李旭鵬 孔 杰,2① 孟憲紅 欒 生,2 羅 坤
?
WSSV感染對(duì)中國明對(duì)蝦及其候選靶基因的影響*
李旭鵬1孔 杰1,2①孟憲紅1欒 生1,2羅 坤1
(1. 農(nóng)業(yè)農(nóng)村部海洋漁業(yè)可持續(xù)發(fā)展重點(diǎn)實(shí)驗(yàn)室 中國水產(chǎn)科學(xué)研究院黃海水產(chǎn)研究所 青島 266071; 2. 青島海洋科學(xué)與技術(shù)試點(diǎn)國家實(shí)驗(yàn)室海洋漁業(yè)科學(xué)與食物產(chǎn)出過程功能實(shí)驗(yàn)室 青島 266071)
能夠調(diào)控細(xì)胞增殖、細(xì)胞凋亡等過程,影響生物的免疫過程。本研究利用實(shí)時(shí)熒光定量PCR(qRT-PCR)技術(shù)對(duì)感染W(wǎng)SSV的中國明對(duì)蝦()肝胰腺和鰓組織內(nèi)表達(dá)水平進(jìn)行檢測,發(fā)現(xiàn)感染W(wǎng)SSV后6、12、24和48 h,中國明對(duì)蝦肝胰腺中的表達(dá)水平分別是對(duì)照組的(0.16±0.03)(<0.05)、(0.63±0.26)、(0.32±0.06)(0.05)和(0.41±0.13)倍;中國明對(duì)蝦鰓中的表達(dá)水平分別是對(duì)照組的(0.30±0.17)(<0.05)、(1.88±0.26)(<0.01)、(0.84±0.36)和(0.51±0.25)倍。利用miRanda軟件進(jìn)一步對(duì)中國明對(duì)蝦靶基因進(jìn)行預(yù)測分析,評(píng)分最高的靶基因是泛素綴合酶E2。中國明對(duì)蝦泛素綴合酶E2包含UBCc功能域。多序列比對(duì)顯示,UBCc功能域氨基酸殘基序列在不同物種間保守性較高。進(jìn)化樹分析顯示,分類學(xué)地位相近的物種的泛素綴合酶E2聚為一類。qRT-PCR檢測感染W(wǎng)SSV的中國明對(duì)蝦肝胰腺和鰓中的泛素綴合酶E2表達(dá)水平,結(jié)果顯示,在感染W(wǎng)SSV后6、12、24和48 h,中國明對(duì)蝦肝胰腺中泛素綴合酶E2的表達(dá)水平分別是對(duì)照組的(0.54±0.10)、(1.19±0.62)、(3.69±0.51) (<0.01)和(1.94±0.07)(<0.05)倍;中國明對(duì)蝦鰓中泛素綴合酶E2的表達(dá)水平分別是對(duì)照組的(0.22±0.05)、(1.34±0.38)、(4.29±0.52)(<0.01)和(1.28±0.79)倍。研究表明,和泛素綴合酶E2的表達(dá)都受WSSV侵染的影響,可能與中國明對(duì)蝦和WSSV之間的互作相關(guān)。但和泛素綴合酶E2表達(dá)水平的變化是對(duì)蝦抵抗WSSV侵染過程的免疫反應(yīng),還是宿主基因被病毒脅迫后的結(jié)果,需要進(jìn)一步驗(yàn)證。
中國明對(duì)蝦;WSSV;;泛素綴合酶E2;表達(dá)
中國明對(duì)蝦()是中國傳統(tǒng)養(yǎng)殖品種,其肉質(zhì)鮮美,營養(yǎng)價(jià)值高。中國明對(duì)蝦自然群體主要分布于中國的黃海、渤海海域以及朝鮮半島的西海岸附近(孟憲紅, 2010)。白斑綜合征(White spot syndrome, WSS)是目前對(duì)蝦養(yǎng)殖業(yè)中主要病害之一,該病發(fā)病后對(duì)蝦死亡速度快、死亡率高,10 d內(nèi)死亡率接近100%。該病的病原是白斑綜合征病毒(White spot syndrome virus, WSSV),該病毒屬于線形病毒科(Nimaviridae),是一種雙鏈DNA病毒(Huang, 2002; van Hulten, 2001; Yang, 2001)。WSSV對(duì)中國明對(duì)蝦的致死率高,對(duì)蝦死亡速度快,人工感染實(shí)驗(yàn)中的中國明對(duì)蝦平均存活時(shí)間約為5~ 7 d(馮亞萍等, 2017)。microRNA (miRNA)是一類長度約為21~25 bp的小分子非編碼RNA,參與轉(zhuǎn)錄后調(diào)控過程,能夠與目標(biāo)靶基因的mRNA結(jié)合來調(diào)控目的基因的翻譯過程,從而起到對(duì)基因表達(dá)水平的調(diào)控。研究表明,miRNA能夠參與宿主與病原的互作過程。前期研究發(fā)現(xiàn),半滑舌鰨() miR-223參與免疫應(yīng)答過程,在鰻弧菌()感染后的免疫組織中呈現(xiàn)差異表達(dá)趨勢(顏慧等, 2015)。感染W(wǎng)SSV后的斑節(jié)對(duì)蝦()體內(nèi)11種miRNA呈現(xiàn)差異表達(dá)趨勢(Kaewkascholkul, 2016),日本囊對(duì)蝦()中發(fā)現(xiàn),miR-965和miR-100可能與對(duì)蝦和病毒間的互作相關(guān)(Le, 2016; Yang, 2014)。