在西北麥區(qū),‘洛夫林10和‘洛夫林13等一批“洛類”抗源于1973 年引入隴南地區(qū), 不僅作為親本材料, 而且直接用于生產(chǎn), 在高山小麥區(qū)和川道麥區(qū)都有分布[91-93]。不幸的是,僅僅兩三年后,即1975-1976年,‘洛夫林10和‘洛夫林13分別出現(xiàn)零星病株[92-93],隨后病情逐年加重,1978-1979年病株反應(yīng)型(IT)達(dá)到7~8[93],1980-1981年,在隴南各地兩個(gè)品種都有發(fā)病[92-95],聯(lián)合考察表明,洛夫林抗源在隴南已普遍感病,喪失了抗條銹能力[91-94]。20世紀(jì)80年代中后期,源自‘洛夫林10和‘洛夫林13兩個(gè)致病類群中,各有一個(gè)優(yōu)勢(shì)小種形成,即條中28號(hào)和條中29號(hào)流行小種。另一方面,20世紀(jì)80年代初期, 在中國(guó)很多育種單位,分別以來(lái)源不同1B/1R易位系為抗源親本培育了大量抗病品種,如‘矮孟牛(‘魯麥1號(hào))、‘魯麥8號(hào)、‘魯麥11 號(hào)、‘陜農(nóng)7859、‘豐抗15號(hào)等,并在全國(guó)范圍大面積推廣種植[5-6, 8]。西部麥區(qū)產(chǎn)生了針對(duì)Yr9的新流行小種(CYR28和CYR29)和全國(guó)廣大麥區(qū)普遍使用攜帶Yr9的抗病小麥品種,致使1990年條銹病在全國(guó)范圍內(nèi)大發(fā)生,給小麥生產(chǎn)造成極大損失。
回述洛類抗源興衰,總結(jié)教訓(xùn)有兩個(gè):其一,以‘洛夫林10和‘洛夫林13為代表的1B/1R抗源(攜帶Yr9)被直接應(yīng)用于條銹菌核心易變區(qū)(隴南和川西北)的小麥生產(chǎn),Yr9介導(dǎo)所謂“抗病品種”推廣面積激增,僅僅兩三年時(shí)間就“篩選”出對(duì)Yr9有毒性的菌株,并迅速定向選擇和適應(yīng)性進(jìn)化,形成了條中28和條中29為主的流行小種;其二,同一個(gè)黑麥品種與小麥遠(yuǎn)緣雜交衍生的若干抗病材料,其主效抗病基因只有一個(gè),即Yr9,這些名稱不同的抗源幾乎同時(shí)涌入中國(guó)不同麥區(qū),培育出大量抗病基因同質(zhì)的“抗病品種”,為新小種主導(dǎo)的病害大區(qū)流行提供了“感病品種”。
Yr26的興衰循環(huán)正在進(jìn)行之中。劉大鈞等于20世紀(jì)80年代創(chuàng)制了小麥-簇毛麥代換系(6A/6V)和易位系(6DL/6VS)材料,在此基礎(chǔ)上逐步衍生出‘92R137、‘92R149、‘92R178等“92R”系抗源[96]。幾乎同期,貴州大學(xué)張慶勤等利用小麥-簇毛麥遠(yuǎn)緣雜交后代創(chuàng)制了‘貴農(nóng)21、‘貴農(nóng)22等“貴農(nóng)”系抗源[97]。92R系和貴農(nóng)系抗源都是兼抗白粉病和條銹病,后續(xù)研究表明,它們都是攜帶抗條銹病基因Yr26[98-99]和抗白粉病基因Pm21。由于在抗條銹病和抗白粉病中的良好表現(xiàn),兩者于20世紀(jì)90年代中后期被廣泛應(yīng)用于四川盆地和甘肅南部麥區(qū)。與此同時(shí),四川省農(nóng)業(yè)科學(xué)院從國(guó)際玉米小麥改良中心(CIMMYT)引進(jìn)了高抗條銹的硬粒小麥-節(jié)節(jié)麥人工合成材料,育成了‘川麥42等一批抗病品種[100]。Li等[101]通過(guò)抗病基因等位性分析,認(rèn)為‘川麥42攜帶的抗病基因YrCH42即是來(lái)自硬粒小麥的Yr24,與Yr26是等位基因[102]。由于優(yōu)良抗病性和豐產(chǎn)性,以‘川麥42及92R系和貴農(nóng)系抗源為親本,又衍生系列抗病品種,如:‘綿麥38、‘綿麥40、‘綿麥41、‘綿麥42、‘綿麥43、‘綿麥46、‘綿麥47、‘綿麥48和‘綿麥1403等;‘西科麥3號(hào)和‘西科麥5號(hào);‘科成麥1號(hào)和‘科成麥2號(hào);以及‘中麥415、‘襄麥55、‘偃育898等品種及數(shù)十份高代品系[85] ,分別應(yīng)用在隴南和川西北麥區(qū)。攜帶相同抗病基因(Yr24/26/CH42)的眾多小麥品種,同時(shí)在隴南“越夏易變區(qū)”和四川盆地“冬繁區(qū)”廣泛種植,導(dǎo)致V26/G22致病類型在短時(shí)間內(nèi)產(chǎn)生并迅速蔓延[85, 103]。慘痛教訓(xùn)是,Yr24/26/CH42抗源無(wú)序地過(guò)度利用,導(dǎo)致由興至衰僅僅十幾年。另外,新發(fā)掘的主效抗病基因該不該應(yīng)用于條銹菌易變區(qū)的小麥育種和生產(chǎn),值得我們?cè)偎伎肌?/p>
