趙勇勝,韓慧慧,遲子芳*,李 琴,康學(xué)赫,劉茹雪
?
滲透系數(shù)級(jí)差對(duì)污染物在低滲透透鏡體中的遷移影響研究
趙勇勝1,2,韓慧慧1,2,遲子芳1,2*,李 琴1,2,康學(xué)赫1,2,劉茹雪1,2
(1.吉林大學(xué),地下水資源與環(huán)境教育部重點(diǎn)實(shí)驗(yàn)室,吉林 長(zhǎng)春 130021;2.吉林大學(xué)新能源與環(huán)境學(xué)院,吉林 長(zhǎng)春 130021)
利用二維模擬槽研究非均質(zhì)含水層中滲透系數(shù)級(jí)差對(duì)低滲透透鏡體內(nèi)污染物遷移的影響,確定不同滲透系數(shù)級(jí)差下污染物在透鏡體中的波及效率和去除效率,建立低滲透透鏡體內(nèi)波及/去除效率、入滲/反沖時(shí)間和滲透系數(shù)級(jí)差三者之間的定量關(guān)系.結(jié)果表明:在污染過(guò)程中,污染物的遷移速度隨滲透系數(shù)級(jí)差的增大而減小;在0.5m/d的地下水流速下,當(dāng)滲透系數(shù)級(jí)差從3增大至52時(shí),污染物波及效率達(dá)到100%所需要的時(shí)間從8h上升至360h;污染物的波及效率與入滲時(shí)間成正相關(guān)關(guān)系與滲透系數(shù)級(jí)差mn呈負(fù)相關(guān)關(guān)系,其函數(shù)關(guān)系為=(109.623/mn2+1.035/mn+0.447).在模擬抽出處理的過(guò)程中,污染物的去除速度隨滲透系數(shù)級(jí)差的增大而減小;當(dāng)滲透系數(shù)級(jí)差從3增大至52時(shí),污染物的去除效率達(dá)到100%所需的時(shí)間從13h升高至480h;污染物在透鏡體中的去除效率’與反沖時(shí)間和滲透系數(shù)級(jí)差mn的函數(shù)關(guān)系為’=(54.999/mn2+6.605/mn+0.098).對(duì)比兩個(gè)過(guò)程可發(fā)現(xiàn),污染物在非均質(zhì)含水層中的污染和修復(fù)過(guò)程在時(shí)間方面呈現(xiàn)出不可逆性.隨著滲透系數(shù)級(jí)差的增大,污染和去除過(guò)程中低滲透透鏡體內(nèi)波及/去除效率達(dá)100%的時(shí)間差值從5h逐漸增大至120h,“拖尾”效應(yīng)越來(lái)越明顯.
滲透系數(shù)級(jí)差;低滲透透鏡體;波及效率;去除效率
近年來(lái),地下水污染問(wèn)題日益嚴(yán)重[1-4],污染場(chǎng)地的修復(fù)和治理得到了高度重視,為了制定經(jīng)濟(jì)有效的修復(fù)方案,必須掌握污染物在地下遷移的規(guī)律,預(yù)測(cè)污染范圍及其遷移路徑.非均質(zhì)含水層中污染物的遷移情況更為復(fù)雜[5-6],特別是在地下廣泛存在的低滲透透鏡體的修復(fù)過(guò)程中,修復(fù)試劑在高滲透區(qū)易形成“優(yōu)先流”在低滲透區(qū)易形成“繞流”現(xiàn)象,導(dǎo)致其在低滲透介質(zhì)中的遷移效率低;并且當(dāng)高滲透區(qū)的污染物濃度降低后,低滲透區(qū)的污染物在濃度梯度的作用下會(huì)持續(xù)不斷的向高滲透區(qū)擴(kuò)散釋放,導(dǎo)致污染物的“拖尾”效應(yīng).因此,確定非均質(zhì)含水層中滲透系數(shù)級(jí)差對(duì)污染物的滯留及遷移影響對(duì)非均質(zhì)含水層的污染修復(fù)具有重要意義.