這些研究提示,特殊miRNA在對(duì)蝦和病毒間互作過程中可能發(fā)揮調(diào)控作用,但是,哪些miRNA發(fā)揮了具體調(diào)控作用目前還不清楚。Bantam是一種miRNA,研究表明,能夠參與調(diào)控生物生長(Hipfner, 2002)、細(xì)胞增殖與凋亡(Nolo, 2006)。在感染苜蓿銀紋夜蛾核型多角體病毒(multicapsid nucleopolyhedrovirus, AcMNPV)后的斜紋夜蛾()中,表達(dá)水平呈上調(diào)趨勢,提示其在宿主-病毒互作中發(fā)揮調(diào)控作用(Shi, 2016)。作者對(duì)感染W(wǎng)SSV后的中國明對(duì)蝦及其靶基因特征進(jìn)行研究,期望能在miRNA水平為中國明對(duì)蝦抗WSSV研究提供一些參考。
實(shí)驗(yàn)所用中國明對(duì)蝦為中國水產(chǎn)科學(xué)研究院黃海水產(chǎn)研究所遺傳育種中心培育的“黃海2號(hào)”新品種。對(duì)蝦養(yǎng)殖水經(jīng)砂濾、紫外線消毒、5 mg/L有效氯等方法進(jìn)行處理。
取感染W(wǎng)SSV后死亡的中國明對(duì)蝦肌肉組織,在冰浴中剪碎,按照1 g肌肉組織加入10 ml PBS,使用Precellys 24組織破碎儀(Bertin,法國)進(jìn)行破碎,對(duì)勻漿液使用Centrifuge 5804R離心機(jī)(Eppendorf,德國) 12000 r/min離心后,取上清液,作為WSSV病毒懸液。使用ABI 7500熒光定量PCR儀和Premix Ex? (Probe qPCR)(TaKaRa)試劑盒,利用探針法qRT-PCR技術(shù)對(duì)病毒懸液中的WSSV含量進(jìn)行檢測。引物和探針序列見表1。PCR反應(yīng)體系:10 μl Premix Ex(Probe qPCR)(2×),0.4 μl ROX Reference Dye Ⅱ,0.4 μl WSSV forward primer (10 μmol/L),0.4 μl WSSV reverse primer (10 μmol/L),0.8 μl WSSV probe (10 μmol/L),2 μl病毒懸液,dH2O補(bǔ)足20 μl。反應(yīng)程序:95℃ 30 s;95℃ 5 s,60℃ 34 s,40個(gè)循環(huán)。根據(jù)WSSV標(biāo)準(zhǔn)品濃度和t值進(jìn)行線性回歸分析,根據(jù)待檢測病毒懸液的t值,計(jì)算其中的病毒濃度,平行實(shí)驗(yàn)重復(fù)3次。
使用注射器從中國明對(duì)蝦第5腹節(jié)處注射10 μl病毒懸液。每尾對(duì)蝦的WSSV注射量為1×105copies。分別在注射病毒懸液后的6、12、24、48 h,取對(duì)蝦肝胰腺和鰓組織。取正常對(duì)蝦作為對(duì)照。每組實(shí)驗(yàn)取3個(gè)生物學(xué)重復(fù),肝胰腺和鰓組織經(jīng)過液氮速凍后,放入?80℃保存,用于后期RNA提取。
使用miRcute miRNA提取分離試劑盒(天根),按照說明書進(jìn)行miRNA的提取。提取后的miRNA保存在?80℃,用于后期qRT-PCR實(shí)驗(yàn)。采用Mir-X? miRNA First Strand Synthesis Kit(Clontech,美國)進(jìn)行miRNA加A尾反轉(zhuǎn)錄,合成cDNA模板。根據(jù)序列(5¢-UGAGAUCAUUGUGAAAGCUGAUU-3¢)設(shè)計(jì)qRT-PCR引物(表1)。使用qRT-PCR技術(shù),對(duì)感染W(wǎng)SSV后不同時(shí)間段的中國明對(duì)蝦肝胰腺和鰓組織中的表達(dá)水平進(jìn)行檢測。使用SYBR?Premix Ex? (Tli RNaseH Plus)(TaKaRa)試劑盒。內(nèi)參檢測選用試劑盒自帶的U6引物。反應(yīng)體系:cDNA模板2 μl、SYBR Premix Ex(Tli RNaseH Plus)(2×) 10 μl、ROX Reference Dye Ⅱ (50×) 0.4 μl、RT primer (10 μmol/L) 0.4 μl、mRQ 3¢Primer 0.4 μl、ddH2O 6.8 μl。反應(yīng)程序:95℃ 30 s;95℃ 5 s,60℃ 34 s, 40個(gè)循環(huán);熔解曲線分析。所有實(shí)驗(yàn)設(shè)置3個(gè)平行,使用2?ΔΔCt法對(duì)結(jié)果進(jìn)行處理,實(shí)驗(yàn)中所涉及的數(shù)據(jù)均為平均值±標(biāo)準(zhǔn)差(Mean±SD),使用SPSS軟件檢驗(yàn)進(jìn)行顯著性分析,0.05為差異顯著,<0.01為差異極顯著。