一個(gè)現(xiàn)象值得關(guān)注,雖然Yr9于20世紀(jì)90年代初即被克服,但該基因不僅沒(méi)有立刻退出中麥育種歷史舞臺(tái),且在過(guò)去的30多年中,中國(guó)小麥品種1B/1R的頻率一直居高不下, 如周陽(yáng)報(bào)道,中國(guó)北部冬麥區(qū)、黃淮麥區(qū)、長(zhǎng)江中下游麥區(qū)和西南麥區(qū),2000年前后小麥品種(系)中,1BL/1RS 易位系分布頻率分別為48.0%~54.0%、40.0%~50.4%、20.0%~6.9%和21.0%~34.6%[83],曹廷杰等對(duì)2009-2013年度河南育成的908個(gè)小麥新品種(系)分析發(fā)現(xiàn),超過(guò)60%為1B/1R易位系[104]。推測(cè)其原因:一是1B/1R攜帶的其他一些有益基因可滿足小麥性狀改良,使Yr9被動(dòng)選擇而保留下來(lái);二是Yr9仍具有殘余抗病性使其仍具有利用的價(jià)值;三是當(dāng)前小麥品種1B/1R頻率居高的結(jié)論是基于1B/1R易位系特異標(biāo)記的分子檢測(cè)而獲得的,然而,2000年以來(lái),不斷有新型1B/1R易位系引入中國(guó)小麥育種進(jìn)程,新型1B/1R易位系可能攜帶抗條銹新基因,抑或是Yr9不同的等位基因。不論是哪種原因,對(duì)已有抗病基因利用價(jià)值的深度發(fā)掘和持續(xù)利用的探討是有必要的。Yr9是否具有殘余抗病性仍需持續(xù)觀察和評(píng)估。本團(tuán)隊(duì)研究發(fā)現(xiàn),Yr9與其他Yr基因聚合,如Yr9+Yr17或Yr9+Yr18,都能增強(qiáng)品種抗病性。這是否意味著抗病基因不存在“失效”問(wèn)題,而是如何合理使用,如通過(guò)基因聚合實(shí)現(xiàn)主效抗病基因的持久利用[105]。
5.3 抗病基因使用具有盲目性和隨意性,需加強(qiáng)基因布局意識(shí)和規(guī)劃
抗病基因(品種)的合理布局(gene deployment),是將具有不同抗病基因的品種在大區(qū)范圍實(shí)行合理使用,從空間和時(shí)間上阻止病菌新小種的定向選擇和發(fā)展[106]。對(duì)流行區(qū)系的不同關(guān)鍵地區(qū),如越夏易變區(qū)、傳播橋梁區(qū)、越冬區(qū)和流行區(qū)等分別種植具有不同抗病基因的品種,阻止病菌的越夏、越冬和流行傳播。國(guó)內(nèi)抗病基因布局的應(yīng)用還處于起步階段,目前我國(guó)可資利用的抗病基因還很少,在關(guān)鍵流行區(qū)布局不同抗病類型的基因始終未能實(shí)現(xiàn)。尤其嚴(yán)重的是,對(duì)目前有限的抗病基因資源的使用,如Yr5、Yr15和Yr61等,沒(méi)有布局意識(shí)和整體規(guī)劃,僅憑育種家的喜好和本地育種目標(biāo)需求。
隴南地區(qū)是我國(guó)小麥條銹菌最重要的“核心越夏易變區(qū)”,是秋季菌源基地和新小種策源地,因此在條銹病綜合防控中具有重要地位[5-7]。該區(qū)小麥品種的抗病基因群體結(jié)構(gòu)和多樣性動(dòng)態(tài)在一定程度上決定著條銹菌的群體演化,影響新小種的定向選擇[81]。為了在全國(guó)范圍持久控制條銹病,必須減緩“易變區(qū)”新毒性小種產(chǎn)生的速率,否則,一切成功的病害控制都是暫時(shí)的。由于該區(qū)條銹菌毒性結(jié)構(gòu)復(fù)雜,遺傳多樣性異常豐富[75],理論上任何一個(gè)抗病基因,遲早都會(huì)出現(xiàn)一個(gè)與之匹配毒性的條銹菌菌株,并隨著攜帶該基因抗病品種的擴(kuò)大利用,將可能定向選擇形成流行小種。如,攜帶Yr26的‘92R系和‘貴農(nóng)系抗源,20世紀(jì)90年代后期用于隴南小麥育種,2003年后,逐步選育出‘蘭天17等多個(gè)抗病品種,并應(yīng)用于當(dāng)?shù)厣a(chǎn),2007年秋季,在‘蘭天17品種上,我們已經(jīng)分離獲得了Yr26的毒性菌株(V26),2012年,V26致病類群的頻率已超過(guò)10%[85]。因此,新發(fā)掘的抗病基因盡量避免在“易變區(qū)”使用。