室內(nèi)二維模擬槽目前已成為研究多相流遷移、污染物遷移及修復(fù)[7-8]等問(wèn)題的重要工具.圖像分析法是模擬槽實(shí)驗(yàn)中考察溶質(zhì)運(yùn)移過(guò)程的一種常用方法[9-11],該方法具有直觀性、圖像易采集性、費(fèi)用低等優(yōu)點(diǎn).亮藍(lán)因背景值低、毒性低、溶解度高,與含水層介質(zhì)顏色形成鮮明對(duì)比,具有良好的移動(dòng)性和可視性,因此被大量研究采用[12-16].目前已有大量學(xué)者對(duì)非均質(zhì)含水層中污染物的遷移規(guī)律進(jìn)行研究[17-20].Brendan等[21]以1.32mL/min的流速注水反沖洗預(yù)先飽和染料的二維模擬槽,研究非均質(zhì)中低滲透區(qū)的溶質(zhì)運(yùn)移問(wèn)題,研究發(fā)現(xiàn),當(dāng)滲透系數(shù)級(jí)差為6時(shí)染料主要發(fā)生宏觀彌散不產(chǎn)生拖尾效應(yīng),滲透系數(shù)級(jí)差為300時(shí)染料運(yùn)移以對(duì)流為主并產(chǎn)生拖尾效應(yīng),滲透系數(shù)級(jí)差達(dá)到1800時(shí)染料主要發(fā)生分子擴(kuò)散,并且拖尾現(xiàn)象最為明顯.陳震等[22]研究發(fā)現(xiàn)在滲透系數(shù)級(jí)差為80和150的非均質(zhì)條件下亮藍(lán)在模擬槽內(nèi)的最大貯存質(zhì)量與滲透系數(shù)級(jí)差呈負(fù)相關(guān)關(guān)系,與注入速度呈正相關(guān)關(guān)系.程洲等[23]在表面活性劑原位沖洗修復(fù)試驗(yàn)中發(fā)現(xiàn)透鏡體內(nèi)TCE的修復(fù)效率隨滲透系數(shù)級(jí)差的增大而減小.Yang等[24-26]發(fā)現(xiàn)在粗砂/粘土高滲透系數(shù)級(jí)差下染料會(huì)在低滲透區(qū)發(fā)生緩慢的反向擴(kuò)散,形成二次污染源.現(xiàn)有研究主要是針對(duì)滲透系數(shù)級(jí)差與污染物運(yùn)移規(guī)律的定性研究,并沒(méi)有給出污染物的遷移規(guī)律與滲透系數(shù)級(jí)差和時(shí)間的定量關(guān)系.因此本實(shí)驗(yàn)在前人研究的基礎(chǔ)上,以亮藍(lán)代替可混溶的非反應(yīng)性污染物,通過(guò)室內(nèi)二維模擬槽實(shí)驗(yàn)研究不同滲透系數(shù)級(jí)差條件下低滲透透鏡體中污染物的遷移規(guī)律,建立污染物的波及效率和去除效率與滲透系數(shù)級(jí)差和入滲/反沖時(shí)間的定量關(guān)系,以期為非均質(zhì)污染含水層中低滲透地層污染范圍和抽出處理時(shí)間的確定提供理論依據(jù).
實(shí)驗(yàn)裝置選用尺寸為500×400×50mm的二維有機(jī)玻璃槽,兩側(cè)設(shè)有20mm布水隔室,如圖1所示.實(shí)驗(yàn)采用濕法填砂[27],避免干法填砂后期飽水時(shí)產(chǎn)生氣泡而改變介質(zhì)的滲透性.在模擬槽正中間裝填一個(gè)長(zhǎng)25cm、寬5cm、高10cm的低滲透透鏡體.裝填過(guò)程中,保持砂箱中水位高于石英砂1~2cm,每裝填2cm石英砂后用鋁錘夯實(shí),保證介質(zhì)完全飽水且填充均勻.裝填外圍介質(zhì)時(shí),控制相同質(zhì)量石英砂裝填高度相同,使每組實(shí)驗(yàn)中相同外圍介質(zhì)的滲透系數(shù)不變.