使用miRanda軟件(http://www.microrna.org/ microrna/home.do)和本實(shí)驗(yàn)室已有的中國明對(duì)蝦高通量轉(zhuǎn)錄組測序數(shù)據(jù)中的3¢UTR序列,對(duì)靶基因進(jìn)行預(yù)測。取評(píng)分最高靶基因作為研究對(duì)象。使用SMARTer?RACE 5′/3′ Kit (Clontech)試劑盒,利用RACE技術(shù)獲得靶基因cDNA序列。利用NCBI數(shù)據(jù)庫中的Search for Conserved Domains within a protein or coding nucleotide sequence功能(https://www.ncbi.nlm. nih.gov/Structure/cdd/wrpsb.cgi)對(duì)靶基因序列進(jìn)行功能域分析。從NCBI數(shù)據(jù)庫(http://www.ncbi.nlm. nih.gov/)查找其他物種的靶基因氨基酸序列,利用MEGA 5軟件(http://www.megas-oftware.net)進(jìn)行進(jìn)化樹分析,用DNAMAN(version 6) (Lynnon Biosoft,加拿大)軟件進(jìn)行多序列對(duì)比分析。
提取感染6、12、24、48 h后的中國明對(duì)蝦肝胰腺和鰓組織總RNA,按照RNAsimple總RNA提取試劑盒(天根)說明書操作。利用qRT-PCR技術(shù)對(duì)靶基因表達(dá)水平進(jìn)行檢測。內(nèi)參選擇18S rRNA,引物序列見表1。反應(yīng)體系和程序同表達(dá)水平檢測實(shí)驗(yàn)。
表1 引物和探針信息
Tab.1 Primers and probes information
研究結(jié)果顯示,感染W(wǎng)SSV的中國明對(duì)蝦肝胰腺中的表達(dá)水平呈現(xiàn)下調(diào)趨勢。在感染W(wǎng)SSV后的6、12、24和48 h,中國明對(duì)蝦肝胰腺中的表達(dá)水平分別是對(duì)照組的(0.16±0.03)(0.05)、(0.63± 0.26)、(0.32±0.06)(0.05)和(0.41±0.13)倍。感染W(wǎng)SSV的中國明對(duì)蝦鰓中的表達(dá)水平呈現(xiàn)波動(dòng)趨勢。在感染W(wǎng)SSV后的6、12、24和48 h,中國明對(duì)蝦鰓中的表達(dá)水平分別是對(duì)照組的(0.30±0.17)(<0.05)、(1.88±0.26)(<0.01)、(0.84±0.36)和(0.51±0.25)倍。
圖1 感染W(wǎng)SSV后中國明對(duì)蝦肝胰腺和鰓中bantam表達(dá)水平
*為差異顯著(<0.05);**為差異極顯著(<0.01)。下同
* denoted significant difference (<0.05); ** denoted highly significant difference (<0.01). The same as below
miRanda軟件預(yù)測評(píng)分最高的中國明對(duì)蝦候選靶基因是泛素綴合酶E2(Ubiquitin-conjugating enzyme E2),miRanda評(píng)分為183,預(yù)測與靶基因泛素綴合酶E2結(jié)合位點(diǎn)的自由結(jié)合能是?27.89 kcal/mol。
中國明對(duì)蝦泛素綴合酶E2基因編碼區(qū)共540 bp,起始密碼子ATG,終止密碼子TAG,共編碼179個(gè)氨基酸。功能域預(yù)測結(jié)果顯示,第33~80氨基酸殘基構(gòu)成Ubiquitin-conjugating enzyme E2的catalytic (UBCc)功能域(圖2)。由來自5種脊椎動(dòng)物、5種無脊椎動(dòng)物、3種真菌和2種植物的泛素綴合酶E2氨基酸序列進(jìn)化樹分析結(jié)果顯示,中國明對(duì)蝦的泛素綴合酶E2蛋白首先與甲殼動(dòng)物端足蟲()聚為一支,其他無脊椎動(dòng)物赤擬谷盜()、果蠅()、地中海實(shí)蠅()泛素綴合酶E2聚為一支。5種脊椎動(dòng)物分別是小鼠()、大鼠()、人類()、珍珠雞()、大山雀()泛素綴合酶E2聚為一支。3種子囊菌(、、)泛素綴合酶E2聚為一支。2種植物分別是可可()和菠蘿()泛素綴合酶E2聚為一支(圖3)。多序列比對(duì)結(jié)果顯示,泛素綴合酶E2蛋白的UBCc功能域氨基酸殘基序列在不同物種間保守性較高。其中,5種脊椎動(dòng)物的泛素綴合酶E2氨基酸序列均以MASQN氨基酸殘基序列開始,4種無脊椎動(dòng)物的泛素綴合酶E2氨基酸序列均以MAQN氨基酸殘基開始。分類學(xué)地位較遠(yuǎn)的物種間的泛素綴合酶E2蛋白N端氨基酸序列變化較大,保守性總體略低于C端氨基酸序列(圖4)。