四川盆地是中國(guó)小麥條銹菌重要的“冬繁區(qū)”,其冬季小麥?zhǔn)冀K保持生長(zhǎng),為條銹菌大量繁殖提供了機(jī)會(huì),條銹菌可“定居”在同一品種上持續(xù)發(fā)生多次自侵染循環(huán)(polycyclic disease with autoinfection)[86],一方面強(qiáng)化了病原菌適應(yīng)性進(jìn)化,另一方面,小麥品種依據(jù)其所攜帶Yr基因,使與之有匹配毒性的條銹菌小種得以“選擇性”放大增殖,此后又作為春季輸出菌源隨氣流向東部麥區(qū)傳播,導(dǎo)致更大規(guī)模的條銹病流行。因此,輸出的菌源群體結(jié)構(gòu)和菌源量對(duì)春季條銹病大區(qū)流行有關(guān)鍵性影響。冬繁區(qū)小麥品種應(yīng)具有苗期抗病性,因此應(yīng)使用全生育期抗病基因,且所用主效Yr基因必須有別于隴南越夏易變區(qū)[9]。然而從目前基因分布上來(lái)看,當(dāng)?shù)刂髟云贩N,‘川麥42、‘內(nèi)麥8號(hào)、‘內(nèi)麥9號(hào)、‘綿麥37等(種植面積累計(jì)約占當(dāng)?shù)匦←湶シN面積65%~70%),都攜帶Yr26基因,雖然對(duì)條銹菌主要流行小種CYR32和CYR33表現(xiàn)出較高抗病性,但對(duì)條銹菌新致病類型CYR34在苗期,甚至成株期都表現(xiàn)感病[82]。這意味著,在條銹菌冬繁區(qū),每年至少20萬(wàn)hm2小麥可作為新毒性小種V26的哺育品種。一旦環(huán)境條件適宜,條銹病害大流行,就會(huì)對(duì)我國(guó)小麥生產(chǎn)造成嚴(yán)重?fù)p失。
6 展望
育種是農(nóng)業(yè)可持續(xù)發(fā)展戰(zhàn)略的重要部分[1]。由于病原菌的多樣性及其持續(xù)的演化,小麥抗病育種不僅重要且無(wú)法終止[107]。然而在現(xiàn)代小麥育種目標(biāo)中,抗病性不總是優(yōu)先考慮的性狀,抗病育種可能會(huì)削弱在豐產(chǎn)、優(yōu)質(zhì)和農(nóng)藝適應(yīng)性等方面改良的努力[108]。因此,抗源的篩選與鑒定、抗病基因的發(fā)掘與操作、抗病品種的培育與合理使用,不同層級(jí)的研究要貫通并整體推進(jìn),而且始終要關(guān)注抗病性與其他性狀的協(xié)調(diào)性,否則再好的抗源或抗病基因也很難成為抗病品種。隨著抗條銹病新基因/QTLs不斷發(fā)掘,不僅為深入了解小麥抗條銹病遺傳基礎(chǔ),制定抗病育種新策略提供了依據(jù),同時(shí)為抗病品種的培育奠定了材料基礎(chǔ)。隨著SNP等分子標(biāo)記的大量開(kāi)發(fā),小麥染色體上的分子標(biāo)記密度增加,QTL定位也較之前更為準(zhǔn)確,使利用分子標(biāo)記進(jìn)行輔助選擇育種成為可能。基因組技術(shù)極大地增強(qiáng)了遺傳分析和作物改良的能力,大規(guī)模測(cè)序技術(shù)為更好地了解種質(zhì)資源遺傳多樣性結(jié)構(gòu),解析抗性與豐產(chǎn)性、優(yōu)質(zhì)和資源高效利用等性狀的協(xié)調(diào)性,為分子設(shè)計(jì)育種和全基因組選擇提供依據(jù)[109]。通過(guò)基因聚合等手段,培育兼抗多種病害的小麥品種,建立農(nóng)業(yè)投入安全無(wú)害、生產(chǎn)過(guò)程環(huán)境友好的農(nóng)業(yè)綠色發(fā)展技術(shù)體系具有重要實(shí)踐價(jià)值。
持久抗病性是小麥重要的育種目標(biāo),但至關(guān)重要的是,可持續(xù)抗病性問(wèn)題不能簡(jiǎn)單地作為一個(gè)育種問(wèn)題來(lái)處理。通過(guò)對(duì)條銹菌“易變區(qū)”轉(zhuǎn)主寄主小檗的有效治理等綜合措施,降低病原菌遺傳變異幾率;通過(guò)小麥與其他作物間作、混作,不同抗病品種輪換使用等農(nóng)業(yè)措施,減少病原體的進(jìn)化速率[110];通過(guò)不同Yr基因遺傳多樣性利用和基因布局[106, 110],減小對(duì)毒性小種的定向選擇壓力,避免流行小種的形成和發(fā)展[108]。因此,寄主多樣化既是育種的重要補(bǔ)充,也是育種家需要考慮的重要背景因素。
參考文獻(xiàn)
[1] TESTER M, LANGRIDGE P. Breeding technologies to increase crop production in a changing world [J].Science, 2010, 327(5967): 818-822.
