国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

運動對棕色脂肪功能的影響及作用機(jī)制

2018-12-07 10:28:50付鵬宇龔麗景
體育科學(xué) 2018年11期
關(guān)鍵詞:產(chǎn)熱糖脂棕色

付鵬宇,龔麗景,胡 揚

?

運動對棕色脂肪功能的影響及作用機(jī)制

付鵬宇1,龔麗景2,胡 揚2

1.北京體育大學(xué) 運動人體科學(xué)學(xué)院, 北京 100084; 2. 北京體育大學(xué) 中國運動與健康研究院, 北京 100084

研究綜述了運動對棕色脂肪組織(brown adipose tissue,BAT)功能的影響及其發(fā)揮作用的可能通路機(jī)制。隨著肥胖發(fā)病率的日益增加,由此引發(fā)的多種慢性疾病正嚴(yán)重威脅著人類的健康。近年來,BAT以其耗能產(chǎn)熱能力而備受關(guān)注。隨著研究的深入,發(fā)現(xiàn)活化的BAT具有對抗肥胖所致慢性炎癥狀態(tài)和促進(jìn)糖脂代謝的功能,以上特性都使BAT成為對抗肥胖及代謝相關(guān)疾病的新靶點。運動作為減脂降重和預(yù)防慢病的有效手段,其發(fā)揮促進(jìn)健康作用的機(jī)制可能與激活BAT有關(guān)。具體作用機(jī)制如下:1)運動發(fā)揮促進(jìn)BAT產(chǎn)熱功能可能與VEGF信號通路、PI3K-Akt信號通路、PPAR信號通路有關(guān);2)發(fā)揮抗炎作用可能與ErbB信號通路、Jak-STAT信號通路、TGF-β信號通路、胰島素信號通路有關(guān);3)發(fā)揮促進(jìn)糖脂代謝的作用可能與PPAR信號通路、AMPK信號通路、胰島素信號通路有關(guān)。綜上,運動可通過調(diào)控多條信號通路而發(fā)揮促進(jìn)BAT產(chǎn)熱、提高抗炎特性及調(diào)控糖脂代謝變化的作用。

運動;棕色脂肪;產(chǎn)熱;抗炎;糖脂代謝

1 前言

棕色脂肪組織(brown adipose tissue,BAT)可通過非顫抖性產(chǎn)熱調(diào)節(jié)體溫,其多室的棕色脂肪細(xì)胞以含有大量線粒體和高表達(dá)解耦聯(lián)蛋白1(uncoupling protein 1,UCP-1)等特異性基因為特征,在調(diào)節(jié)全身能量平衡中發(fā)揮關(guān)鍵作用,有助于控制肥胖及其相關(guān)疾病的發(fā)展[17,19,32]。BAT在調(diào)控代謝中也發(fā)揮著重要作用,表現(xiàn)在BAT氧化葡萄糖和脂質(zhì),進(jìn)而調(diào)節(jié)血糖平衡并降低血脂;BAT還有抑制巨噬細(xì)胞炎性特征的能力,可抵抗肥胖所致慢性炎癥狀態(tài)[17]。此外,BAT調(diào)控多囊卵巢綜合征等疾病的研究也逐漸被報道[6,17,24,44],提示需更加全面地審視BAT的功能。有研究證實,成人體內(nèi)存在有活性BAT[40,43],且BAT的量和活性會受多種生理狀態(tài)(如性別[11,21]、激素水平[22,42]、肥胖易感性[1,28]、飲食狀況[35])和外界刺激(如寒冷[46]、低氧環(huán)境[3,7])的影響[15,30]。運動作為促進(jìn)能量代謝的有效手段,被證明有激活BAT產(chǎn)熱功能的作用[23,45],但有關(guān)運動對BAT其他功能的研究還少有報道。而對運動調(diào)控BAT功能的探索多集中于白色脂肪棕色化的通路研究,缺少運動直接調(diào)控BAT功能的基因和通路研究。綜上所述,本研究將對運動調(diào)節(jié)BAT功能及其發(fā)揮作用的可能機(jī)制進(jìn)行闡述。