圖1 實(shí)驗(yàn)裝置示意
a.染料b.蠕動(dòng)泵c.模擬槽
實(shí)驗(yàn)采用可食用的亮藍(lán)染料代替可混溶的非反應(yīng)性污染物;為了便于觀察污染物的遷移過(guò)程,采用含泥量低、染色效果明顯的白色石英砂模擬含水層介質(zhì)(購(gòu)自新沂市明亮石英砂廠).6種介質(zhì)巖性及其物理特性如表1所示.
表1 模擬含水層介質(zhì)物理特性
二維模擬槽高滲透區(qū)裝填介質(zhì)粒徑為2~ 3.5mm,低滲透透鏡體分別選用5種介質(zhì),粒徑分別為1~2mm、0.5~1mm、0.25~0.5mm、0.1~0.5mm、0.1~0.25mm.設(shè)置地下水流速為0.5m/d,利用蠕動(dòng)泵以6.5mL/min的速度注入100mg/L的亮藍(lán)溶液,以染料剛接觸透鏡體邊緣為起始點(diǎn),染料完全穿透透鏡體為終點(diǎn)計(jì)時(shí),在相同時(shí)間間隔下在二維模擬槽上對(duì)透鏡體中染色的區(qū)域鋒面畫線記錄,以用來(lái)分析透鏡體的整個(gè)污染過(guò)程,同時(shí)拍攝照片,利用GMS軟件對(duì)圖片進(jìn)行后期處理,計(jì)算每個(gè)時(shí)間段染料進(jìn)入透鏡體中的面積,研究不同滲透系數(shù)級(jí)差下低滲透透鏡體中污染物的遷移規(guī)律.每組實(shí)驗(yàn)監(jiān)測(cè)的時(shí)間間隔根據(jù)染料在透鏡體中的遷移速度設(shè)置,具體設(shè)計(jì)如表2所示.待整個(gè)二維模擬槽完全染色后,以相同的流速注清水反向沖洗(模擬抽出處理技術(shù)),以注入水剛接觸染色透鏡體邊緣為起始點(diǎn),透鏡體中染料被完全沖出為終點(diǎn)計(jì)時(shí),采用上述方法畫線記錄染料的遷出過(guò)程并拍攝照片,利用GMS軟件求出每個(gè)時(shí)間段染料從透鏡體中的遷出面積,研究不同滲透系數(shù)級(jí)差下低滲透透鏡體中污染物的去除規(guī)律.
表2 實(shí)驗(yàn)方案一覽表
不同滲透系數(shù)級(jí)差下不同時(shí)刻污染物進(jìn)入透鏡體的遷移情況如圖2所示,圖中黑色矩形內(nèi)為低滲透透鏡體區(qū)域,矩形外圍為高滲透區(qū)域,黑色標(biāo)記線為相同時(shí)間間隔下污染物的遷移范圍.