[2] 何中虎,莊巧生,程順和,等.中國(guó)小麥產(chǎn)業(yè)發(fā)展與科技進(jìn)步[J].農(nóng)學(xué)學(xué)報(bào),2018,8(1):99-106.
[3] 劉志勇,王道文,張愛(ài)民,等.小麥育種行業(yè)創(chuàng)新現(xiàn)狀與發(fā)展趨勢(shì)[J].植物遺傳資源學(xué)報(bào),2018,19(3):430-434.
[4] CUI K, SHOEMAKER S P. A look at food security in China[J/OL]. Science of Food, 2018, 2:4 doi:10.1038/ s41538-018-0012-x.
[5] 康振生,王曉杰,趙杰,等.小麥條銹菌致病性及其變異研究進(jìn)展[J].中國(guó)農(nóng)業(yè)科學(xué),2015,48(17):3439-3453.
[6] 李振岐,曾士邁.中國(guó)小麥銹病[M].北京:中國(guó)農(nóng)業(yè)出版社,2002:370-373.
[7] 陳萬(wàn)權(quán),康振生,馬占鴻,等.中國(guó)小麥條銹病綜合治理理論與實(shí)踐[J].中國(guó)農(nóng)業(yè)科學(xué),2013,46(20):4254-4262.
[8] 莊巧生.中國(guó)小麥品種改良及系譜分析[M].北京:中國(guó)農(nóng)業(yè)出版社,2003:421-444.
[9] 韓德俊,王琪琳,張立,等.“西北-華北-長(zhǎng)江中下游”條銹病流行區(qū)系當(dāng)前小麥品種(系)抗條銹病性評(píng)價(jià)[J].中國(guó)農(nóng)業(yè)科學(xué),2010,43(14):2889-2896.
[10] BROWN J, HOVMOLLER M S. Epidemiology-aerial dispersal of pathogens on the global and continental scales and its impact on plant disease [J]. Science, 2002, 297(5581): 537-541.
[11] WU Jianhui, HANG Shuo, ZENG Qingdong, et al. Comparative genome-wide mapping versus extreme pool-genotyping and development of diagnostic SNP markers linked to QTL for adult plant resistance to stripe rust in common wheat [J]. Theoretical and Applied Genetics, 2018,131:1777-1792.
[12] MCINTOSH R A, DUBCOVSKY J, ROGERS J, et al. Catalogue of gene symbols for wheat: 2017 Supplement[J/OL].[2018-08-01].http:∥www.shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement2017.pdf.
[13] ZENG Qingdong, SHEN Chuan, YUAN Fengping, et al. The resistance evaluation of the Yr genes to the main prevalent pathotypes of Puccinia striiformis f. sp. tritici in China [J]. Acta Phytopathologica Sinica, 2015,45:641-650.
[14] LUPTON F G H, MACER R C F. Inheritance of resistance to yellow rust (Puccinia glumarum Erikss., and Henn.) in seven varieties of wheat [J]. Transactions of the British Mycological Society, 1962, 45(1): 21-45.
[15] MACER R C F. The formal and monosomic genetic analysis of stripe rust (Puccinia striiformis) resistance in wheat[C]∥MACKEY J. Proceedings of the 2nd International Wheat Genetics Symposium. 19-24 August 1963, Lund, Sweden. Hereditas 2(Suppl.),1966: 127-142.
[16] RILEY R, CHAPMAN V, JOHNSON R. The incorporation of alien disease resistance in wheat by genetic interference with the regulation of meiotic chromosome synapsis[J]. Genetical Research, 1968, 12: 713-715.
[17] MACER R C F. Plant pathology in a changing world [J]. Transactions of the British Mycological Society, 1975, 65: 351-374.
[18] MCINTOSH R A. Catalogue of gene symbols for wheat [M]∥MILLER T E, KOEBNER R M D. Proceedings of the 7th International Wheat Genetics Symposium. 14-19 July 1988, Cambridge, UK. Institute of Plant Science Research, Cambridge, UK. 1988:1225-1323.
[19] GERECHTER-AMITAI Z K, VAN SILFHOUT C H, GRAMA A, et al. Yr15 -a new gene for resistance to Puccinia striiformis in Triticum dicoccoides sel. G-25[J]. Euphytica, 1989, 43: 187-190.
[20] WORLAND A J, LAW C N. Genetic analysis of chromosome 2D of wheat. I. The location of genes affecting height, day-length insensitivity, hybrid dwarfism and yellow rust resistance [J]. Pflanzenzücht, 1986, 96: 331-345.
[21] BARIANA H S, MCINTOSH R A. Cytogenetic studies in wheat. XIV. Location of rust resistance genes in VPM1 and their genetic linkage with other disease resistance genes in chromosome 2A [J]. Genome, 1993, 36: 476-482.
[22] SINGH R P. Genetic association of leaf rust resistance gene Lr34 with adult-plant resistance to stripe rust in bread wheat[J]. Phytopathology, 1992, 82: 835-838.
[23] CHEN X M, LINE R F. Gene number and heritability of wheat cultivars with durable, high-temperature, adult-plant resistance and race-specific resistance to Puccinia striiformis [J]. Phytopathology, 1995, 85: 573-578.