2 運動對BAT功能的影響

2.1 運動促進(jìn)BAT產(chǎn)熱

BAT產(chǎn)熱功能通過其線粒體內(nèi)膜上的氧化和ATP生成過程解耦聯(lián)實現(xiàn)[20]。線粒體發(fā)生和功能相關(guān)基因表達(dá)的增加以及募集能力的增強會提高BAT產(chǎn)熱能力,如環(huán)氧化酶-2(cyclooxygenase-2,COX-2)過表達(dá)可通過COX-2-前列腺素(prostaglandin,PG)途徑增加UCP-1含量和BAT產(chǎn)熱,提高基礎(chǔ)代謝率[48]。長期有氧運動可顯著增加BAT質(zhì)量、血流量和氧耗速率,增強線粒體生物發(fā)生、活性和呼吸功能[37,52];還可上調(diào)諸如UCP-1等BAT特異性基因的表達(dá),增加與線粒體功能相關(guān)的2型脫碘酶(type 2 deiodinase,DIO2)、細(xì)胞色素氧化酶(cytochrome oxidase)等酶的活性[27]。

2.2 運動促進(jìn)BAT的抗炎功能

4周的中等強度跑臺訓(xùn)練干預(yù)后可以下調(diào)BAT中巨噬細(xì)胞表達(dá)基因1(macrophage expressed gene 1,Mpeg1)、單核細(xì)胞向巨噬細(xì)胞轉(zhuǎn)化基因(monocyte to macrophage differentiation-associated,Mmd)、趨化因子配體28 [chemokine (C-C motif) ligand 28,Ccl28]、白介素-6受體α(interleukin 6 receptor alpha,Il6ra)、腫瘤壞死因子受體超家族成員1b(tumor necrosis factor receptor superfamily member 1b,Tnfrsf1b)和瘦素受體(leptin receptor,Lepr)等由肥胖所上調(diào)的炎癥反應(yīng)和促炎相關(guān)基因,并通過調(diào)節(jié)Janus激酶/信號轉(zhuǎn)導(dǎo)和轉(zhuǎn)錄激活子(Janus kinases signal transducer and activator of transcription, Jak-STAT)、ErbB、轉(zhuǎn)化生長因子-β(transforming growth factor-beta,TGF-β)和胰島素(Insulin)信號通路而促進(jìn)BAT發(fā)揮抵抗肥胖所致的慢性炎癥狀態(tài)的作用[5]。

運動調(diào)控BAT抗炎功能的可能機(jī)制在于:1)脂肪酸(fatty acid,F(xiàn)A)釋放可刺激巨噬細(xì)胞的浸潤[29],而運動可以提高BAT的β氧化能力,使FA在局部的釋放速率減慢[54];2)運動所誘導(dǎo)的去甲腎上腺素等激素可在重塑BAT免疫細(xì)胞(B細(xì)胞)的表型中發(fā)揮重要作用[38];3)運動可以抑制BAT中促炎因子的表達(dá)[51];4)長期適宜強度的運動可以促進(jìn)BAT中氧化系統(tǒng)和抗氧化系統(tǒng)平衡,改善炎癥狀態(tài)[10]。

2.3 運動促進(jìn)BAT的糖脂代謝

運動刺激交感神經(jīng),誘發(fā)成熟的BAT細(xì)胞釋放去甲腎上腺素,后者與β-腎上腺素能受體結(jié)合后,激活G-蛋白激活腺苷酸環(huán)化酶(adenylyl cyclase,AC),促進(jìn)環(huán)磷酸腺苷(cyclic Adenosine monophosphate,cAMP)、蛋白激酶A(protein kinase A,PKA)和p38分裂原激活的蛋白激酶(mitogen activated protein kinases,MAPK)對脂多糖刺激酶(激素敏感脂肪酶、脂肪三?;视椭久负蛦熙;视椭久福┑募せ钭饔茫煌瑫r,運動引起的去甲腎上腺素水平上調(diào)可促進(jìn)BAT細(xì)胞對葡萄糖的攝取,增加BAT的糖代謝能力。抗阻訓(xùn)練可激活PI3K/Akt/mTOR/PGC-1α/UCP-1信號通路,增加BAT中Glut4 mRNA和蛋白表達(dá),促進(jìn)BAT對葡萄糖的攝取,降低血糖,從而改善高脂膳食所致的機(jī)體糖耐量和胰島素耐量降低,下調(diào)胰島素抵抗大鼠的Lee’s指數(shù)和體重[2]。脂質(zhì)組學(xué)研究發(fā)現(xiàn),自由轉(zhuǎn)輪運動可以顯著下調(diào)BAT中甘油三酯(triglyceride,TG)的總豐度及磷脂代謝和脂肪酸生物合成相關(guān)基因的表達(dá)[33]。

