孟璇,張燕,侯麗,侯建青#青島大學(xué)醫(yī)學(xué)院,山東青島66000
2青島大學(xué)附屬煙臺(tái)毓璜頂醫(yī)院婦科,山東煙臺(tái)2640000
SCⅠN是一種肌動(dòng)蛋白結(jié)合蛋白,其基因位于第7號(hào)染色體,其功能包括切斷肌動(dòng)蛋白絲,重建肌動(dòng)蛋白,促進(jìn)肌動(dòng)蛋白多聚化,對(duì)肌動(dòng)蛋白絲鉤端加帽。SCⅠN有6個(gè)結(jié)構(gòu)域,1、2、5結(jié)構(gòu)域有3個(gè)肌動(dòng)蛋白結(jié)合位點(diǎn),1、2結(jié)構(gòu)域有2個(gè)磷脂酰肌醇4,5‐雙磷酸(phosphatidylinositol 4,5‐bisphosphate,PⅠP2)結(jié)合位點(diǎn)和2個(gè)鈣離子結(jié)合位點(diǎn)。SC1‐6和SC1‐2可以抑制肌動(dòng)蛋白活性,而SC5‐6不具有上述特性;但是,SC1‐6和SC5‐6可以誘導(dǎo)肌動(dòng)蛋白成核反應(yīng),即SCⅠN分子的部分N‐末端可以切斷肌動(dòng)蛋白單體,部分C‐末端(第3肌動(dòng)蛋白結(jié)合位點(diǎn))參與肌動(dòng)蛋白成核反應(yīng)[1]。ABP是一類可以調(diào)節(jié)肌動(dòng)蛋白聚合、成束或交聯(lián)的蛋白質(zhì),SCⅠN屬于ABP中的凝膠蛋白家族,凝膠蛋白家族由凝溶膠蛋白(gelsolin)、微絲切割蛋白(adseverin)、絨毛蛋白(villin)、加帽蛋白G(capping protein G,CAPG)、絨毛蛋白樣蛋白(advillin)、肌動(dòng)蛋白成束蛋白(su‐pervillin)和片段化蛋白(fragmin)7種蛋白質(zhì)組成。SCⅠN的6個(gè)結(jié)構(gòu)域,與凝溶膠蛋白有63%的同源性,與絨毛蛋白有53%的同源性[2]。
最近有研究證明,SCⅠN參與了人類癌癥的發(fā)生和發(fā)展[2]。SCⅠN與腫瘤細(xì)胞的增殖、轉(zhuǎn)移和浸潤(rùn)有密切的關(guān)系。SCⅠN主要在內(nèi)分泌細(xì)胞中表達(dá),通過(guò)控制細(xì)胞膜下的細(xì)胞骨架,在囊泡轉(zhuǎn)運(yùn)和胞外作用中發(fā)揮重要的作用。SCⅠN在嗜鉻細(xì)胞中被首次發(fā)現(xiàn),SCIN基因編碼的蛋白質(zhì)存在于所有的分泌細(xì)胞中,通過(guò)控制肌動(dòng)蛋白的微絲網(wǎng)絡(luò)控制細(xì)胞在分泌過(guò)程中的動(dòng)態(tài)變化[3]。
在腫瘤細(xì)胞中SCⅠN的作用機(jī)制尚未完全明確。已有的研究表明,SCⅠN可能通過(guò)以下3種機(jī)制促進(jìn)腫瘤的發(fā)生和發(fā)展。
細(xì)胞的遷徙性與腫瘤細(xì)胞的侵襲及轉(zhuǎn)移有密切的關(guān)系,細(xì)胞的遷徙過(guò)程通過(guò)各種肌動(dòng)蛋白和肌動(dòng)蛋白結(jié)合蛋白調(diào)節(jié)肌動(dòng)蛋白絲實(shí)現(xiàn)[4]。腫瘤細(xì)胞具有侵襲性,可以利用肌動(dòng)蛋白束表面的突起脫離原發(fā)腫瘤組織并侵入其他組織[5]。細(xì)胞骨架通過(guò)調(diào)控腫瘤細(xì)胞的活性,使其具有轉(zhuǎn)移到鄰近組織中的能力[6]。肌動(dòng)蛋白結(jié)合蛋白在調(diào)節(jié)肌動(dòng)蛋白聚合動(dòng)力學(xué)過(guò)程中起著重要的作用,相關(guān)研究一直處于癌癥研究的前沿[7]。有研究表明,肌動(dòng)蛋白的細(xì)胞骨架可以分隔細(xì)胞內(nèi)容物,通過(guò)維持細(xì)胞間的黏附連接、緊密連接微絨毛等維持細(xì)胞的極性[8]。細(xì)胞極性的維持,對(duì)細(xì)胞微環(huán)境的平衡至關(guān)重要[9];細(xì)胞極性的破壞,可以影響細(xì)胞的分裂[10],導(dǎo)致細(xì)胞完整性被破壞,使細(xì)胞過(guò)度生長(zhǎng),異常入侵并促進(jìn)腫瘤的發(fā)生[11]。
