国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

藻類Dol-P甘露糖轉(zhuǎn)移酶的系統(tǒng)進化分析?

2018-12-22 05:29王珊珊呂娜娜唐學(xué)璽
關(guān)鍵詞:褐藻糖蛋白糖基化

王珊珊, 池 姍, 張 磊, 劉 濤, 呂娜娜, 唐學(xué)璽

(1.中國海洋大學(xué)海洋生命學(xué)院,山東 青島 266003; 2.青島海大藍科生物科技有限公司,山東 青島 266200)

藻類Dol-P甘露糖轉(zhuǎn)移酶的系統(tǒng)進化分析?

王珊珊1, 池 姍2, 張 磊1, 劉 濤1, 呂娜娜2, 唐學(xué)璽? ?

(1.中國海洋大學(xué)海洋生命學(xué)院,山東 青島 266003; 2.青島海大藍科生物科技有限公司,山東 青島 266200)

蛋白質(zhì)O-甘露糖基化是一種廣泛存在于生物體內(nèi)的蛋白質(zhì)翻譯后修飾過程,即在Dol-P甘露糖轉(zhuǎn)移酶(PMT)催化下將長萜酰甘露糖上的甘露糖連接到肽鏈上絲氨酸或者蘇氨酸羥基的過程。本文對國際千種植物轉(zhuǎn)錄組計劃(1KP)中22種海洋紅藻及19種海洋褐藻的轉(zhuǎn)錄組數(shù)據(jù)庫進行搜索,獲得了6條來自海蘿(Gloiopeltisfurcata)的PMT基因序列。通過對其序列特征的分析發(fā)現(xiàn)藻類PMT序列與真菌及動物具有相似的親疏水性列譜,表明真核生物PMT間具有相似的跨膜區(qū)。藻類PMT的N端較為保守,但較其他真核生物PMT的loop5存在222個氨基酸的缺失,導(dǎo)致其loop5處缺少了3個MIR結(jié)構(gòu)域使得loop5明顯減小。此外,利用貝葉斯法構(gòu)建系統(tǒng)進化樹表明藻類的PMT基因來自于內(nèi)共生過程的質(zhì)體基因轉(zhuǎn)移。

藻類; O-甘露糖糖基化;Dol-P甘露糖蛋白甘露糖轉(zhuǎn)移酶;系統(tǒng)進化

蛋白質(zhì)O-甘露糖基化是一種廣泛存在于生物體內(nèi)的蛋白質(zhì)翻譯后修飾過程,該過程形成的O-甘露糖蛋白在細(xì)胞生長、細(xì)胞免疫及信號傳導(dǎo)等方面起到重要作用[1-4]。1968年,Sentandreu等人在釀酒酵母(Saccharomycescerevisiae)細(xì)胞壁中發(fā)現(xiàn)了首個O-甘露糖蛋白[6]。此后,其他真菌、動物及細(xì)菌的O-甘露糖蛋白及催化O-甘露糖糖基化的生物酶也逐步被發(fā)現(xiàn)[1]。Dol-P甘露糖蛋白甘露糖轉(zhuǎn)移酶(Dolichyl-phosphate-mannose-protein mannosyltransferase,PMT,EC:2.4.1.109)催化長萜酰甘露糖(Dol-P-mannose)上的甘露糖糖基轉(zhuǎn)移到絲氨酸或蘇氨酸的羥基上生成甘露醇蛋白[6]。真核生物的PMT定位于內(nèi)質(zhì)網(wǎng)上,是首個參與蛋白質(zhì)O-甘露糖基化的關(guān)鍵酶,對生物體內(nèi)O-甘露糖蛋白的合成起到關(guān)鍵作用。PMT屬于糖基轉(zhuǎn)移酶家族的GT39類糖基轉(zhuǎn)移酶家族,在各生物中都較為保守[7]。根據(jù)系統(tǒng)進化及底物特異性的分析表明,PMT家族可分為PMT1,PMT2和PMT4三個亞家族[8]。