3 運動干預(yù)調(diào)控BAT功能的可能機(jī)制

運動激活BAT可能由以下過程介導(dǎo):1)BAT受交感神經(jīng)系統(tǒng)的支配,運動可通過提高交感神經(jīng)興奮性而刺激BAT功能的增強[55];2)由于BAT與肌細(xì)胞同源,而運動可促進(jìn)肌源性細(xì)胞因子——鳶尾素(Irisin)[18]及β氨基異丁酸(beta aminoisobutyric acid,BAIBA)[41]表達(dá),且可通過調(diào)節(jié)Irisin(運動-PGC-1α-FNDC5- PPARα軸)和Sirt1信號途徑[39]激活BAT;3)運動可通過對其他組織產(chǎn)生適應(yīng)性改變而提高BAT活性,如運動可促進(jìn)下丘腦腦源性的神經(jīng)營養(yǎng)因子表達(dá)以增強線粒體活性和促進(jìn)血管生成[8]。長期運動可增加小鼠肩胛間BAT前體細(xì)胞募集和增加BAT相對數(shù)量和活性[25,50]。綜上研究,運動可通過激活BAT在促進(jìn)產(chǎn)熱、抑制肥胖所致的慢性炎癥狀態(tài)和增加糖脂代謝方面發(fā)揮著重要作用。本實驗室前期通過mRNA表達(dá)譜芯片研究發(fā)現(xiàn),運動可通過以下信號通路調(diào)控BAT的不同功能(表1)。

表1 運動調(diào)控BAT功能的信號通路

Table 1 Signaling Pathways for BAT Functions Regulating by Exercise

3.1 運動調(diào)控BAT產(chǎn)熱功能相關(guān)通路

血管內(nèi)皮生長因子B(vascular endothelial cell growth factor B,VEGF-B)大量表達(dá)于BAT,可通過調(diào)節(jié)脂肪酸轉(zhuǎn)運蛋白(fatty acid transport proteins,F(xiàn)ATPs)在血管內(nèi)皮細(xì)胞表達(dá),增加FA的攝取和代謝[31]。其下游的前列腺素E合酶(prostaglandin E synthase,ptges)和前列腺素I2合酶/環(huán)前列腺素(prostaglandin I2 synthase,ptgis)均為PG家族成員,可抑制白色脂肪細(xì)胞分化,增加BAT細(xì)胞氧耗。運動激活VEGF/COX-2/PG信號通路可提高BAT活性,而其下游的PG(I2)/Ptgir(prostaglandin receptor)/PPARγ信號通路可促進(jìn)間充質(zhì)干細(xì)胞(mesenchymal stem cell,MSC)向BAT細(xì)胞分化,有助于增加機(jī)體產(chǎn)熱和能耗[13]。此外,運動還可通過激活VEGF通路下游的PI3K/Akt通路而激活哺乳動物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR),進(jìn)而通過PPAR通路提高UCP-1的表達(dá)。有氧運動可通過上調(diào)上述這些通路而增強BAT的產(chǎn)熱能力[4](圖1)。

圖1 運動通過VEGF、PPAR和PI3K-Akt信號通路調(diào)控BAT產(chǎn)熱功能

Figure 1. Exercise Regulates Thermogenesis of BAT by VEGF, PPAR and PI3K-Akt Signaling Pathways