圖2 不同滲透系數(shù)級(jí)差下染料進(jìn)入透鏡體的遷移過(guò)程
雖然污染物的注入方式和速度相同,但受介質(zhì)的非均質(zhì)性影響,污染物在低滲透透鏡體中的遷移行為表現(xiàn)出顯著差異.如圖所示,當(dāng)滲透系數(shù)級(jí)差為3時(shí),污染物完全穿透透鏡體需要8h,滲透系數(shù)級(jí)差為7時(shí)需要40h,滲透系數(shù)級(jí)差為13時(shí)需要90h,滲透系數(shù)級(jí)差為52時(shí)所需時(shí)間上升至360h,而此時(shí)滲透系數(shù)級(jí)差為105的透鏡體中污染物的波及效率僅達(dá)到87.14%.滲透系數(shù)級(jí)差越大,污染物進(jìn)入低滲透區(qū)越慢,在低滲透區(qū)的遷移速度越小.當(dāng)mn=52和105時(shí),透鏡體中污染物的濃度低于高滲透區(qū)的濃度,滲透系數(shù)級(jí)差越大,進(jìn)入透鏡體中染料的顏色越淺,濃度越低.污染物在低滲透區(qū)既有橫向遷移又有縱向遷移,并且縱向遷移在開(kāi)始注入污染物一段時(shí)間后才開(kāi)始顯現(xiàn),這是因?yàn)闄M向遷移時(shí)主要受水動(dòng)力作用,而縱向遷移主要受分子擴(kuò)散作用的影響.由于擴(kuò)散作用力小于水動(dòng)力作用力,所以縱向遷移速度低于橫向遷移速度.
利用GMS軟件分析一定時(shí)間內(nèi)污染物在低滲透透鏡體中的遷移面積,并計(jì)算其占低滲透區(qū)域總面積的比例,將其定義為波及效率,計(jì)算公式如(1)所示.
式中:為波及效率;1為透鏡體中被染料染色區(qū)域的面積,cm2;2為透鏡體的總面積,cm2;不同滲透系數(shù)級(jí)差的非均質(zhì)介質(zhì)中,污染物在透鏡體中的波及效率隨時(shí)間變化如圖3所示.
圖3 不同滲透系數(shù)級(jí)差下污染物在透鏡體中的波及效率
Fig.3 The sweep efficiency of dyes in the lens under different permeability ratio
當(dāng)滲透系數(shù)級(jí)差從3逐漸升高到52時(shí),污染物波及效率達(dá)到100%所需要的時(shí)間從8h大幅度上升到360h.這是因?yàn)榻橘|(zhì)粒徑越小,滲透系數(shù)越小,透水性越弱,當(dāng)污染物運(yùn)移到透鏡體界面時(shí),需要克服的阻力變大,形成阻擋屏障,因此發(fā)生繞流現(xiàn)象.滲透系數(shù)級(jí)差越大的透鏡體阻力越大,繞流現(xiàn)象越明顯.由圖3還可見(jiàn),當(dāng)滲透系數(shù)級(jí)差為3、7、13時(shí),波及效率與時(shí)間呈線性相關(guān)關(guān)系,當(dāng)滲透系數(shù)級(jí)差為52、105時(shí),明顯不是線性關(guān)系,為了獲得波及效率的變化速率,對(duì)曲線前半段(£192h)進(jìn)行線性擬合,其擬合方程及相關(guān)系數(shù)如表3所示.隨著時(shí)間延長(zhǎng),波及效率直線的斜率略有減小,且滲透系數(shù)級(jí)差越大,曲線斜率變化趨勢(shì)越緩,說(shuō)明污染物在透鏡體中的遷移速度變小.這是因?yàn)槲廴疚镌谕哥R體中遷移時(shí),對(duì)流作用隨著遷移距離增大而減小,污染物遷移的有效動(dòng)力變小.
表3 污染物的波及效率Z與時(shí)間t關(guān)于Z=bt線性擬合方程
圖4 b關(guān)于Knm的二次多項(xiàng)式方程擬合
圖5 污染物在透鏡體中遷移的三維模型
不同滲透系數(shù)級(jí)差非均質(zhì)含水層中污染物波及效率直線方程的斜率相差較大,考察其與mn的關(guān)系,發(fā)現(xiàn)與mn的倒數(shù)nm正相關(guān),建立與nm的函數(shù)關(guān)系,如圖4所示.將與mn函數(shù)關(guān)系帶入污染物波及效率方程,得到污染物波及效率與滲透系數(shù)級(jí)差mn及入滲時(shí)間的函數(shù)關(guān)系:=(109.623/mn2+1.035/mn+0.447),三維模型表達(dá)如圖5所示.將原始數(shù)據(jù)帶入進(jìn)行模型擬合,發(fā)現(xiàn)實(shí)驗(yàn)數(shù)據(jù)與模型具有較好的擬合效果,說(shuō)明此模型可以模擬污染物在非均質(zhì)含水層中的遷移情況.