肌動(dòng)蛋白的細(xì)胞骨架有助于保持細(xì)胞獨(dú)特的結(jié)構(gòu),肌動(dòng)蛋白細(xì)胞骨架的變異被認(rèn)為是大多數(shù)惡性腫瘤細(xì)胞和轉(zhuǎn)移性腫瘤細(xì)胞的一個(gè)基本特征[12‐14]。Hasmim等[15]的研究證明,SCⅠN在腫瘤細(xì)胞中過(guò)表達(dá)可以導(dǎo)致癌細(xì)胞中的肌動(dòng)蛋白骨架變異、重塑。SCⅠN可能通過(guò)調(diào)節(jié)細(xì)胞中微絲的分布和解聚肌動(dòng)蛋白單體,改變肌動(dòng)蛋白細(xì)胞骨架的結(jié)構(gòu)和組成,導(dǎo)致其變異、重塑;還可能通過(guò)調(diào)節(jié)肌動(dòng)蛋白絲在細(xì)胞內(nèi)的分布,調(diào)控細(xì)胞骨架,促進(jìn)腫瘤細(xì)胞的發(fā)生和發(fā)展[16]。目前,有關(guān)肌動(dòng)蛋白的研究表明,肌動(dòng)蛋白細(xì)胞骨架的特定結(jié)構(gòu)成分表達(dá)的改變,促進(jìn)了腫瘤細(xì)胞的增殖、浸潤(rùn)和轉(zhuǎn)移[17]。
上皮間質(zhì)轉(zhuǎn)化(epithelial mesenchymal transi‐tion,EMT)是指上皮細(xì)胞失去極性和細(xì)胞間緊密連接并獲得間充質(zhì)細(xì)胞的特性[18‐19],使上皮細(xì)胞具有侵襲性和遷徙性。EMT不僅與胚胎發(fā)育、細(xì)胞愈合有關(guān)[20],還與腫瘤的發(fā)生、發(fā)展有密切的關(guān)系[21]。在很多惡性腫瘤(如乳腺癌、前列腺癌、胰腺癌、結(jié)腸癌和胃癌等)中,EMT發(fā)揮重要的作用,在其作用下腫瘤細(xì)胞具有浸潤(rùn)和轉(zhuǎn)移的能力[22]。在惡性腫瘤轉(zhuǎn)移的早期過(guò)程中EMT起著至關(guān)重要的作用[23]。因此,找到參與EMT過(guò)程的調(diào)控因子十分必要[24]。Scanlon等[25]的研究表明,在EMT過(guò)程中基因表達(dá)的變化導(dǎo)致上皮細(xì)胞極性的改變(如E‐鈣黏著蛋白和細(xì)胞角蛋白)和間質(zhì)表型的建立(如N‐鈣黏著蛋白和波形蛋白)。Ⅰorio和 Croce[26]及 Luo等[27]的研究發(fā)現(xiàn),信號(hào)通路(包括Wnt/β‐catenin信號(hào)通路、TGF‐β信號(hào)通路、Notch信號(hào)通路及Hedgehog信號(hào)通路等)和非編碼RNA在調(diào)控EMT中起著關(guān)鍵的作用。