注:圖中紅色部分表示上調(diào)表達(dá)基因,實線箭頭表示直接調(diào)控作用,虛線箭頭表示間接調(diào)控作用,-p表示去磷酸化,下同。

3.2 運動調(diào)控BAT炎癥相關(guān)通路

神經(jīng)調(diào)節(jié)因子-1(Neuregulin1,NRG1)通過與表皮生長因子受體ErbB3/4結(jié)合,介導(dǎo)ErbB2受體活化,進(jìn)一步激活細(xì)胞外調(diào)節(jié)蛋白激酶1/2(extracellular regulated protein kinases,ERK1/2)和/或PI3K(Akt)通路促進(jìn)血管新生[26],以使促炎因子大量轉(zhuǎn)運至循環(huán)系統(tǒng),加劇機(jī)體代謝性病變的進(jìn)程。促炎因子IL-6與其受體結(jié)合后,激活JAK激酶,通過JAK-STAT通路參與機(jī)體的炎癥反應(yīng)[47],細(xì)胞因子信號轉(zhuǎn)導(dǎo)抑制因子-3(suppressor of cytokine signaling 3,SOCS-3)是JAK-STAT下游的基因,SOCS-3過表達(dá)可參與瘦素抵抗的發(fā)生。轉(zhuǎn)化生長因子-β(transforming growth factor-β,TGF-β)在炎癥介質(zhì)(IL、NF-κB)及活性氧(reactive oxygen species,ROS)作用下被激活上調(diào),發(fā)揮調(diào)控炎癥細(xì)胞、參與免疫反應(yīng)的作用[12]。Smad在TGF-β/Smad通路中作為負(fù)反饋調(diào)節(jié)信號[9],可單獨發(fā)揮抑制巨噬細(xì)胞標(biāo)記基因的作用。飽和FA作為一種炎癥介質(zhì),可激活脂肪組織巨噬細(xì)胞中的NF-κB,提高炎癥和胰島素抵抗水平,破壞Insulin信號通路[36]。運動可通過上調(diào)BAT中Insulin信號通路和下調(diào)Jak-STAT、ErbB、TGF-β信號通路而發(fā)揮抗炎作用(圖2)。

圖2 運動通過ErbB、Jak-STAT、TGF-β和Insulin信號通路調(diào)控BAT抗炎功能

Figure 2. Exercise Regulates Anti-inflammatory Function of BAT by ErbB, Jak-STAT, TGF-β and INSULIN Signaling Pathways

注:圖中藍(lán)色部分表示下調(diào)表達(dá)基因;+p表示磷酸化;/表示抑制作用,下同。

3.3 運動調(diào)控BAT糖脂代謝功能相關(guān)通路

PPARγ對BAT功能的影響表現(xiàn)為調(diào)節(jié)其細(xì)胞分化成熟和產(chǎn)熱,促進(jìn)脂質(zhì)分解,增加BAT的產(chǎn)熱原料[14],而運動可促進(jìn)脂肪酸結(jié)合蛋白5(fatty acid binding protein 5,F(xiàn)abp5)-PPARβ/γ信號通路上調(diào),促進(jìn)脂代謝,維持能量平衡[16,53]。AMPK可促進(jìn)BAT對FA的攝取和氧化,調(diào)節(jié)脂解作用并增加產(chǎn)熱,抑制AMPK表達(dá)會阻止BAT細(xì)胞正常分化[34],運動可通過調(diào)控AMPK-Acaca/Fans途徑促進(jìn)BAT合成,Insulin通路在BAT維持葡萄糖穩(wěn)態(tài)方面發(fā)揮著重要的作用,運動通過激活BAT中Insulin通路可顯著提高葡萄糖清除能力和胰島素敏感性[49],而使BAT更高效地獲取葡萄糖用于產(chǎn)熱。運動可通過上調(diào)PPAR、AMPK和Insulin信號通路提高BAT中糖脂代謝相關(guān)基因長鏈酰基輔酶A合成酶家族成員5(acyl-CoA synthetase long-chain family member 5,Acsl5)、脂肪酸合成酶(fatty acid synthase,F(xiàn)asn)、乙酰輔酶A羧化酶α(acetyl-Coenzyme A carboxylase alpha,Acaca)、1,6-二磷酸果糖酶1(fructose bisphosphatase 1,F(xiàn)bp1)的表達(dá),而調(diào)控糖脂代謝能力[4](圖3)。