圖2 泛素綴合酶E2核酸以及預(yù)測氨基酸序列
起始密碼子和終止密碼子用方框標(biāo)出。UBCc功能域用下劃線標(biāo)出
The initiation and termination codons are boxed. The UBCc domain is underlined
圖3 基于泛素綴合酶E2氨基酸序列的系統(tǒng)進(jìn)化樹分析
qRT-PCR結(jié)果顯示,在感染W(wǎng)SSV后6、12、24和48 h的中國明對(duì)蝦肝胰腺中,泛素綴合酶E2的表 達(dá)水平分別是對(duì)照組的(0.54±0.10)、(1.19±0.62)、(3.69±0.51)(<0.01)和(1.94±0.07)(<0.05)倍。在感染W(wǎng)SSV后6、12、24和48 h的中國明對(duì)蝦鰓中,泛素綴合酶E2表達(dá)水平是對(duì)照組的(0.22±0.05)、(1.34± 0.38)、(4.29±0.52)(<0.01)和(1.28±0.79)倍(圖5)。
圖4 泛素綴合酶E2氨基酸多序列比對(duì)
多序列比對(duì)所用序列與圖3中所用序列一致
The sequences used in the multiple alignments are the same sequences shown in Fig.3
圖5 感染W(wǎng)SSV后中國明對(duì)蝦肝胰腺和鰓內(nèi)泛素綴合酶E2基因表達(dá)水平
高致死率的WSSV對(duì)中國明對(duì)蝦產(chǎn)業(yè)發(fā)展帶來巨大的影響。目前,在中國明對(duì)蝦抗WSSV研究領(lǐng)域,miRNA方面的研究相對(duì)較少。針對(duì)凡納濱對(duì)蝦()的研究表明,8種miRNA在感染W(wǎng)SSV后的對(duì)蝦體內(nèi)呈現(xiàn)差異表達(dá)(Zeng, 2015)。在桃拉病毒感染的凡納濱對(duì)蝦體內(nèi),22種miRNA發(fā)生差異表達(dá),其中,有8種miRNA上調(diào)表達(dá),14種下調(diào)表達(dá)(馬寧等, 2015)。這些研究提示,miRNA在對(duì)蝦與病毒互作中可能發(fā)揮重要調(diào)控作用。
本研究表明,在感染W(wǎng)SSV后的中國明對(duì)蝦體內(nèi)呈現(xiàn)顯著的表達(dá)變化。研究表明,主要參與調(diào)控細(xì)胞增殖、細(xì)胞凋亡過程(Brennecke, 2003; Lam, 2014; Huang, 2014)。同時(shí),有關(guān)于參與免疫過程的報(bào)道。在感染桃拉病毒后的凡納濱對(duì)蝦肝胰腺內(nèi),的表達(dá)量下降到正常水平的0.34倍(馬寧等, 2015)。感染W(wǎng)SSV的凡納濱對(duì)蝦肝胰腺內(nèi)的表達(dá)水平顯著下調(diào)至正常對(duì)蝦的0.3倍(Zeng, 2015)。上述研究結(jié)果與本研究類似。在感染W(wǎng)SSV初期的對(duì)蝦肝胰腺中呈現(xiàn)下調(diào)表達(dá)趨勢,提示可能與對(duì)蝦和病毒間的互作過程相關(guān)。但是,本研究發(fā)現(xiàn)感染W(wǎng)SSV后的中國明對(duì)蝦鰓中表達(dá)呈現(xiàn)出先下調(diào)后上調(diào)的波動(dòng)變化。肝胰腺是發(fā)揮免疫作用的組織,鰓是WSSV侵染的主要靶器官,WSSV的侵染對(duì)這2種組織內(nèi)表達(dá)水平的影響不同,提示不同組織應(yīng)答病毒侵染的機(jī)制不同。考慮到主要參與調(diào)控細(xì)胞增殖和細(xì)胞凋亡過程,這可能提示,通過的轉(zhuǎn)錄后調(diào)控過程,病毒侵染影響了宿主的細(xì)胞凋亡過程。
泛素綴合酶E2是參與蛋白泛素化反應(yīng)的酶,蛋白的泛素化通過泛素活化酶E1、泛素綴合酶E2、泛素蛋白連接酶E3將泛素與蛋白酶連接,泛素化蛋白酶發(fā)揮水解作用。因此,該酶在生物細(xì)胞周期調(diào)控、細(xì)胞增殖、細(xì)胞凋亡過程中發(fā)揮重要作用(Chang, 2015; Jiang, 2010; Maeda, 2009)。陳學(xué)昭等(2015)研究報(bào)道,泛素綴合酶E2在鰻弧菌感染后的松江鱸()肝臟、脾臟內(nèi)表達(dá)水平迅速上升,提示該基因與魚類的免疫功能可能相關(guān)。Jeena等(2012)在斑節(jié)對(duì)蝦抗WSSV研究中發(fā)現(xiàn),感染W(wǎng)SSV后24 h,對(duì)蝦體內(nèi)的泛素綴合酶E2表達(dá)水平顯著升高,隨后表達(dá)水平開始下降,泛素綴合酶E2表達(dá)特征與本研究十分相似,進(jìn)一步提示,泛素綴合酶E2可能與對(duì)蝦和WSSV互作過程相關(guān)。