[24] MCINTOSH R A, LAGUDAH E S. Cytogenetical studies in wheat. XVIII. Gene Yr24 for resistance to stripe rust[J]. Plant Breeding, 2000, 119: 81-83.
[25] CALONNEC A, JOHNSON R, DE VALLAVIEILLE-POPE C. Genetic analyses of resistance of the wheat differential cultivars Carstens V and Spaldings prolific to two races of Puccinia striiformis [J]. Plant Pathology, 2002, 51: 777-786.
[26] MA Jianxin, ZHOU Ronghua, DONG Yushen, et al. Molecular mapping and detection of the yellow rust resistance gene Yr26 in wheat transferred from Triticum turgidum L. using microsatellite markers [J]. Euphytica,2001, 120: 219-226.
[27] MCDONALD D B, MCINTOSH R A, WELLINGS C R, et al. Cytogenetical studies in wheat. XIX. Location and linkage studies on gene Yr27 for resistance to stripe (yellow) rust [J]. Euphytica, 2004, 136: 239-248.
[28] SINGH R P, NELSON J C, SORRELLS M E. Mapping Yr28 and other genes for resistance to stripe rust in wheat [J]. Crop Science, 2000, 40: 1148-1155.
[29] WILLIAM M, SINGH R P, HUERTA-ESPINO J, et al. Molecular marker mapping of leaf rust resistance gene Lr46 and its association with stripe rust resistance gene Yr29 in wheat [J]. Phytopathology, 2003, 93(2): 153-159.
[30] SINGH R P, WILLIAM H M, HUERTA-ESPINO J, et al. Identification and mapping of gene Yr31 for resistance to stripe rust in Triticum aestivum cultivar Pastor [C]∥Proceedings of the 10th International Wheat Genetics Symposium, 2003: 1-6.
[31] ERIKSEN L, AFSHARI F, CHRISTIANSEN M J, et al. Yr32 for resistance to stripe (yellow) rust present in the wheat cultivar Carstens V[J]. Theoretical and Applied Genetics, 2004, 108: 567-575.
[32] ZAHRAVI M, BARIANA H S, SHARIFLOU M R, et al. Bulk segregant analysis of stripe rust resistance in wheat (Triticum aestivum) using microsatellite markers [C]∥ POGNA N E, ROMANO M, POGNA E A, et al. Proceedings of 10th International Wheat Genetics Symposium,2003:861-863.
[33] BARIANA H S, PARRY N, BARCLAY I R, et al. Identification and characterization of stripe rust resistance gene Yr34 in common wheat [J]. Theoretical and Applied Genetics, 2006, 112(6): 1143-1148.
[34] MARAIS G F, PRETORIUS Z A, MARAIS A S, et al. Transfer of rust resistance genes from Triticum species to common wheat [J]. South African Journal of Plant and Soil, 2003, 20(4): 193-198.
[35] UAUY C, BREVIS J C, CHEN X, et al. High-temperature adult-plant (HTAP) stripe rust resistance gene Yr36 from Triticum turgidum ssp. dicoccoides is closely linked to the grain protein content locus Gpc-B1[J]. Theoretical and Applied Genetics, 2005, 112(1): 97-105.
[36] MARAIS G F, MCCALLUM B, SNYMAN J E, et al. Leaf rust and stripe rust resistance genes Lr54 and Yr37 transferred to wheat from Aegilops kotschyi [J]. Plant Breeding, 2005, 124(6): 538-541.
[37] MARAIS G F, MCCALLUM B, MARAIS A S. Leaf rust and stripe rust resistance genes derived from Aegilops sharonensis [J]. Euphytica, 2006, 149(3): 373-380.
[38] LIN F, CHEN X M. Genetics and molecular mapping of genes for race-specific all-stage resistance and non-race-specific high-temperature adult-plant resistance to stripe rust in spring wheat cultivar Alpowa [J]. Theoretical and Applied Genetics, 2007, 114(7): 1277-1287.
[39] KURAPARTHY V, CHHUNEJA P, DHALIWAL H S, et al. Characterization and mapping of cryptic alien introgression from Aegilops geniculata with new leaf rust and stripe rust resistance genes Lr57 and Yr40 in wheat [J]. Theoretical and Applied Genetics, 2007, 114(8): 1379-1389.
[40] LUO P G, REN Z L, ZHANG H Q, et al. Identification, chromosome location, and diagnostic markers for a new gene (YrCN19) for resistance to wheat stripe rust [J]. Phytopathology, 2005, 95(11): 1266-1270.
[41] MARAIS F, MARAIS A, MCCALLUM B, et al. Transfer of leaf rust and stripe rust resistance genes Lr62 and Yr42 from Aegilops neglecta Req. ex Bertol. to common wheat [J]. Crop Science, 2009, 49(3): 871-879.
[42] CHENG P, CHEN X M. Molecular mapping of a gene for stripe rust resistance in spring wheat cultivar IDO377s[J]. Theoretical and Applied Genetics, 2010, 121(1): 195-204.