圖3 運動通過PPAR、AMPK和Insulin信號通路調(diào)控BAT糖脂代謝功能

Figure 3. Exercise Regulates Glycolipid Metabolism Function of BAT by PPAR, AMPK and Insulin Signaling Pathways

4 小結(jié)與展望

研究BAT功能及運動適應(yīng)機(jī)制,可為治療肥胖及其所引發(fā)的慢性炎癥狀態(tài)、糖脂代謝紊亂提供新的研究靶點。但BAT的功能受多種因素的調(diào)控,不同的生理病理狀態(tài)和不同的環(huán)境刺激都會對BAT產(chǎn)生不同的影響,需要進(jìn)一步探究不同的運動形式及運動方案對BAT活性及功能的影響。

[1] 崔菊,陳愛群,龐婧,等.高脂飲食影響小鼠體內(nèi)能量代謝的性別差異[J].山西醫(yī)科大學(xué)學(xué)報,2017,48(7):658-664.

[2] 杜海平.抗阻力爬梯運動與MSTN抗體及聯(lián)合干預(yù)調(diào)控棕色脂肪糖代謝及分子機(jī)制研究[D].西安:陜西師范大學(xué),2016.

[3] 付鵬宇,龔麗景,段佳妍,等.低氧運動對肥胖小鼠脂肪UCP-1和PGC-1α表達(dá)的影響[J].中國運動醫(yī)學(xué)雜志,2015,34(11):1070-1075.

[4] 付鵬宇,龔麗景,朱镕鑫,等.有氧運動對肥胖小鼠棕色脂肪mRNA表達(dá)譜的影響[J].北京體育大學(xué)學(xué)報,2016,39(9):50-56.

[5] 付鵬宇,龔麗景,朱镕鑫,等.有氧運動調(diào)控肥胖小鼠棕色脂肪組織炎癥反應(yīng)相關(guān)基因表達(dá)及通路的研究[J].中國運動醫(yī)學(xué)雜志,2018,37(9):764-771.

[6] 傅曉華,徐維海,裘勝春,等.棕色脂肪組織及其與多囊卵巢綜合征關(guān)系的研究進(jìn)展[J].浙江大學(xué)學(xué)報(醫(yī)學(xué)版),2017,46(3):315-320.

[7] 龔麗景,付鵬宇,朱镕鑫,等.低氧對肥胖小鼠棕色脂肪組織相關(guān)基因表達(dá)的影響及其機(jī)制[J].中國應(yīng)用生理學(xué)雜志, 2018, 34(1): 88-92,100.

[8] 黃濤,李效凱.運動與脂肪組織棕色化研究進(jìn)展[J].體育科學(xué), 2016,36(7):71-78.

[9] 劉成敏,張成仁,王秀梅.Smads介導(dǎo)的TGF-β信號轉(zhuǎn)導(dǎo)通路與腫瘤關(guān)系的研究進(jìn)展[J].中華腫瘤防治雜志,2010,17(8):631-634.

[10] 李娟.C57BL/6J小鼠白色脂肪與棕色脂肪組織蛋白質(zhì)組學(xué)研究[D].北京:北京協(xié)和醫(yī)學(xué)院,2015.

[11] 唐永祥,何婷婷,朱澤華,等.18F-FDG PET/CT棕色脂肪攝取的影像學(xué)特點、影響及干預(yù)因素[J].中國醫(yī)藥指南,2017,15(19):161-162.

[12] 王今越,王小虹,馮維斗.運動訓(xùn)練抑制了TGFβ通路并緩解了D-半乳糖誘導(dǎo)衰老大鼠的肌肉流失[J].體育科學(xué),2014,34(10):72-77.

[13] 徐靈均,廖信輝,張吉翔.環(huán)氧合酶-2與肥胖[J].生命的化學(xué),2011,31(6):912-915.

[14] 嚴(yán)黃,頡欣妮,徐成,等.過氧化物酶體增殖物激活受體γ與適應(yīng)性產(chǎn)熱調(diào)節(jié)[J].國際藥學(xué)研究雜志,2015,42(1):1-7.

[15] 袁慧琦,侯少貞.影響棕色脂肪組織產(chǎn)熱活性因素的研究進(jìn)展[J].動物醫(yī)學(xué)進(jìn)展,2016,37(10):98-103.