和泛素綴合酶E2都是與細(xì)胞增殖、細(xì)胞凋亡過程相關(guān)的調(diào)控因子。研究表明,在感染W(wǎng)SSV后的中國明對(duì)蝦體內(nèi)和泛素綴合酶E2呈現(xiàn)顯著表達(dá)變化(<0.05),提示中國明對(duì)蝦在感染W(wǎng)SSV后可能通過泛素-蛋白酶體途徑(Ubiquitin-proteasome pathway, UPP)對(duì)某些特殊靶蛋白進(jìn)行選擇性降解,影響細(xì)胞的凋亡過程。但是,這種變化是中國明對(duì)蝦對(duì)WSSV侵染過程的免疫應(yīng)答,還是宿主基因被WSSV挾持為病毒侵染過程服務(wù),需要進(jìn)一步研究來證實(shí)。
Brennecke J, Hipfner DR, Stark A,. bantam, encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in. Cell, 2003, 113(1): 25–36
Chang R, Wei L, Lu Y,. Upregulated expression of ubiquitin-conjugating enzyme E2Q1(UBE2Q1) is associated with enhanced cell proliferation and poor prognosis in human hapatocellular carcinoma. Journal of Molecular Histology, 2015, 46(1): 45–56
Chen XZ, Zhang L, Yu SS,. Molecular cloning and expression analysis of ubiquitin-conjugating enzyme E2-D2 in roughskin sculpin,. Haiyang Xuebao, 2015, 37(10): 133–140 [陳學(xué)昭, 張雷, 于珊珊, 等. 松江鱸()泛素結(jié)合酶E2-D2 基因的分子克隆及組織表達(dá)分析. 海洋學(xué)報(bào), 2015, 37(10): 133–140]
Feng YP, Kong J, Luo K,. The comparison of the sensitivity to the white spot syndrome virus betweenand. Progress in Fishery Sciences, 2017, 38(6): 78–84 [馮亞萍, 孔杰, 羅坤, 等. 中國對(duì)蝦()和凡納濱對(duì)蝦()對(duì)白斑綜合征病毒的敏感性比較. 漁業(yè)科學(xué)進(jìn)展, 2017, 38(6): 78–84]
Hipfner DR, Weigmann K, Cohen SM. The bantam gene regulatesgrowth. Genetics, 2002, 161(4): 1527– 1537
Huang C, Zhang X, Lin Q,. Proteomic analysis of shrimp white spot syndrome viral proteins and characterization of a novel envelope protein VP466. Molecular and Cellular Proteomics, 2002, 1(3): 223–231
Huang H, Li J, Hu L,. Bantam is essential forintestinal stem cell proliferation in response to Hippo signaling. Developmental Biology, 2014, 385(2): 211–217
Jeena K, Prasad KP, Pathan MK,. Expression profiling of WSSV ORF 199 and shrimp ubiquitin conjugating enzyme in WSSV infected. Asian-Australasian Journal of Animal Sciences, 2012, 25(8): 1184–1189
Jiang L, Bao Y, Luo C,. Knockdown of ubiquitin- conjugating enzyme E2C/UbcH10expression by RNA interference inhibits glioma cell proliferation and enhances cell apoptosis. Journal of Cancer Research and Clinical Oncology, 2010, 136(2): 211–217