待二維模擬槽完全染色,以相同的流速注清水反向沖洗模擬抽出處理技術(shù),不同滲透系數(shù)級(jí)差下不同時(shí)刻透鏡體中污染物的去除情況如圖6所示,黑色標(biāo)記線為相同時(shí)間間隔下污染物的去除范圍.
圖6 不同滲透系數(shù)級(jí)差下污染物在透鏡體中的去除路徑
圖7 污染物在不同滲透級(jí)差透鏡體中的去除效率
從圖6可以看出,污染物的去除路徑最后都形成了羽狀,發(fā)生了拖尾效應(yīng).當(dāng)滲透系數(shù)級(jí)差為3、7時(shí)拖尾現(xiàn)象不夠明顯,當(dāng)級(jí)差增大至13、52、105時(shí),拖尾現(xiàn)象越來(lái)越明顯.當(dāng)滲透系數(shù)級(jí)差為3時(shí),污染物全部去除需要13h,滲透系數(shù)級(jí)差為7時(shí)需要49h,滲透級(jí)差為13時(shí)需要108h,滲透系數(shù)級(jí)差為52時(shí)大幅度上升至480h,而此時(shí)滲透系數(shù)級(jí)差為105的透鏡體中污染物的去除效率僅達(dá)到74.67%.滲透系數(shù)級(jí)差越大,污染物越難從透鏡體中去除.
利用GMS軟件計(jì)算一定時(shí)間內(nèi)污染物從透鏡體中的遷出面積,不同滲透系數(shù)級(jí)差的非均質(zhì)介質(zhì)中,污染物在透鏡體中的去除效率隨時(shí)間變化如圖7所示.
由圖7可知,滲透系數(shù)級(jí)差越大,染料被完全沖出透鏡體所需要的時(shí)間越長(zhǎng),速度越慢.這是因?yàn)槿玖现饕克畡?dòng)力被去除,滲透系數(shù)級(jí)差越大,低滲透區(qū)滲透系數(shù)越小,水進(jìn)入透鏡體需要克服的阻力越大,透鏡體中染料獲得的有效動(dòng)力越小,越難被去除,拖尾現(xiàn)象越明顯.污染物的去除效率與時(shí)間呈線性相關(guān)關(guān)系,其擬合方程及相關(guān)系數(shù)如表4所示
同理,考察與mn的關(guān)系,建立與nm的函數(shù)關(guān)系,如圖8所示.將與mn函數(shù)關(guān)系帶入污染物去除效率方程,得到污染物去除效率’與滲透系數(shù)級(jí)差mn及反沖時(shí)間的函數(shù)關(guān)系:’=(54.999/mn2+ 6.605/mn+0.098),三維模型表達(dá)如圖9所示.將原始數(shù)據(jù)帶入進(jìn)行模型擬合,發(fā)現(xiàn)實(shí)驗(yàn)數(shù)據(jù)與模型具有較好的擬合效果,說(shuō)明此模型可以模擬抽出處理過(guò)程中非均質(zhì)含水層中污染物的去除情況.依據(jù)此模型,為抽出處理的時(shí)間確定提供理論依據(jù).
表4 污染物的去除效率Z’與時(shí)間t關(guān)于Z’=bt線性擬合方程
圖8 b關(guān)于Knm的二次多項(xiàng)式方程擬合
圖9 污染物從透鏡體中去除的三維模型
將上述污染物在非均質(zhì)含水層中的遷入和遷出方程建立三維模型,如圖10所示.