[16] ARMSTRONG E H, GOSWAMI D, GRIFFIN P R,. Structural basis for ligand regulation of the fatty acid-binding protein 5, peroxisome proliferator-activated receptor β/δ (FABP5-PPARβ/δ) signaling pathway[J]. J Biol Chem, 2014, 289(21): 14941-14954.

[17] BABOOTA R K, SARMA S M, BOPARAI R K,. Microarray based gene expression analysis of murine brown and subcutaneous adipose tissue: Significance with human[J]. PLoS one, 2015, 10 (5): e0127701.

[18] BOSTROM P, WU J, JEDRYCHOWSKI M P,. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis[J].Nature, 2012, 481(7382): 463-468.

[19] BUTTERFIELD G E, GATES J FLEMING S,. Increased energy intake minimizes weight loss in men at high altitude[J]. J Appl Physiol, 1992, 72(5): 1741-1748.

[20] CANNON B, NEDERGAARD J. Brown adipose tissue: function and physiological significance[J]. Physiol Rev, 2004, 84(1): 277-359.

[21] CHOI D K, MUKHERJEE R, YUN J W. Gender-dependent gene expressions in brown adipose tissue of lean and obese rats fed a high fat diet[J]. Biotechnol Bioproc E, 2012, 17(5):1080-1092.

[22] CYPESS A M, LEHMAN S, WILLIAMS G,. Identification and importance of brown adipose tissue in adult humans[J]. N Engl J Med, 2009, 360(15): 1509-1517.

[23] DE MATTEIS R, LUCERTINI F, GUESCINI M,. Exercise as a new physiological stimulus for brown adipose tissue activity[J]. Nutr Metab Cardiovas, 2013, 23(6): 582-590.

[24] DOWAL L, PARAMEAWARAN P, PHAT S,. Intrinsic properties of brown and white adipocytes have differential effects on macrophage inflammatory responses[J]. Mediat Inflamm, 2017, 2017(25): 9067049.

[25] DUNSTAN D. Diabetes: Exercise and T2DM-move muscles more often![J]. Nat Rev Endocrinol, 2011, 7(4): 189-190.

[26] FULLER S J, SIVARAJAH K, SUGDEN P H. ErbB receptors, their ligands, and the consequences of their activation and inhibition in the myocardium[J]. J Mol Cell Cardiol, 2008, 44(5): 831-854.

[27] IGNACIO D L, FORTUNATO R S, NETO R A,. Blunted response of pituitary type 1 and brown adipose tissue type 2 deiodinases to swimming training in ovariectomized rats[J]. Horm Metab Res, 2012, 44(11): 797-803.

[28] JOO J I, YUN J W. Gene expression profiling of adipose tissues in obesity susceptible and resistant rats under a high fat diet[J]. Cell Physiol Biochem, 2011, 27(3-4): 327-340.

[29] KOSTELI A, SUGARU E, HAEMMERLE G,. Weight loss and lipolysis promote a dynamic immune response in murine adipose tissue[J]. J Clin Invest, 2010, 120(10): 3466-3479.

[30] LEHNIG A C, STANFORD K I. Exercise-induced adaptations to white and brown adipose tissue[J]. J Exp Biol, 2018, 221(Pt Suppl 1): jeb161570.

[31] LI X. VEGF-B: A thing of beauty[J]. Cell Res, 2010, 20(7): 741-744.

[32] LIPPL F J, NEUBAUER S, SCHIPFER S,. Hypobaric hypoxia causes body weight reduction in obese subjects[J]. Obesity, 2010, 18(4): 675–681.

[33] MAY F J, BAER L A, LEHNIG A C,. Lipidomic adaptations in white and brown adipose tissue in response to exercise demonstrates molecular species-specific remodeling[J]. Cell Rep, 2017, 18(6): 1558-1572.

[34] MICHELL T B, ROSS S E, BLACKBURN J T,. Functional balance training, with or without exercise sandals, for subjects with stable or unstable ankles[J]. J Athl Train, 2006, 41(4): 393-398.

[35] NAKAI Y, HASHIDA H, KADOTA K,. Up-regulation of genes related to the ubiquitin-proteasome system in the brown adipose tissue of 24-h-fasted rats[J]. Biosci Biotechnol Biochem, 2008, 72(1): 139-148.