Kaewkascholkul N, Somboonviwat K, Asakawa S,. Shrimp miRNAs regulate innate immune response against white spot syndrome virus infection. Developmental and Comparative Immunology, 2016, 60: 191–201
Lam V, Tokusumi T, Tokusumi Y,.miRNA is important forblood cell homeostasis and a regulator of proliferation in the hematopoietic progenitor niche. Biochemical and Biophysical Research Communica- tions, 2014, 453(3): 467–472
Le S, Li C, Zhang X. The role of shrimp miR-965 in virus infection. Fish and Shellfish Immunology, 2016, 54: 427–434
Ma N, Zeng DG, Li M,. Study on differential expression of microRNAs ininduced by Taura syndrome virus infection. Southwest China Journal of Agricultural Sciences, 2015, 28(5): 2310–2315 [馬寧, 曾地剛, 黎銘, 等. 桃拉綜合癥病毒感染誘導(dǎo)的凡納濱對(duì)蝦microRNA表達(dá)差異的研究. 西南農(nóng)業(yè)學(xué)報(bào), 2015, 28(5): 2310–2315]
Maeda H, Miyajima N, Kano S,. Ubiquitin-conjugating enzyme UBE2Q2 suppresses cell proliferation and is down-regulated in recurrent head and neck cancer. Molecular Cancer Research, 2009, 7(9): 1553–1562
Meng XH. The analysis of WSSV resistance of“Huanghai No.2”. Doctoral Dissertation of Ocean University of China, 2010 [孟憲紅. 中國對(duì)蝦“黃海 2 號(hào)”對(duì)WSSV的抗病性分析. 中國海洋大學(xué)博士研究生學(xué)位論文, 2010]
Nolo R, Morrison CM, Tao C,. ThemicroRNA is a target of the hippo tumor-suppressor pathway. Current Biology, 2006, 16(19): 1895–1904
Shi X, Ran Z, Li S,. The effect of microRNAon Baculovirus AcMNPV infectionand. Viruses, 2016, 8(5): 136
van Hulten MCW, Witteveldt J, Peters S,. The white spot syndrome virus DNA genome sequence. Virology, 2001, 286(1): 7–22
Yang F, He J, Lin X,. Complete genome sequence of the shrimp white spot bacilliform virus. Journal of Virology, 2001, 75(23): 11811–11820
Yan H, Zeng Y, Gong GY,. The expression pattern of miR-223 in different tissues ofand the regulation of expression in response to infections. Progress in Fishery Sciences, 2015, 36(2): 37–44 [顏慧, 曾艷, 公光業(yè), 等. 半滑舌鰨() miR-223的表達(dá)特征及免疫應(yīng)答分析. 漁業(yè)科學(xué)進(jìn)展, 2015, 36(2): 37–44]
Yang L, Yang G, Zhang X. The mir-100-mediated pathway regulates apoptosis against virus infection in shrimp. Fish and Shellfish Immunology, 2014, 40(1): 146–153