從圖中可以看出,相同條件下,污染物在同一透鏡體的波及效率都大于其去除效率,即污染物進(jìn)入透鏡體的速度大于被沖出的速度.這是因?yàn)槲廴疚镞M(jìn)出透鏡體過(guò)程中受到的水動(dòng)力是相同的,但是進(jìn)入透鏡體時(shí),不斷注入的污染物相當(dāng)于一個(gè)泄露的污染源,高滲透區(qū)污染物的濃度始終高于透鏡體中的濃度,這種較大的濃度梯度導(dǎo)致染料分子擴(kuò)散的速度很快;而在反沖洗時(shí),由于非均質(zhì)的影響,高滲透區(qū)的污染物最先被去除,這時(shí)透鏡體中的污染物相當(dāng)于污染源,在不斷的反沖下,透鏡體內(nèi)污染物濃度越來(lái)越低,與高滲透區(qū)中污染物的濃度梯度越來(lái)越小,所以染料分子擴(kuò)散速度變小,而且介質(zhì)對(duì)污染物具有一定的吸附作用,所以污染物的遷入速度大于其遷出速度,這種在透鏡體中的易進(jìn)難出表現(xiàn)為拖尾效應(yīng).當(dāng)滲透系數(shù)級(jí)差為3時(shí),污染物完全進(jìn)入透鏡體的時(shí)間與被去除的時(shí)間相差5h,滲透系數(shù)級(jí)差為7時(shí)相差9h,滲透系數(shù)級(jí)差為13時(shí)相差18h,滲透系數(shù)級(jí)差為52時(shí)相差120h,拖尾效應(yīng)隨著滲透系數(shù)級(jí)差的增大表現(xiàn)的更加明顯,這是因?yàn)闈B透系數(shù)級(jí)差越大的非均質(zhì)中低滲透區(qū)的滲透系數(shù)越小,對(duì)污染物的阻截能力越強(qiáng),污染物擴(kuò)散出去的速度越慢.
圖10 污染物波及效率與去除效率的關(guān)系
3.1 非均質(zhì)含水層的滲透系數(shù)級(jí)差越大,污染物進(jìn)入低滲透透鏡體中所需的時(shí)間越長(zhǎng);污染物在透鏡體中的波及效率與滲透系數(shù)級(jí)差mn及時(shí)間的關(guān)系:=(109.623/mn2+1.035/mn+0.447),依據(jù)此方程,可以預(yù)測(cè)污染源泄露之后,污染物在低滲透介質(zhì)中的波及情況.
3.2 非均質(zhì)含水層的滲透系數(shù)級(jí)差越大,污染物在透鏡體中的滯留時(shí)間越長(zhǎng);污染物從透鏡體中的去除效率’與滲透系數(shù)級(jí)差mn及時(shí)間的關(guān)系:’=(54.999/mn2+6.605/mn+0.098),依據(jù)此模型,為污染地下水抽取處理的時(shí)間確定提供理論依據(jù).
3.3 非均質(zhì)含水層中,污染物在透鏡體中的波及效率大于其去除效率;從透鏡體中去除的時(shí)間大于其進(jìn)入的時(shí)間,并且隨著滲透系數(shù)級(jí)差的增大,污染物去除和進(jìn)入的時(shí)間差值從5h逐漸增大至120h,拖尾現(xiàn)象越明顯,需要修復(fù)時(shí)間越長(zhǎng).
[1] Michael Berg, Con Tran H, T C N, et al. Arsenic Contamination of Groundwater and Drinking Water in Vietnam:? A Human Health Threat [J]. Environmental Science & Technology, 2001,35(13):2621- 2626.
[2] Qiu J. China faces up to groundwater crisis [J]. Nature, 2010, 466(7304):308.
[3] Gong J, Tang K, Wang H. Zone-division of water crisis and corresponding strategies in China [J]. Resources Science, 2015.
[4] Lin K S, Mdlovu N V, Chen C Y, et al. Degradation of TCE, PCE, and 1,2–DCE DNAPLs in contaminated groundwater using polyethylenimine-modified zero-valent iron nanoparticles [J]. Journal of Cleaner Production, 2018,175:456-466.