釀酒酵母的Dol-P甘露糖蛋白甘露糖轉(zhuǎn)移酶是目前研究最徹底的Dol-P甘露糖蛋白甘露糖轉(zhuǎn)移酶。在釀酒酵母中一共存在7種Dol-P甘露糖蛋白甘露糖轉(zhuǎn)移酶(ScPMT1-7),其蛋白序列一致性為57.5%[6,8],其中ScPMT1和ScPMT5屬于PMT1亞家族,ScPMT2、ScPMT3及ScPMT6屬于PMT2亞家族,ScPMT4屬于PMT4亞家族,而ScPMT7暫時未被歸類于任何一個亞家族。在催化甘露糖糖基轉(zhuǎn)移時,PMT1和PMT2亞家族成員會形成異源二聚體,而ScPMT4則會形成同源二聚體來保證反應(yīng)的高效性[8-10]。此外,在白色念珠菌(Canidiaalbicans)等其他真菌中也發(fā)現(xiàn)了與酵母ScPMT1-7同源的PMT[11-12]。不同于釀酒酵母等真菌,在動物中僅發(fā)現(xiàn)了2種Dol-P甘露糖蛋白甘露糖轉(zhuǎn)移酶(POMT1,POMT2),其中POMT1屬于PMT4亞家族,而POMT2屬于PMT2亞家族,來源于人類的HsPOMT1和HsPOMT2氨基酸序列的一致性為34.5%[13]。此外,研究表明動物的PMT2和PMT4亞家族蛋白可形成異源二聚體來催化糖基轉(zhuǎn)移反應(yīng)[14-16]。相對于真菌和動物,細(xì)菌的Dol-P甘露糖蛋白甘露糖轉(zhuǎn)移酶發(fā)現(xiàn)得較晚[17]。在各類細(xì)菌中僅發(fā)現(xiàn)了一種Dol-P甘露糖蛋白甘露糖轉(zhuǎn)移酶,其與真核生物PMT氨基酸序列的一致性僅為12.66%~24.78%,但其蛋白質(zhì)親疏水性與真核生物的PMT基本一致[18]。

在釀酒酵母中,糖蛋白占其細(xì)胞壁干重的20%,而O-甘露糖蛋白占這些糖蛋白的50%左右。在動物腦組織中30%以上的O-聚糖都是O-甘露聚糖[12-13]。在含有大量甘露醇的海洋藻類中是否存在O-甘露糖蛋白一直鮮有研究[19-20]。目前已有大量文章對真菌及動物的Dol-P甘露糖蛋白甘露糖轉(zhuǎn)移酶進行了報道[5,7-11],但未有文章對植物和綠藻的Dol-P甘露糖蛋白甘露糖轉(zhuǎn)移酶進行報道,為研究藻類中的O-甘露糖基化,鑒定藻類Dol-P甘露糖蛋白甘露糖轉(zhuǎn)移酶帶來了困難。隨著測序技術(shù)的發(fā)展,大量藻類的基因組及轉(zhuǎn)錄組數(shù)據(jù)被報道,使研究藻類Dol-P甘露糖蛋白甘露糖轉(zhuǎn)移酶有了數(shù)據(jù)基礎(chǔ)。本文通過對千種植物轉(zhuǎn)錄組計劃1KP中22種海洋紅藻及19種海洋褐藻轉(zhuǎn)錄組數(shù)據(jù)庫進行搜索,獲得了6條海蘿(Gloiopeltisfurcata)的PMT序列。此外,本文通過生物信息學(xué)的方法對藻類的Dol-P甘露糖蛋白甘露糖轉(zhuǎn)移酶進行了系統(tǒng)地分析,為藻類O-甘露糖糖基化的研究奠定了一定的基礎(chǔ)。