有文獻(xiàn)報(bào)道,SCⅠN的表達(dá)缺失導(dǎo)致E‐鈣黏著蛋白表達(dá)顯著上調(diào),N‐鈣黏著蛋白和β‐連環(huán)蛋白的表達(dá)顯著下調(diào)[4]。E‐鈣黏著蛋白是一種鈣離子依賴性蛋白,在固體組織細(xì)胞黏附中起著關(guān)鍵的作用[28]。它通過(guò)α、γ和β‐連環(huán)蛋白錨定在肌動(dòng)蛋白細(xì)胞骨架上,為細(xì)胞間黏附與信號(hào)復(fù)合物的募集提供物理結(jié)構(gòu)[29]。E‐鈣黏著蛋白的丟失或失活被認(rèn)為是破壞上皮細(xì)胞間緊密連接的主要觸發(fā)因子,在惡性腫瘤細(xì)胞的浸潤(rùn)、轉(zhuǎn)移過(guò)程中發(fā)揮重要的作用[30]。有研究證明,Wnt/β‐catenin 信號(hào)通路是控制EMT的基本信號(hào)通路之一[31]。β‐連環(huán)蛋白是細(xì)胞核內(nèi)Wnt通路的關(guān)鍵核效應(yīng)物[32]。有研究表明,SCⅠN通過(guò)控制β‐連環(huán)蛋白控制EMT,SCⅠN過(guò)表達(dá)使β‐連環(huán)蛋白逃逸細(xì)胞質(zhì)的降解,使細(xì)胞質(zhì)中游離的β‐連環(huán)蛋白增加,轉(zhuǎn)位到細(xì)胞核中觸發(fā)轉(zhuǎn)錄Wnt的基因,導(dǎo)致癌癥的發(fā)生和發(fā)展[4]。
在癌變過(guò)程中腫瘤細(xì)胞發(fā)生獨(dú)特的結(jié)構(gòu)變化,包括肌動(dòng)蛋白細(xì)胞骨架重組和細(xì)胞膜突起形成等,后者包括片狀偽足、絲狀偽足、偽足和侵襲偽足[33]。絲狀偽足是由10個(gè)或更多的平行肌動(dòng)蛋白絲捆緊,形成細(xì)長(zhǎng)突起,延伸到細(xì)胞膜的邊緣,探測(cè)周圍環(huán)境以利于細(xì)胞的遷移[34]。此外,絲狀偽足在許多其他細(xì)胞過(guò)程中也發(fā)揮重要的作用,如細(xì)胞的增殖、生長(zhǎng)和浸潤(rùn)等,包括傷口愈合、對(duì)細(xì)胞外基質(zhì)的黏附和胚胎發(fā)育等[35]。絲狀偽足的肌動(dòng)蛋白絲由肌動(dòng)蛋白結(jié)合蛋白調(diào)控,其倒鉤端朝向等離子體膜;絲狀偽足的密度增加,被視為浸潤(rùn)性癌細(xì)胞形成的特征之一[2]。Agarwal等[36]的研究發(fā)現(xiàn),骨肉瘤細(xì)胞中抑制絲狀偽足,癌細(xì)胞的轉(zhuǎn)移性明顯下降。Li等[37]的研究證明,在乳腺癌中絲狀偽足的增加促進(jìn)了癌細(xì)胞的浸潤(rùn)和轉(zhuǎn)移。
CDC42作為絲狀偽足的主要調(diào)節(jié)蛋白,其異常表達(dá)使絲狀偽足數(shù)量增加。有文獻(xiàn)報(bào)道,CDC42通過(guò)絲狀偽足的形成調(diào)控腫瘤細(xì)胞的轉(zhuǎn)移[38]。由于CDC42在絲狀偽足形成中的獨(dú)特作用,有研究評(píng)估了SCⅠN對(duì)胃癌細(xì)胞中CDC42表達(dá)的影響[2]。結(jié)果表明,在胃癌細(xì)胞中沉默SCIN,導(dǎo)致CDC42表達(dá)減弱,進(jìn)一步導(dǎo)致絲狀偽足的數(shù)量減少。這一研究證明,SCⅠN可以通過(guò)CDC42途徑刺激絲狀偽足形成,從而使癌細(xì)胞具有浸潤(rùn)和轉(zhuǎn)移的能力[2]。
Chen等[4]研究了SCⅠN對(duì)高侵襲性胃癌細(xì)胞的遷移能力、增殖能力、EMT進(jìn)程和細(xì)胞周期的影響。結(jié)果證明,沉默SCIN,可以有效地抑制細(xì)胞增殖和遷移并延長(zhǎng)細(xì)胞周期,SCIN可能成為胃癌治療和EMT的靶向治療基因。
Guillou等[38]對(duì)膀胱腫瘤細(xì)胞中發(fā)現(xiàn)的36個(gè)差異表達(dá)蛋白進(jìn)行蛋白質(zhì)組學(xué)分析,其中21個(gè)蛋白表達(dá)上調(diào),15個(gè)下調(diào)。在這些差異表達(dá)的蛋白中,SCⅠN表達(dá)上調(diào)4倍,其在線粒體中的表達(dá)上調(diào)顯著。通過(guò)沉默SCIN基因,可以減弱腫瘤細(xì)胞的增殖,顯著降低線粒體介導(dǎo)的細(xì)胞凋亡水平,抑制腫瘤細(xì)胞的增殖。