[5] Yang M, Annable M D, Jawitz J W. Forward and back diffusion through argillaceous formations [J]. Water Resources Research, 2017, 53:4514-4523.
[6] Tatti F, Papini M P, Sappa G, et al. Contaminant back-diffusion from low-permeability layers as affected by groundwater velocity: A laboratory investigation by box model and image analysis. [J]. Science of the Total Environment, 2018,s622–623:164-171.
[7] Fure A D, Jawitz J W, Annable M D. DNAPL source depletion: linking architecture and flux response. [J]. Journal of Contaminant Hydrology, 2006,85(3):118-140.
[8] Clement T P, Kim Y C, Gautam T R, et al. Experimental and Numerical Investigation of DNAPL Dissolution Processes in a Laboratory Aquifer Model [J]. Groundwater Monitoring & Remediation, 2004,24(4):88-96.
[9] Kashuk S, Mercurio S R, Iskander M. Visualization of dyed NAPL concentration in transparent porous media using color space components [J]. Journal of Contaminant Hydrology, 2014,162-163(5): 1-16.
[10] Corapcioglu Y M, Chowdhury S, Roosevelt S E. Micromodel visualization and quantification of solute transport in porous media [J]. Water Resources Research, 1997,33(11):2547-2558.
[11] Konz M, Ackerer P, Huggenberger P, et al. Comparison of light transmission and reflection techniques to determine concentrations in flow tank experiments [J]. Experiments in Fluids, 2009,47(1):85-93.
[12] Flury M, Flühler H. Brilliant Blue FCF as a Dye Tracer for Solute Transport Studies—A Toxicological Overview [J]. Journal of Environmental Quality, 1994,23(5):1108-1112.
[13] Smart P L, Laidlaw I M S. An Evaluation of Some Fluorescent Dyes for Water Tracing [J]. Water Resources Research, 1977,13(13):15-33.
[14] Wang K, Zhang R. Heterogeneous soil water flow and macropores described with combined tracers of dye and iodine [J]. Journal of Hydrology, 2011,397(1/2):105-117.
[15] 王澤坤.含有透鏡體的二維多孔介質(zhì)溶質(zhì)運(yùn)移實(shí)驗(yàn)與模擬研究[D]. 合肥:合肥工業(yè)大學(xué), 2017.
[16] 劉登峰.黃原膠強(qiáng)化傳輸多硫化鈣修復(fù)鉻(Ⅵ)污染非均質(zhì)含水層研究[D]. 長(zhǎng)春:吉林大學(xué),2016.
[17] Chapman S W, Parker B L. Plume persistence due to aquitard back diffusion following dense nonaqueous phase liquid source removal or isolation [J]. Water Resources Research, 2005,41(12):2179-2187.
[18] Travis C, Doty C. ES & T Views: Can contaminated aquifers at superfund sites be remediated [J]. Environmental Science & Technology, 1990,24(10):1464-1466.
[19] Frank U, Barkley N. Remediation of low permeability subsurface formations by fracturing enhancement of soil vapor extraction [J]. Journal of Hazardous Materials, 1995,40(2):191-201.
[20] Berglund S, Cvetkovic V. Pump-and-Treat Remediation of Heterogeneous Aquifers: Effects of Rate-Limited Mass Transfer [J]. Ground Water, 2010,33(4):675-685.
[21] Brendan Zinn, L C M, C F H , et al. Experimental Visualization of Solute Transport and Mass Transfer Processes in Two-Dimensional Conductivity Fields with Connected Regions of High Conductivity [J]. Environmental Science & Technology, 2004,38(14):3916-3926.
[22] 陳 震.層狀非均質(zhì)含水層污染與水動(dòng)力修復(fù)過(guò)程中污染物的遷移規(guī)律研究 [D]. 長(zhǎng)春:吉林大學(xué), 2018.