1 材料與方法

1.1 數(shù)據(jù)獲取

22種海洋紅藻及19種海洋褐藻樣品分別于2010—2012年采集于在中國沿海地區(qū)(見表1)。采用改良CTAB法提取紅藻樣品的RNA,采用改良Trizol法提取褐藻樣品的RNA。利用Illumina Hiseq 2000測序平臺對樣品進行轉(zhuǎn)錄組測序,用SOAPdenovo-Trans對獲得的序列進行拼接。使用PuTTY和SecureFX軟件對轉(zhuǎn)錄組數(shù)據(jù)進行本地同源序列的調(diào)取,得到同源性較高的預(yù)選序列。此過程中所用的模板序列為從NCBI(http://www.ncbi.nlm.nih.gov/guide)下載的真菌、動物、細(xì)菌及藻類Dol-P甘露糖蛋白甘露糖轉(zhuǎn)移酶的CDS序列。采用MEGA5.0將獲得的預(yù)選序列與NCBI下載的CDS序列進行比對,截取全長的CDS序列并保存為fasta格式[21]。使用CLUSTALX 2.1軟件對藻類的PMT氨基酸序列進行多重序列比對及保守位點分析[22]。

1.2 生物信息學(xué)分析

使用在線分析工具Compute pI/Mw tool(http://web.expasy.org/compute_pi/)進行蛋白質(zhì)等電點及分子量計算。使用在線分析工具ProtScale(http://web.expasy.org/protscale/)進行蛋白質(zhì)的親疏水性分析[23]。使用SignalP(http://www.cbs.dtu.dk/services/SignalP/)進行信號肽預(yù)測。使用歐洲生物信息研究所(European Bioinformatics Institute,EMBI)的在線分析工具Pfam(http://pfam.xfam.org/)對蛋白質(zhì)結(jié)構(gòu)域進行預(yù)測。

表1 22種紅藻和19種褐藻樣品信息Table 1 The information of 22 Rhodophyta and 19 Phaeophyteae

1.3 系統(tǒng)進化分析

將通過本地比對獲得的PMT序列及從NCBI下載的序列用MEGA5.0軟件進行比對后存儲為.nex格式的文件。使用MrBayes v3.1.2軟件構(gòu)建系統(tǒng)進化樹。建樹時,采用混合模型(aamodelpr=mixed),利用馬可夫鏈-蒙特卡羅(Markov Chain Monte Carlo, MCMC)數(shù)據(jù)模擬技術(shù)估算后驗概率,取樣頻率為100,運行1 000 000代以上至p值小于0.01后結(jié)束運算,分別舍棄前后端25%的老化樣本后構(gòu)建進化樹[24-25]。使用FigTree 3.1軟件對貝葉斯系統(tǒng)進行樹進行編輯。

表2 Dol-P甘露糖蛋白甘露糖轉(zhuǎn)移酶基因建樹序列信息Table 2 Information of dolichyl-phosphate-mannose-protein mannosyltransferase genes used to construct the Bayesian phylogenetic tree

續(xù)表2

分類Taxonomy物種Species標(biāo)簽Label序列登陸號GenBanknumberCyanobacteriaMicrocystisaeruginosaMaPMTASZQ01000231.1ActinobacteriaMycobacteriumtuberculosisMtPMTNP_215518.1ActinobacteriaCorynebacteriumglutamicumCgPMTWP_011013949.1ActinobacteriaCorynebacteriumdiphtheriaeCdPMTWP_010934625.1ActinobacteriaCorynebacteriumefficiensCePMTWP_006770071.1

2 結(jié)果與分析

2.1 轉(zhuǎn)錄組組裝

對22種海洋紅藻及海洋褐藻的轉(zhuǎn)錄組進行測序,共產(chǎn)生了503 310 608條原始讀長,總數(shù)據(jù)量為89.2 Gb,經(jīng)拼接組裝后得到了2 161 986 scaffolds。所得到scaffolds的平均長度為717 bp,N50為1 751 bp。