有文獻(xiàn)報(bào)道,在前列腺腫瘤細(xì)胞中抑制SCⅠN的表達(dá),可以通過(guò)調(diào)控細(xì)胞周期相關(guān)蛋白,如p21 WAF1/CⅠP1蛋白、細(xì)胞周期蛋白依賴性激酶抑制蛋白2A(CDKN2A、p16ⅠNK4a)和細(xì)胞周期蛋白A2,使細(xì)胞周期G0/G1期阻滯[39]。這些結(jié)果表明,SCⅠN蛋白在前列腺腫瘤細(xì)胞增殖中起著重要的作用,而慢病毒介導(dǎo)的SCⅠN蛋白表達(dá)抑制,可能是前列腺癌的潛在的治療方法[39]。
腫瘤細(xì)胞可以通過(guò)改變細(xì)胞骨架抵抗細(xì)胞毒性T淋巴細(xì)胞(cytotoxic T lymphocyte,CTL)的攻擊。肌動(dòng)蛋白相關(guān)蛋白的各項(xiàng)研究表明,肌動(dòng)蛋白細(xì)胞骨架的特定結(jié)構(gòu)成分變化,可以促進(jìn)腫瘤的發(fā)生。在各種細(xì)胞過(guò)程中細(xì)胞骨架起著關(guān)鍵的作用,如調(diào)節(jié)細(xì)胞凋亡,自然殺傷(natural killer,NK)細(xì)胞介導(dǎo)的裂解和T細(xì)胞活化;然而,靶細(xì)胞形態(tài)變化對(duì)CTL介導(dǎo)細(xì)胞毒性的影響,鮮為人知[40]。SCⅠN過(guò)表達(dá)導(dǎo)致肌動(dòng)蛋白聚合形式和含量變化,細(xì)胞骨架發(fā)生重塑、變異,細(xì)胞形態(tài)發(fā)生改變,就像一個(gè)分子開(kāi)關(guān)一樣控制腫瘤細(xì)胞對(duì)CTL的靶向敏感性。靶細(xì)胞對(duì)CTL殺傷的易感性形成,需要在靶細(xì)胞中通過(guò)聚合肌動(dòng)蛋白形成有效的裂解突觸完成。這種靶向作用不僅可以恢復(fù)細(xì)胞形態(tài)和肌動(dòng)蛋白含量,還可以恢復(fù)部分變異耐藥株對(duì)CTL細(xì)胞誘導(dǎo)殺傷作用的易感性;但是,由于敏感和耐藥的腫瘤變種之間的差異,基因表達(dá)不限于涉及參與改變形態(tài)的基因,并且沉默SCIN可以在恢復(fù)細(xì)胞對(duì)CTL裂解作用的易感性方面起到部分作用[41],其具體機(jī)制尚不明確,需要進(jìn)一步研究,有望成為腫瘤治療的新方向。
SCⅠN被認(rèn)為在多種癌癥中起著重要的作用,但其具體機(jī)制有待進(jìn)一步研究,許多問(wèn)題尚未解決:首先,已有研究證明,SCⅠN通過(guò)調(diào)控肌動(dòng)蛋白細(xì)胞骨架、EMT和絲狀偽足,促進(jìn)腫瘤的發(fā)生和發(fā)展,但其具體機(jī)制尚未完全明確,這三者之間是否存在協(xié)同作用,還需進(jìn)一步研究;其次,SCⅠN屬于凝膠蛋白家族,而家族中其他分子在癌癥中的作用尚不明確,SCⅠN與其他家族成員的關(guān)系有待進(jìn)一步研究。深入研究SCⅠN在惡性腫瘤中的作用機(jī)制,對(duì)惡性腫瘤的治療和預(yù)后有著重要的意義。SCIN有望成為癌癥治療的新的靶向基因。
[1]Lejen T,Pene TD,Rosé SD,et al.The role of different Scin‐derin domains in the control of F‐actin cytoskeleton during exocytosis[J].Ann N Y Acad Sci,2002,971:248‐250.