[43] SUI X X, WANG M N, CHEN X M. Molecular mapping of a stripe rust resistance gene in spring wheat cultivar Zak[J]. Phytopathology, 2009, 99(10): 1209-1215.
[44] LI Q, CHEN X M, WANG M N, et al. Yr45, a new wheat gene for stripe rust resistance on the long arm of chromosome 3D [J]. Theoretical and Applied Genetics, 2011, 122(1): 189-197.
[45] HERRERA-FOESSEL S A, LAGUDAH E S, HUERTA-ESPINO J, et al. New slow-rusting leaf rust and stripe rust resistance genes Lr67 and Yr46 in wheat are pleiotropic or closely linked [J]. Theoretical and Applied Genetics, 2011, 122(1): 239-249.
[46] BANSAL U K, FORREST K L, HAYDEN M J, et al. Characterisation of a new stripe rust resistance gene Yr47 and its genetic association with the leaf rust resistance gene Lr52 [J]. Theoretical and Applied Genetics, 2011, 122(8): 1461-1466.
[47] LOWE I, JANKULOSKI L, CHAO S, et al. Mapping and validation of QTL which confer partial resistance to broadly virulent post-2000 North American races of stripe rust in hexaploid wheat [J].Theoretical and Applied Genetics,2011,123(1): 143-157.
[48] LIU Jie, CHANG Zhijian, ZHANG Xiaojun, et al. Putative Thinopyrum intermedium-derived stripe rust resistance gene Yr50 maps on wheat chromosome arm 4BL [J]. Theoretical and Applied Genetics, 2013, 126(1): 265-274.
[49] RANDHAWA M, BANSAL U, VALARIK M, et al. Molecular mapping of stripe rust resistance gene Yr51 in chromosome 4AL of wheat [J]. Theoretical and Applied Genetics, 2014, 127(2): 317-324.
[50] REN R S, WANG M N, CHEN X M, et al. Characterization and molecular mapping of Yr52 for high-temperature adult-plant resistance to stripe rust in spring wheat germplasm PI 183527 [J]. Theoretical and Applied Genetics, 2012, 125(5): 847-857.
[51] XU L S, WANG M N, CHENG P, et al. Molecular mapping of Yr53, a new gene for stripe rust resistance in durum wheat accession PI 480148 and its transfer to common wheat[J]. Theoretical and Applied Genetics, 2013, 126(2): 523-533.
[52] BASNET B R, SINGH R P, IBRAHIM A M H, et al. Characterization of Yr54 and other genes associated with adult plant resistance to yellow rust and leaf rust in common wheat Quaiu 3 [J]. Molecular Breeding, 2014, 33(2): 385-399.
[53] MCINTOSH R A, DUBCOVSKY J, ROGERS J W, et al. Catalogue of gene symbols for wheat: 2013-14 Supplement[M]∥Annual wheat newsletter, 2014:58.
[54] RANDHAWA M S, BARIANA H S, MAGO R, et al. Mapping of a new stripe rust resistance locus Yr57 on chromosome 3BS of wheat [J]. Molecular Breeding, 2015, 35(2):65.
[55] CHHETRI M, BARIANA H, KANDIAH P, et al. Yr58: A new stripe rust resistance gene and its interaction with Yr46 for enhanced resistance [J].Phytopathology,2016,106:1530-1534.
[56] ZHOU Xinli, WANG Meinan, CHEN Xianming, et al. Identification of Yr59 conferring high-temperature adult-plant resistance to stripe rust in wheat germplasm PI 178759 [J]. Theoretical and Applied Genetics, 2014, 127(4): 935-945.
[57] HERRERA-FOESSEL S A, SINGH R P, LAN C X, et al. Yr60, a gene conferring moderate resistance to stripe rust in wheat [J]. Plant Disease, 2015, 99(4): 508-511.
[58] ZHOU X L, HAN D J, CHEN X M, et al. Characterization and molecular mapping of stripe rust resistance gene Yr61 in winter wheat cultivar Pindong 34 [J]. Theoretical and Applied Genetics, 2014, 127(11): 2349-2358.
[59] LU Yan, WANG Meinan, CHEN Xianming, et al. Mapping of Yr62 and a small-effect QTL for high-temperature adult-plant resistance to stripe rust in spring wheat PI 192252 [J]. Theoretical and Applied Genetics, 2014, 127(6): 1449-1459.
[60] CHENG P, XU L S, WANG M N, et al. Molecular mapping of genes Yr64 and Yr65 for stripe rust resistance in hexaploid derivatives of durum wheat accessions PI 331260 and PI 480016 [J]. Theoretical and Applied Genetics, 2014, 127(10): 2267-2277.
[61] LI Y, NIU Y C, CHEN X M. Mapping a stripe rust resistance gene YrC591 in wheat variety C591 with SSR and AFLP markers[J]. Theoretical and Applied Genetics, 2009, 118(2): 339-346.
[62] MCINTOSH R A, DUBCOVSKY J, ROGERS J, et al. Catalogue of gene symbols for wheat: 2016 Supplement [J/OL].[2018-08-01].http:∥www.shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement2015-2016.pdf. 2016.
[63] HOU L, JIA J, ZHANG X, et al. Molecular mapping of the stripe rust resistance gene Yr69 on wheat chromosome 2AS[J]. Plant Disease, 2016, 100(8): 1717-1724.