2.2 轉(zhuǎn)錄組分析及序列多重比對

通過對1KP計劃中22種海洋紅藻及19種海洋褐藻轉(zhuǎn)錄組數(shù)的同源性比對分析,發(fā)現(xiàn)在海洋褐藻中不存在PMT基因;在海洋紅藻數(shù)據(jù)庫中獲得了19條與PMT基因同源性較高的序列,其中13條為PMT基因的非全長/13條為來自于(Gloiopeltisfurcata)的PMT基因全長序列,其他13條為PMT基因的部分序列。使用CLUSTALX 2.1軟件對部分藻類、酵母、人類、藍細(xì)菌及放線菌的PMT的氨基酸序列進行多重序列比對,發(fā)現(xiàn)各物種PMT序列的N端較為保守。除定鞭藻Emilianiahuxleyi的一條PMT序列外,其他藻類序列的N端都存在Asp-Glu基元(Motif)以保證PMT的活性。與真核生物的PMT序列相比,藻類、藍細(xì)菌及放線菌的PMT序列l(wèi)oop5處約有222個氨基酸的缺失,導(dǎo)致了loop5處3個MIR結(jié)構(gòu)域的丟失(見圖1)。

(*Represents amino acids sequences that are exactly the same;Represents more conserved amino acids sequences;Represents less conserved amino acids sequences. The Asp-Glu motifs are highlighted in gray. The lack of 222 amino acids at C-terminal is highlighted with rectangles.)

圖1 Dol-P甘露糖蛋白甘露糖轉(zhuǎn)移酶氨基酸序列多重比對
Fig.1 Multiple sequence alignment of dolichyl-phosphate-mannose-protein mannosyltransferase

2.3 藻類Dol-P甘露糖蛋白甘露糖轉(zhuǎn)移酶序列分析

采用Kyte & Doolittle法繪制的不同生物PMT親疏水性列譜顯示,各生物PMT序列的親疏水性列譜表現(xiàn)出高度的一致性,說明藻類與其他生物的PMT具有相似的跨膜區(qū)。但圖2的灰色陰影部分表明藻類、藍細(xì)菌及放線菌loop5明顯小于真菌及動物的loop5,這可能是由于上述三類生物此處序列缺失造成的。此外,表1所列出的藻類PMT序列特征顯示藻類PMT由335~593個氨基酸組成,蛋白分子量為36.29~68.00 kDa。理論等電點均大于7,說明PMT蛋白為堿性蛋白質(zhì)。

圖2 Dol-P甘露糖蛋白甘露糖轉(zhuǎn)移酶的親疏水性列譜(Kyte & Doolittle法)Fig.2 Hydropahy profiles of dolichyl-phosphate-mannose-protein mannosyltransferase from different organism. Hydropahy profiles were generated according to Kyte & Doolittle using a window of 17 amino acids Loop5 domains are shaded in gray

標(biāo)簽Label序列登陸號GenBanknumber氨基酸長度Numberofaminoacids/aa分子量Molecularweight/kDa等電點TheoreticalPi信號肽Signalpeptide結(jié)構(gòu)域DomainCmPMT1XM_005534956.156563.869.47NoPMT;PMT_4TMCCmPMT2XM_005538434.158265.6410.05NoPMT;PMT_4TMCGsPMT1XM_005708943.149057.128.79NoPMT;PMT_4TMCGsPMT2XM_005707374.151559.349.27NoPMT;PMT_4TMCGfPMT1KY11158153159.889.84NoPMT;PMT_4TMCGfPMT2KY11158255062.6310.16NoPMT;PMT_4TMCGfPMT3KY11158653059.479.57NoPMT;PMT_4TMCGfPMT4KY11158350357.569.97NoPMT;PMT_4TMCGfPMT5KY11158550757.749.06NoPMT;PMT_4TMCGfPMT6KY11158453161.479.51NoPMT;PMT_4TMCCcPMT1XM_005714905.153259.609.40NoPMT;PMT_4TMCCcPMT2XM_005715986.151558.169.94NoPMT;PMT_4TMCCcPMT3XM_005717925.153258.979.69NoPMT;PMT_4TMCCcPMT4XM_005715872.145952.179.69NoPMT;PMT_4TMCCcPMT5XM_005717830.159368.009.24NoPMT;PMT_4TMCCcPMT6XM_005715812.153060.849.73NoPMT;PMT_4TMCEhPMT1XM_005793100.133536.298.72NoPMTEhPMT2XM_005792708.144147.989.95NoPMT