Zeng DG, Chen XL, Xie DX,. Identification of highly expressed host microRNAs that respond to white spot syndrome virus infection in the Pacific white shrimp(Penaeidae). Genetic and Molecular Research, 2015, 14(2): 4818–4828
Effect of White Spot Syndrome Virus Infection onand Candidate Target Genes in the Chinese Shrimp
LI Xupeng1, KONG Jie1,2①, MENG Xianhong1, LUAN Sheng1,2, LUO Kun1
(1. Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071; 2. Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071)
is a type of miRNA involved in cell proliferation and apoptosis, and can affect immune processes in animals. In the present study,expression in the hepatopancreas and gill of WSSV-infected Chinese shrimpwas determined using the qRT-PCR technique. The results showed thatexpression in the hepatopancreas of Chinese shrimp 6, 12, 24, and 48 h post infection was (0.16±0.03)(<0.05), (0.63±0.26), (0.32±0.06) (<0.05), and (0.41±0.13) fold that of the expression in the controls, respectively.expression in the gill of Chinese shrimp 6, 12, 24, and 48 h post infection was (0.30±0.17) (<0.05), (1.88±0.26) (<0.01), (0.84±0.36), and (0.51±0.25) fold that of the expression in the controls, respectively. The target genes ofwere predicted using the miRanda software. The ubiquitin-conjugating enzyme E2 was the predicted target gene with the highest score. The Chinese shrimp ubiquitin-conjugating enzyme E2 contains the ubiquitin-conjugating enzyme E2, catalytic (UBCc) domain. Multiple alignment results showed that the UBCc domain was relatively conserved among different species. Phylogenetic analysis showed that the ubiquitin-conjugating enzyme E2 in species with closer taxonomic status was clustered in a branch. Pair-wise and multiple sequence alignment revealed that the ubiquitin-conjugating enzyme E2 was relatively well-conserved. Ubiquitin- conjugating enzyme E2 expression in the hepatopancreas and gill of WSSV-infected Chinese shrimp was further determined using qRT-PCR. The results showed that the expression of ubiquitin-conjugating enzyme E2 in the hepatopancreas