[64] BANSAL M, KAUR S, DHALIWAL H S, et al. Mapping of Aegilops umbellulata-derived leaf rust and stripe rust resistance loci in wheat [J].Plant Pathology,2017,66(1): 38-44.
[65] BARIANA H, FORREST K, QURESHI N, et al. Adult plant stripe rust resistance gene Yr71 maps close to Lr24 in chromosome 3D of common wheat [J/OL]. Molecular Breeding, 2016, 36(7):98. https:∥doi.org/10.1007/s11032-016-0528-1.
[66] DRACATOS P M, ZHANG P, PARK R F, et al. Complementary resistance genes in wheat selection ‘Avocet R confer resistance to stripe rust [J]. Theoretical and Applied Genetics, 2016, 129(1): 65-76.
[67] XIANG C, FENG J Y, WANG M N, et al. Molecular mapping of stripe rust resistance gene Yr76 in winter club wheat cultivar Tyee [J].Phytopathology,2016,106(10):1186-1193.
[68] MCINTOSH R A, DUBCOVSKY J, ROGERS J, et al. Catalogue of gene symbols for wheat: 2017 Supplement [EB/OL].[2018-08-01].http:∥www.shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement2017.pdf. 2017.
[69] DONG Z, HEGARTY J M, ZHANG J, et al. Validation and characterization of a QTL for adult plant resistance to stripe rust on wheat chromosome arm 6BS (Yr78)[J]. Theoretical and Applied Genetics, 2017, 130(10): 2127-2137.
[70] FENG J, WANG M, SEE D R, et al. Characterization of novel gene Yr79 and four additional quantitative trait loci for all-stage and high-temperature adult-plant resistance to stripe rust in spring wheat PI 182103 [J].Phytopathology,2018,108(6):737-747.
[71] NSABIYERA V, BARIANA H S, QURESHI N, et al. Characterisation and mapping of adult plant stripe rust resistance in wheat accession Aus27284 [J]. Theoretical and Applied Genetics. 2018,131(8):1-9.
[72] ZENG Qingdong, HAN Dejun, WANG Qilin, et al. Stripe rust resistance and genes in Chinese wheat cultivars and breeding lines [J]. Euphytica, 2014, 196(2): 271-284.
[73] JIN Y, SZABO L J, CARSON M. Century-old mystery of Puccinia striiformis life history solved with the identification of Berberis as an alternate host[J]. Phytopathology, 2010, 100:432-435.
[74] ZHAO Jie, WANG Long, WANG Zhiyan, et al. Identification of eighteen Berberis species as alternate hosts of Puccinia striiformis f. sp. tritici and virulence variation in the pathogen isolates from natural infection of barberry plants in China [J]. Phytopathology, 2013, 103:927-934.
[75] ZHAO Jie, WANG Meinan, CHEN Xianming, et al. Role of alternate hosts in epidemiology and pathogen variation of cereal rusts [J].Annual Review of Phytopathology,2016,54:207-228.
[76] THRALL P H, BURDON J J. Evolution of virulence in a plant host-pathogen metapopulation [J]. Science, 2003, 299(5613): 1735-1737.
[77] ZHAN J, THRALL P H, PAPALX J, et al. Playing on a pathogen's weakness: using evolution to guide sustainable plant disease control strategies [J]. Annual Review of Phytopathology, 2015, 53: 19-43.
[78] BROWN J K M, TELLIER A. Plant-parasite coevolution: bridging the gap between genetics and ecology [J]. Annual Review of Phytopathology, 2011, 49(1): 345-367.
[79] BURDON J J, BARRETT L G, REBETZKE G, et al. Guiding deployment of resistance in cereals using evolutionary principles [J]. Evolutionary Applications, 2014, 7(6): 609-624.
[80] HOVMLLER M S, SRENSEN C K, WALTER S, et al. Diversity of Puccinia striiformis on cereals and grasses [J]. Annual Review of Phytopathology, 2011, 49(1): 197-217.
[81] JOHNSON T. Man-guided evolution in plant rusts [J]. Science, 1961, 133(3450): 357-362.
[82] 薛文波,許鑫,穆京妹,等.中國(guó)小麥主栽品種抗條銹性評(píng)價(jià)與基因分析[J].麥類作物學(xué)報(bào),2014,34(8):1054-1060
[83] 周陽(yáng),何中虎,張改生,等.1BL/1RS易位系在我國(guó)小麥育種中的應(yīng)用[J].作物學(xué)報(bào),2004,30(6):531-535.
[84] 李在峰.中國(guó)小麥品種條銹鑒定及抗條銹新基因YrZH84的分子標(biāo)記[D].保定:河北農(nóng)業(yè)大學(xué),2006.
[85] HAN Dejun, WANG Qilin, CHEN Xianming, et al. Emerging Yr26-virulent races of Puccinia striiformis f. tritici are threatening wheat production in the Sichuan Basin, China [J]. Plant Disease, 2015, 99(6): 754-760.
[86] 李北,徐琪,楊宇衡,等.重慶麥區(qū)小麥品種(系)抗條銹性評(píng)價(jià)與基因分析[J].中國(guó)農(nóng)業(yè)科學(xué),2017,50(3):413-425.