2.4 藻類Dol-P甘露糖蛋白甘露糖轉(zhuǎn)移酶系統(tǒng)進化分析

聯(lián)合NCBI數(shù)據(jù)庫下載的PMT基因序列及本研究獲得的海蘿(G.furcata)的PMT序列,利用MrBayes v3.1.2軟件進行PMT基因的系統(tǒng)進化樹構(gòu)建(見圖3)。進化樹分為了PMT1亞家族、PMT2亞家族和PMT4亞家族三大分支,且各分支間的后驗概率均為1,表明該結(jié)果是可信的。來自于藻類、藍細(xì)菌及放線菌的所有序列都聚于PMT4亞家族的分支,表明其PMT屬于PMT4亞家族的成員。此外,該樹形還表明紅藻PMT基因來自于初次內(nèi)共生過程中藍細(xì)菌的內(nèi)共生基因轉(zhuǎn)移(Endosymbiotic gene transfer, EGT),而定鞭藻的PMT基因則來自于二次內(nèi)共生過程中紅藻內(nèi)共生體的EGT。

圖3 Dol-P甘露糖蛋白甘露糖轉(zhuǎn)移酶貝葉斯進化樹Fig.3 Bayesian phylogenetic tree of dolichyl-phosphate-mannose-protein mannosyltransferase

3 討論

來自于釀酒酵母的PMT1是首個被發(fā)現(xiàn)的Dol-P甘露糖蛋白甘露糖轉(zhuǎn)移酶,此后,來源于其他真菌、動物、細(xì)菌的PMT也逐漸被發(fā)現(xiàn)[17,25-27]。盡管如此,近年來也未有關(guān)于藻類PMT的相關(guān)報道。作為國際千種植物轉(zhuǎn)錄組計劃(1KP)的參與者,本研究以包括22種海洋紅藻及19種海洋褐藻的轉(zhuǎn)錄組數(shù)據(jù)庫為目標(biāo)搜索海洋紅藻及褐藻的PMT基因。經(jīng)比對,本研究只獲得了6條海蘿(G.furcata)的PMT全長序列,而未獲得任何褐藻的PMT序列,表明褐藻與綠藻一樣,不具有PMT基因[11]。這也可能是在含有大量甘露醇的海洋褐藻中未發(fā)現(xiàn)O-甘露糖蛋白的原因。

通過系統(tǒng)進化分析,本研究證實了藻類的PMT基因起源于內(nèi)共生的藍細(xì)菌。在初次內(nèi)共生事件中,藻類通過質(zhì)體基因轉(zhuǎn)移獲得了藍細(xì)菌來源的PMT基因。但灰胞藻及綠藻的PMT基因在進化過程中丟失了只有紅藻保留了PMT基因。在此后的二次內(nèi)共生事件中,定鞭藻獲得了紅藻來源的PMT基因。但其他以紅藻為內(nèi)共生體的二次內(nèi)共生藻類(例如:甲藻、隱藻、褐藻及硅藻等)卻遺棄了PMT基因。此外,本研究還發(fā)現(xiàn)藻類、藍細(xì)菌的PMT相比真菌及動物的PMT缺少了約222個氨基酸,這正是造成其loop5處3個MIR結(jié)構(gòu)域缺失的原因。藻類PMT基因來自于藍細(xì)菌PMT基因的內(nèi)共生基因轉(zhuǎn)移的結(jié)論恰當(dāng)?shù)亟忉屃苏婧嗽孱惻c真核生物PMT序列差別較大,而與原核細(xì)菌PMT基因相似的現(xiàn)象。由于藻類PMT的N端的Asp-Glu基元(Motif)不僅與PMT的活性有關(guān),還與形成多酶復(fù)合體密切相關(guān)。因此,雖然藻類PMT在loop5處存在大量氨基酸的缺失,但其N端卻十分保守。由于釀酒酵母PMT4形成同源二聚體來行使催化功能,我們推測屬于PMT4亞家族的藻類PMT也可能形成同源二聚體來發(fā)揮作用[9]。雖然藻類的PMT均屬于PMT4亞家族,但相比于只有一個PMT4亞家族基因的真菌、動物及細(xì)菌,藻類的PMT基因拷貝數(shù)明顯多于其他生物。這說明藻類的PMT基因在進化過程中發(fā)生了一次或多次的基因復(fù)制事件,其進化方式與其他生物存在一定的差異。