[36] NGUYEN M T, FAVELYUKIS S, NGUYEN A K,. A subpopulation of macrophages infiltrates hypertrophic adipose tissue and is activated by free fatty acids via Toll-like receptors 2 and 4 and JNK-dependent pathways[J]. J Biol Chem, 2007, 282(48): 35279-35292.

[37] OH-ISHI S, KIZAKI T, TOSHINAI K,. Swimming training improves brown-adipose-tissue activity in young and old mice[J]. Mech Ageing Dev, 1996, 89(2): 67-78.

[38] PETERSON K R, FLAHERTY D K, HASTY A H. Obesity alters B Cell and macrophage populations in brown adipose tissue[J]. Obesity (Silver Spring), 2017, 25(11): 1881-1884.

[39] QIANG L, WANG L, KON N,. Brown remodeling of white adipose tissue by Sirt1-dependent deacetylation of PPARγ[J]. Cell, 2012, 150(3): 620-632.

[40] RASMUSSEN A T. The glandular status of brown multilocular adipose tissue [J]. Endocrinology, 1922, 6(6): 760-770.

[41] ROBERTS L D, BOSTROM P, O’SULLIVAN J F,. β-Aminoisobutyric acid induces browning of white fat and hepatic β-oxidation and is inversely correlated with cardiometabolic risk factors[J]. Cell Metab, 2014, 19(1): 96-108.

[42] RODRIGUEZ A M, MOMJO M, ROCA P,. Opposite actions of testosterone and progesterone on UCP1 mRNA expression in cultured brown adipocytes[J]. Cell Mol Life Sci, 2002, 59(10): 1714-1723.

[43] SACKS H, SYMONDS M E. Anatomical locations of human brown adipose tissue: functional relevance and implications in obesity and type 2 diabetes[J]. Diabetes, 2013, 62(6): 1783-1790.

[44] SEALE P, BJORK B, YANG W,. PRDM16 controls a brown fat/skeletal muscle switch[J]. Nature, 2008, 454(7207): 961-967.

[45] SEGAWA M, OH-ISHI S, KIZAKI T,. Effect of running training on brown adipose tissue activity in rats: a reevaluation[J]. Res Commun Mol Path, 1998, 100(1): 77-82.

[46] SHORE A M, KARAMITRI A, KEMP P,. Cold-induced changes in gene expression in brown adipose tissue, white adipose tissue and liver[J]. PLoS one, 2013, 8(7): e68933.

[47] SIVEEN K S, SIKKA S, SURANA R,. Targeting the STAT3 signaling pathway in cancer: Role of synthetic and natural inhibitors[J]. Biochim Biophys Acta, 2014, 1845(2): 136-154.

[48] VEGIOPOULOS A, MULLER-DECKER K, STRZODA D,. Cyclooxygenase-2 controls energy homeostasis in mice by de novo recruitment of brown adipocytes[J]. Science, 2010, 328 (5982): 1158-1161.

[49] WANG X, WAHL R. Responses of the insulin signaling pathways in the brown adipose tissue of rats following cold exposure[J]. PLoS one, 2014, 9(6): e99772.

[50] XU X, YING Z, CAI M,. Exercise ameliorates high-fat diet-induced metabolic and vascular dysfunction, and increases adipocyte progenitor cell population in brown adipose tissue[J]. Am J Physiol Regul Integr Comp Physiol, 2011, 300(5): R1115-1125.

[51] XU Z, XU X, ZHONG M,. Ambient particulate air pollution induces oxidative stress and alterations of mitochondria and gene expression in brown and white adipose tissues[J]. Part Fibre Toxicol, 2011, 8(1): 20.

[52] YOSHIOKA K, YOSHIDA T, WAKABAYASHI Y,. Effects of exercise training on brown adipose tissue thermogenesis in ovariectomized obese rats[J]. Endocrinol Jpn,1989,36(3):403-408.

[53] YU S, LEVI L, CASADESUS G,. Fatty acid-binding protein 5 (FABP5) regulates cognitive function both by decreasing anandamide levels and by activating the nuclear receptor peroxisome proliferator-activated receptor β/δ (PPARβ/δ) in the brain [J]. J Biol Chem, 2014, 289(18): 12748-12758.