of Chinese shrimp 6, 12, 24, and 48 h post-WSSV infection was (0.54±0.10), (1.19±0.62), (3.69±0.51)(<0.01), and (1.94±0.07)(<0.05) fold that of the expression in the controls, respectively. The expression of ubiquitin-conjugating enzyme E2 in the gill of Chinese shrimp 6, 12, 24 and 48 h post WSSV infection was (0.22±0.05), (1.34±0.38), (4.29±0.52) (<0.01), and (1.28±0.79) fold that of the expression in the controls. These results suggest that bothand the target geneubiquitin-conjugating enzyme E2 might be involved in the interaction between Chinese shrimp and WSSV. Whether the altered expression ofand ubiquitin-conjugating enzyme E2 represents the immune response of shrimps to WSSV infection, or the hijacking of cells by WSSV during the viral infection process, needs further study.
; WSSV;; Ubiquitin-conjugating enzyme E2; Expression
KONG Jie, E-mail: kongjie@ysfri.ac.cn
李旭鵬, 孔杰, 孟憲紅, 欒生, 羅坤. WSSV感染對(duì)中國明對(duì)蝦及其候選靶基因的影響. 漁業(yè)科學(xué)進(jìn)展, 2018, 39(6): 106–113
Li XP, Kong J, Meng XH, Luan S, Luo K. Effect of white spot syndrome virus infection onand candidate target genes in the Chinese shrimp. Progress in Fishery Sciences, 2018, 39(6): 106–113
* 中國水產(chǎn)科學(xué)研究院基本科研業(yè)務(wù)費(fèi)(2017GH07; 2018GH10)、中國水產(chǎn)科學(xué)研究院黃海水產(chǎn)研究所基本科研業(yè)務(wù)費(fèi)(20603022015013)、山東省自然科學(xué)基金青年基金項(xiàng)目(ZR2014CQ001)、泰山學(xué)者種業(yè)人才團(tuán)隊(duì)項(xiàng)目、現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系專項(xiàng)資金(CARS-48)和國家自然科學(xué)基金面上項(xiàng)目(41676148; 31572616)共同資助[This work was supported by Central Public-Interest Scientific Institution Basal Research Fund, CAFS (2017GH07; 2018GH10), Special Scientific Research Funds for Central Non-Profit Institutes, Yellow Sea Fisheries Research Institutes (20603022015013), Shandong Provincial Natural Science Foundation (ZR2014CQ001), Taishan Scholar Program for Seed Industry, China Agriculture Research System(CARS-48), and National Natural Science Foundation of China (41676148; 31572616)]. 李旭鵬,E-mail: lixupeng@ysfri.ac.cn
孔 杰,研究員,E-mail: kongjie@ysfri.ac.cn
2017-11-06,
2017-12-23
10.19663/j.issn2095-9869.20171106002
S917
A
2095-9869(2018)06-0106-08
(編輯 馬璀艷)