[1] Spiro R G. Protein glycosylation: Nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds [J]. Glycobiology, 2002, 12(4): 43R-56R.

[2] 楊淑鳳, 鄧國英, 劉欣, 等. 真核生物蛋白質(zhì)O-甘露糖基化的研究進展[J]. 生命的化學(xué), 2015, 35(1): 5-8.

Yang S F, Deng G Y, Liu X, et al. Protein O-mannosylation in eukaryotes [J]. Chemistry of Life, 2015, 35(1): 5-8.

[3] 尹恒, 王文霞, 趙小明, 等. 植物糖生物學(xué)研究進展[J]. 植物學(xué)報, 2010, 45(5):521-529.

Yin H, Wang W X, Zhao X M, et al. Research progress in plant glycobiology [J]. Chinese Bulletin of Botany, 2010, 45(5): 521-529.

[4] 耿莉娜, 黨曉群, 吳海晶, 等. 微孢子蟲O-甘露糖糖基化通路相關(guān)酶基因序列的比較分析[J]. 蠶業(yè)科學(xué), 2012, 38(3): 512-522.

Geng L N, Dang X Q, Wu H J, et al. Comparative analysis of gene sequences of related enzymes in O-mannosylation pathway of microsporidian [J]. Science of Sericulture, 2012, 38(3): 512-522.

[5] Lussier M, Gentzsch M, Sdicu A M, et al. Protein O-glycosylation in yeast. The PMT2 gene specifies a second protein O-mannosyltransferase that functions in addition to the PMT1-encoded activity [J]. Journal of Biological Chemistry, 1995, 270(6): 2770-2775.

[6] Sentandreu R, Northcote D H. The structure of a glycopeptide isolated from the yeast cell wall [J]. Biochemical Journal, 1968, 109(3): 419-432.

[7] Strahl-Bolsinger S, Gentzsch M, Tanner W. Protein O-mannosylation [J]. Biochimica et Biophysica Acta (BBA)-General Subjects, 1999, 1426(2): 297-307.

[8] Loibl M, Strahl S. Protein O-mannosylation: What we have learned from baker′s yeast [J]. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2013, 1833(11): 2438-2446.

[9] Girrbach V, Strahl S. Members of the evolutionarily conserved PMT family of protein O-mannosyltransferases form distinct protein complexes among themselves [J]. Journal of Biological Chemistry, 2003, 278(14): 12554-12562.

[10] Gentzsch M, Tanner W. The PMT gene family: Protein O-glycosylation inSaccharomycescerevisiaeis vital [J]. The EMBO Journal, 1996, 15(21): 5752-5759.

[11] Lommel M, Strahl S. Protein O-mannosylation: Conserved from bacteria to humans [J]. Glycobiology, 2009, 19(8): 816-828.

[12] Prill S K H, Klinkert B, Timpel C, et al. PMT family ofCandidaalbicans: Five protein mannosyltransferase isoforms affect growth, morphogenesis and antifungal resistance [J]. Molecular Microbiology, 2005, 55(2): 546-560.

[13] Stalnaker S H, Stuart R, Wells L. Mammalian O-mannosylation: Unsolved questions of structure/function [J]. Current Opinion in Structural Biology, 2011, 21(5): 603-609.

[14] Akasaka-Manya K, Manya H, Hayashi M, et al. Different roles of the two components of human protein O-mannosyltransferase, POMT1 and POMT2 [J]. Biochemical and Biophysical Research Communications, 2011, 411(4): 721-725.