[87] SCHWESSINGER B. Fundamental wheat stripe rust research in the 21st century [J].New Phytologist,2017,213(4):1625-1631.
[88] GRAYBOSCH R A. Uneasy Unions: Quality effect s of rye chromatin transfers to wheat [J]. Cereal Science, 2001, 33: 3 -16.
[89] RABINOVICH S V. Importance of wheat-rye translocations for breeding modern cultivar of Triticum aestivum L.[J].Euphytica, 1998, 100(1/3): 323-340.
[90] 李振岐.我國(guó)小麥品種抗條銹性喪失原因及其解決途徑[J].中國(guó)農(nóng)業(yè)科學(xué),1980(3):72-76.
[91] 商鴻生.隴南洛夫林系統(tǒng)品種抗條銹性變異問(wèn)題聯(lián)合考察報(bào)告[J].西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版),1981(4):1-9.
[92] 李振岐,商洪生,陰省林,等.洛夫林小麥抗條銹性變異的研究[J].中國(guó)農(nóng)業(yè)科學(xué),1984,17(1):68-74.
[93] 康振生,李振岐.洛夫林10常溫致病新菌系的發(fā)現(xiàn)[J].西北農(nóng)學(xué)院學(xué)報(bào),1984(4):18-28.
[94] 康振生,李振岐,張碩成.小麥條銹菌洛夫林13菌系的初步研究[J].西北農(nóng)業(yè)大學(xué)學(xué)報(bào),1987,15(2):105-106.
[95] 吳立人,孟慶玉,謝水仙,等.洛10,洛13致病類群的發(fā)現(xiàn)與研究[J].中國(guó)農(nóng)業(yè)科學(xué),1988,21(5):53-58.
[96] 劉大鈞,陳佩度,裴廣錚,等.將簇毛麥種質(zhì)轉(zhuǎn)移給小麥的研究[J].遺傳學(xué)報(bào),1983(2):103-113.
[97] 張慶勤,謝水仙.簇毛麥在小麥抗病育種中的利用[J].植物保護(hù)學(xué)報(bào),1998,25(1):41-45.
[98] MA Jianxin, ZHOU Ronghua, DONG Yushen, et al. Molecular mapping and detection of the yellow rust resistance gene Yr26 in wheat transferred from Triticum turgidum L. using microsatellite markers [J]. Euphytica, 2001, 120(2): 219-226.
[99] WANG Chunmei, ZHANG Yiping, HAN Dejun, et al. SSR and STS markers for wheat stripe rust resistance gene Yr26[J]. Euphytica, 2008, 159: 359-366.
[100] LI G Q, LI Z F, YANG W Y, et al. Molecular mapping of stripe rust resistance gene YrCH42 in Chinese wheat cultivar Chuanmai 42 and its allelism with Yr24 and Yr26 [J]. Theoretical and Applied Genetics, 2006, 112: 1434-1440.
[101] LI Z F, XIA X C, ZHOU X C, et al. Seedling and slow rusting resistance to stripe rust in Chinese common wheats [J]. Plant Disease, 2006, 90: 1302-1312.
[102] MCINTOSH R, MU Jingmei, HAN Dejun, et al. Wheat stripe rust resistance gene Yr24/Yr26: A retrospective review[J]. The Crop Journal, 2018(4):321-329.
[103] LIU T G, PENG Y L, CHEN W Q, et al. First detection of virulence in Puccinia striiformis f.sp. tritici in China to resistance genes Yr24 (=Yr26) present in wheat cultivar Chuanmai 42 [J]. Plant Disease, 2010, 94(9): 1163.
[104] 曹廷杰,陳永興,李丹,等.河南小麥新育成品種(系)白粉病抗性鑒定與分子標(biāo)記檢測(cè)[J].作物學(xué)報(bào),2015,41(8):1172-1182.
[105] NING Yuese, WANG Guoliang. Breeding plant broad-spectrum resistance without yield penalties [J]. Proceedings of the National Academy of Sciences, 2018, 115 (12): 2859-2861.
[106] FABRE F, ROUSSEAU E, MAILLERET L, et al. Durable strategies to deploy plant resistance in agricultural landscapes[J]. New Phytologist, 2012, 193: 1064-1075.
[107] MELANIA F, KIM E. HAMMOND K, et al. A review of wheat diseases-a field perspective [J]. Molecular Plant Pathology, 2018, 19(6):1523-1536.
[108] NELSON R, WIESNER-HANKS T, WISSER R, et al. Navigating complexity to breed disease-resistant crops [J]. Nature Reviews Genetics,2017-11-07, DOI: 10.1038/nrg.2017.82
[109] DANGL J L, HORVATH D M, STASKAWICZ B J. Pivoting the plant immune system from dissection to deployment[J]. Science, 2013,341:746-751.
[110] RIMBAUD L, PAPALX J, BARRETT L G, et al. Mosaics, mixtures, rotations or pyramiding: What is the optimal strategy to deploy major gene resistance?[J/OL]. Evolutionary Applications, https:∥doi.org/10.1111/eva.12681.
(責(zé)任編輯: 田 喆)