[54] ZHOU Z, SHEN Y T, CHEN Z,. Cidea-deficient mice have lean phenotype and are resistant to obesity[J]. Nat Genet, 2003, 35(1): 49-56.

[55] ZOUHAL H, JACOB C, DELAMARCHE P,. Catecholami-nes and the effects of exercise, training and gender[J]. Sports Med, 2008, 38(5): 401-423.

The Effect of Exercise on Function of Brown Adipose Tissue and Its Mechanism

FU Peng-yu1,GONG Li-jing2,HU Yang2

1.Beijing Sport University, College of Sports Human Sciences, Beijing 100084, China; 2.Beijing Sport University, China Institute of Sport and Health Science, Beijing 100084, China.

This study elaborates the effect of exercise on the function of brown adipose tissue (BAT) and its possible pathway mechanism. The incidence of obesity is increasing and induce many chronic diseases, which is seriously threatening human health. In recent years, the thermogenesis and energy consumption characteristics of BAT has made it widely concerned. With the deepening of research, it was found that activated BAT also has the function of combating the chronic inflammatory state and promoting glycolipid metabolism caused by obesity. All of these make it a new target against obesity and metabolic related diseases. Exercise, as an effective means of reducing fat and weight and preventing chronic diseases, may play a role in promoting health by activating BAT. The specific mechanisms are as follows: Exercise promoting the thermogenesis function of BAT may be related to VEGF signaling pathway, PI3K-Akt signaling pathway and PPAR signaling pathway; The function of combating the chronic inflammatory state may be related to ErbB signaling pathway, Jak-STAT signaling pathway, TGF-beta signaling pathway and insulin signaling pathway; The function of regulating glycolipid metabolism may be related to PPAR signaling pathway, AMPK signaling pathway and insulin signaling pathway. In conclusion, exercise can promote thermogenesis of BAT, improve anti-inflammatory properties and regulate glycolipid metabolism by regulating multiple signaling pathways.

G804.7

A

1000-677X(2018)11-0092-06

10.16469/j.css.201811010

2017-11-07;

2018-10-29

中央高校基本科研業(yè)務(wù)費專項資金資助課題(2016YB037)。

付鵬宇,女,在讀博士研究生,主要研究方向為運動生物化學(xué), E-mail:1402884452@qq.com。

龔麗景,女,實驗師,博士,主要研究方向為運動與脂肪代謝、低氧與胃腸道,E-mail:lijing.gong@bsu.edu.cn。

猜你喜歡
產(chǎn)熱糖脂棕色
膽汁酸代謝與T2DM糖脂代謝紊亂的研究概述
又香又甜的棕色方塊
鋰動力電池電化學(xué)-熱特性建模及仿真研究
森林工程(2020年6期)2020-12-14 04:26:52
小氣候環(huán)境對肉雞能量代謝的影響研究進(jìn)展
糖脂康平顆粒對糖脂代謝紊亂大鼠血糖血脂的作用
中成藥(2018年2期)2018-05-09 07:19:35
無論什么顏色和棕色
云南不同地區(qū)大絨鼠體重、產(chǎn)熱和肥滿度的研究
鋰離子電池在充放電過程中的產(chǎn)熱研究
孕婦妊娠中期糖脂代謝紊亂對不良妊娠結(jié)局的影響
表觀遺傳修飾在糖脂代謝中的作用
遺傳(2014年3期)2014-02-28 20:58:52
当雄县| 临泉县| 砚山县| 红桥区| 游戏| 甘孜| 定结县| 乐陵市| 原平市| 重庆市| 卢湾区| 旬阳县| 鸡东县| 卢氏县| 大姚县| 科尔| 舞钢市| 宣恩县| 玉溪市| 阳曲县| 怀来县| 交城县| 玉树县| 广河县| 仁布县| 桂平市| 滨海县| 玉田县| 广西| 陇川县| 赤峰市| 广安市| 桐乡市| 两当县| 南丰县| 乌恰县| 垦利县| 浏阳市| 赤壁市| 乐山市| 偃师市|