[15] Bausewein D, Engel J, Jank T, et al. Functional similarities between the protein O-mannosyltransferases Pmt4 from bakers′ yeast and human POMT1 [J]. Journal of Biological Chemistry, 2016, 291(34): 18006-18015.

[16] Lommel M, Willer T, Strahl S. POMT2, a key enzyme in Walker-Warburg syndrome: Somatic sPOMT2, but not testis-specific tPOMT2, is crucial for mannosyltransferase activity in vivo [J]. Glycobiology, 2008, 18(8): 615-625.

[17] VanderVen B C, Harder J D, Crick D C, et al. Export-mediated assembly of mycobacterial glycoproteins parallels eukaryotic pathways [J]. Science, 2005, 309(5736): 941-943.

[18] Wehmeier S, Varghese A S, Gurcha S S, et al. Glycosylation of the phosphate binding protein, PstS, inStreptomycescoelicolorby a pathway that resembles protein O-mannosylation in eukaryotes [J]. Molecular Microbiology, 2009, 71(2): 421-433.

[19] 殷鋼, 劉錚, 李琛, 等. 螺旋藻糖蛋白的分離純化及其性質(zhì)研究[J]. 高等學(xué)校化學(xué)學(xué)報, 1999, 20(4): 565-568.

Yin G, Liu Z, Li C, et al. Isolation, characterization and properties ofSpirulinaglycoprotein [J]. Chemical Journal of Chinese University, 1999, 20(4): 565-568.

[20] 全香花, 于霞, 李帥, 等. 海藻色素糖蛋白制備及其對小鼠肝癌生長抑制作用[J]. 青島大學(xué)醫(yī)學(xué)院學(xué)報, 2011, 47(4): 296-297.

Jin X H, Yu X, Li S, et al. The preparation of seaweed pigment glycoprotein from eucheuma and it inhibits growth of liver cancer in mice [J]. Acta Academiae Medicinae Qingdao Universitatis, 2011, 47(4): 296-297.

[21] Tamura K, Peterson D, Peterson N, et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods [J]. Molecular Biology and Evolution, 2011, 28(10): 2731-2739.

[22] Thompson J D, Gibson T, Higgins D G. Multiple sequence alignment using ClustalW and ClustalX [J]. Current Protocols in Bioinformatics, 2002: 2.3.1-2.3.22.

[23] Kyte J, Doolittle R F. A simple method for displaying the hydropathic character of a protein [J]. Journal of Molecular Biology, 1982, 157(1): 105-132.

[24] Ronquist F, Huelsenbeck J P. MrBayes 3: Bayesian phylogenetic inference under mixed models [J]. Bioinformatics, 2003, 19(12): 1572-1574.

[25] 王勇, 陳克平, 姚勤. 系統(tǒng)發(fā)生分析程序MrBayes 3. 1使用方法介紹[J]. 安徽農(nóng)業(yè)科學(xué), 2009, 37(33):1666-1668.

Wang Y, Chen K P, Yao Q. An introduction to the operation method of phylogenetic analysis program MrBayes 3. 1 [J]. Journal of Anhui Agricultural Sciences, 2009, 37(33): 1666-16668.

[26] Strahlbolsinger S, Tanner W. Protein O-glycosylation in Saccharomycescerevisiae. Purification and characterization of the dolichyl-phosphate-D-mannose-protein O-D-mannosyltransferase [J]. European Journal of Biochemistry, 1991, 196(1): 185-190.

[27] Jurado L A P, Coloma A, Cruces J. Identification of a human homolog of the Drosophila rotated abdomen gene (POMT1) encoding a putative protein O-mannosyl-transferase, and assignment to human chromosome 9q34. 1 [J]. Genomics, 1999, 58(2): 171-180.