[23] 程 洲,吳吉春,徐紅霞,等.DNAPL在透鏡體及表面活性劑作用下的運(yùn)移研究[J]. 中國(guó)環(huán)境科學(xué), 2014,34(11):2888-2896.
[24] Yang M, Annable M D, Jawitz J W. Back Diffusion from Thin Low Permeability Zones [J]. Environmental Science & Technology, 2015, 49(1):415-22.
[25] Yang M, Annable M D, Jawitz J W. Field-scale forward and back diffusion through low-permeability zones. [J]. Journal of Contaminant Hydrology, 2017,202:47-58.
[26] Yang M, Annable M D, Jawitz J W. Solute source depletion control of forward and back diffusion through low-permeability zones. [J]. Journal of Contaminant Hydrology, 2016,193:54-62.
[27] Heidari P, Li L. Solute transport in low-heterogeneity sandboxes: The role of correlation length and permeability variance [J]. Water Resources Research, 2015,50(10):8240-8264.
Study on the influence of contrasts of hydraulic conductivity on the migration of contaminants in low-permeability lens.
ZHAO Yong-sheng1,2, HAN Hui-hui1,2, CHI Zi-fang1,2*, LI Qin1,2, KANG Xue-he1,2, LIU Ru-xue1,2
(1.Key Laboratory of Groundwater Resources and Environment, Ministry of Education Jilin University, Changchun 130021, China;2.College of New Energy and Environment, Jilin University, Changchun 130021, China)., 2018,38(12):4559~4565
Two-dimensional chambers were used to study the influence of permeability on the pollutant migration in the low-permeability lens of heterogeneous aquifer, and the spreading and removal efficiency of contaminant was calcuated. Also, a quantitative relationship between the spreading/removal efficiency, the contrasts of hydraulic conductivity and the time was established as a consquence. Results showed that the dye’s migration speed got slower as the contrast of hydraulic conductivity increased, and the time of getting 100% dye’s spreading efficiency increased from 8 to 360 hours when the contrasts of hydraulic conductivity increased from 3 to 52 at a natural groundwater flow rate of 0.5m/d. The spread efficiency of the pollutant is positively correlated with the time but negatively correlated with the contrasts of hydraulic conductivity, and the function could be expressed as:=(109.623/mn2+1.035/mn+0.447). Then water was injected to flush the dye at the same flow rate of 0.5m/d to simulate the Pump-and-Treat Technique to remediate the contaminant. Results showed that the larger of the contrast of hydraulic conductivity, the faster of the removal rate. When the contrast of hydraulic conductivity increased from 3 to 52, the removal time dye increased from 13 to 480 hours, and the fuction of the spreading/removal efficiency with cont-rasts of hydraulic conductivity and time could be expressed as:’=(54.999/mn2+6.605/mn+0.098). Comparing the two processes, it can be found that the pollution and remediation process of the contaminant in the heterogeneous aquifer is irreversible in terms of time.Under the same conditions, the entry rate of the dye was always lager than the removal rate, and the time difference increased gradually from 5 to 120 hours with the increase of the contrast of hydraulic conductivity, which means the tailing effect becoming more and more obvious.
contrasts of hydraulic conductivity;low-permeability lens;spread efficiency;removal efficiency
X523
A
1000-6923(2018)12-4559-07
趙勇勝(1961-),男,內(nèi)蒙達(dá)茂旗人,吉林大學(xué)環(huán)境與資源學(xué)院環(huán)境工程系教授,博士,主要從事水土污染控制與修復(fù)方面的研究.發(fā)表論文52篇.
2018-04-23
國(guó)家自然科學(xué)基金重點(diǎn)項(xiàng)目(41530636);國(guó)家自然科學(xué)基金面上項(xiàng)目(41772244);國(guó)家留學(xué)基金資助項(xiàng)目(201806175055)
* 責(zé)任作者, 副教授, chizifang@jlu.edu.cn