PhylogeneticAnalysesofAlgalDolichyl-Phosphate-Mannose-ProteinMannosyltransferase

WANG Shan-Shan1, CHI Shan2, ZHANG Lei1, LIU Tao1, LV Na-Na2, TANG Xue-Xi1

(1.College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; 2.Qingdao Haida Blue Tek Biotechnology Co. , Ltd, Qingdao 266200, China)

Protein O-mannosylation is an extensive posttranslational modification. This reaction is catalyzed by a family of dolichyl-phosphate-mannose-protein mannosyltransferase (PMT), starts with the transfer of mannose from dolichyl mannose to seryl or threonyl residues of secretory proteins. As part of the 1 000 Plant Project (1KP), we provided marine macroalgal transcriptome of 22 red species and 19 brown species from China. In this study, the transcriptome database of 22 red algae Phaeophyceae and 19 brown algae Phaeophyceae were searched. SixPMTgene copies ofGloiopeltisfurcatawere obtained from red algae database and nonePMTgene was found in the brown algae database. It suggested that brown algae lostPMTgene in their evolutionary process. Then, the analysis of hydropahy profiles suggested that the amino acid sequence of algal PMT had similar hydropahy profiles with the PMT from fungi and animal, indicating that there were similar transmembrane regions among eukaryotes. Compared with other eukaryotes, the N-terminal amino acid sequences of algal PMT were relatively conserved. The Asp-Glu motif in N-terminal of PMT is essential for the formation and stability of PMT complexes. However, the lack of 222 amino acids at loop5 made the algal PMT lose three MIR domains. And the same deletion also happened in bacterial PMT. According to the Bayesian phylogenetic tree, the algalPMTgene was derived from endosymbiont by endosymbiotic gene transfer (EGT). Rhodophyta acquired thePMTgene via cyanobacteria during the primary endosymbiotic event and Haptophyta acquired thePMTgene via red-like endosymbiont during the secondary endosymbiotic event. Later, Gene duplication brought differentPMTgene copies.

algae; O-mannosylation; dolichyl-phosphate-mannose-protein mannosyltransferase; phylogenetic analyses

Q178.53

A

1672-5174(2018)02-056-08

10.16441/j.cnki.hdxb.20160379

王珊珊,池姍,張磊,等. 藻類Dol-P甘露糖轉(zhuǎn)移酶的系統(tǒng)進化分析[J]. 中國海洋大學(xué)學(xué)報(自然科學(xué)版), 2018, 48(2): 56-63.

WANG Shan-Shan, CHI Shan, ZHANG Lei, et al. Phylogenetic analyses of algal dolichyl-phosphate-mannose-protein mannosyltransferase[J]. Periodical of Ocean University of China, 2018, 48(2): 56-63.

廣東省省級科技計劃項目(2013B021100008);青島市應(yīng)用基礎(chǔ)研究計劃項目(14-2-4-102-jch);青島創(chuàng)業(yè)創(chuàng)新領(lǐng)軍人才計劃項目資助

Supported by Provincial Science and Technology Program of Guangdong Province(2013B021100008); Qingdao Applied Basic Research Project(14-2-4-102-jch);Qingdao Entrepreneurial and Imovation Leading Talents Project

2016-11-15;

2017-01-17

王珊珊(1988-),女,博士生,主要從事海藻生物技術(shù)研究。E-mail:mgbl_14@ouc.edu.cn

? ? 通訊作者:E-mail:tangxx@ouc.edu.cn

責(zé)任編輯 高 蓓

猜你喜歡
褐藻糖蛋白糖基化
天然糖蛋白研究進展
褐藻膠寡糖的制備、分離及表征研究進展
海洋細(xì)菌來源低溫褐藻膠裂解酶的分泌表達和酶學(xué)性質(zhì)研究*
中藥糖蛋白的研究進展
PD-1/PD-L1 的糖基化修飾對腫瘤免疫治療影響的研究進展
褐藻中巖藻多糖檢測方法的研究
P-糖蛋白表達與非肌層浸潤性膀胱癌患者術(shù)后復(fù)發(fā)關(guān)系的研究△
蛋白質(zhì)O-GlcNAc糖基化修飾在婦科腫瘤中的研究進展
糖基化終末產(chǎn)物對胰島β細(xì)胞的損傷及作用機制研究進展
糖基化終末產(chǎn)物與冠脈舒張功能受損