[2]Liu JJ,Liu JY,Chen J,et al.Scinderin promotes the inva‐sion and metastasis of gastric cancer cells and predicts the outcome of patients[J].Cancer Lett,2016,376(1):110‐117.
[3]Zunino R,Li Q,Rosé SD,et al.Expression of scinderin in megakaryoblastic leukemia cells induces differentiation,maturation,and apoptosis with release of plateletlike parti‐cles and inhibits proliferation and tumorigenesis[J].Blood,2001,98(7):2210‐2219.
[4]Chen XM,Guo JM,Chen P,et al.Suppression of scinderin modulates epithelial‐mesenchymal transition markers in highly metastatic gastric cancer cell line SGC‐7901[J].Mol Med Rep,2014,10(5):2327‐2333.
[5]Schwebach CL,Agrawal R,Lindert S,et al.The roles of ac‐tin‐binding domains 1 and 2 in the calcium‐dependent regu‐lation of actin filament bundling by human plastins[J].J Mol Biol,2017,429(16):2490‐2508.
[6]Li WX,Yang MX,Hong XQ,et al.Overexpression of gel‐solin reduces the proliferation and invasion of colon carci‐noma cells[J].Mol Med Rep,2016,14(4):3059‐3065.
[7]Honda K.The biological role of actinin‐4(ACTN4)in ma‐lignant phenotypes of cancer[J].Cell Biosci,2015,5:41.
[8]Stevenson RP,Veltman D,Machesky LM.Actin‐bundling proteins in cancer progression at a glance[J].J Cell Sci,2012,125(5):1073‐1079.
[9]Greenlees R,Mihelec M,Yousoof S,et al.Mutations in SⅠ‐PA1L3 cause eye defects through disruption of cell polarity and cytoskeleton organization[J].Hum Mol Genet,2015,24(20):5789‐5084.
[10]Rejon C,Al‐Masri M,Mccaffrey L.Cell polarity proteins in breast cancer progression[J].J Cell Biochem,2016,117(10):2215‐2223.
[11]Listed N.Correction:ATF3 suppresses metastasis of blad‐der cancer by regulating gelsolin‐mediated remodeling of the actin cytoskeleton[J].Cancer Res,2016,76(15):4592.
[12]Dinicola S,Fabrizi G,Masiello MG,et al.Ⅰnositol induces mesenchymal‐epithelial reversion in breast cancer cells through cytoskeleton rearrangement[J].Exp Cell Res,2016,345(1):37‐50.
[13]Kumar R,Hall A.Actin and microtubule cytoskeletons in the development and maintenance of cancer phenotypes[J].Cancer Metastasis Rev,2009,28(1‐2):3.
[14]Chiotaki R,Polioudaki H,Theodoropoulos PA.Differen‐tial nuclear shape dynamics of invasive andnon‐invasive breast cancer cells are associated with actin cytoskeleton organization and stability[J].Biochem Cell Biol,2014,92(4):287‐295.
[15]Hasmim M,Badoual C,Vielh P,et al.Expression of EPH‐RⅠN‐A1,SCⅠNDERⅠN and MHC classⅠmolecules in head and neck cancers and relationship with the prognos‐tic value of intratumoral CD8+T cells[J].BMC Cancer,2013,13:592.
[16]Lejen T,Pene TD,Rosé SD,et al.The role of different Scin‐derin domains in the control of F‐actin cytoskeleton during exocytosis[J].Ann N YAcad Sci,2002,971:248‐250.
[17]Kang JⅠ,Hong JY,Lee HJ,et al.Anti‐tumor activity of Yu‐anhuacine by regulating AMPK/mTOR signaling pathway and actin cytoskeleton organization in non‐small cell lung cancer Cells[J].PLoS One,2015,10(12):e0144368.
[18]Greening DW,Gopal SK,Mathias RA,et al.Emerging roles of exosomes during epithelial‐mesenchymal transi‐tion and cancer progression[J].Semin Cell Dev Biol,2015,40:60‐71.
[19]Neelakantan D,Drasin DJ,Ford HL.Ⅰntratumoral hetero‐geneity:Clonal cooperation in epithelial‐to‐mesenchymal transition and metastasis[J].Cell Adh Migr,2015,9(4):265‐276.
[20]Krawczyk N,Meier‐Stiegen F,Banys M,et al.Expression of stem cell and epithelial‐mesenchymal transition mark‐ers in circulating tumor cells of breast cancer patients[J].Biomed ResⅠnt,2014,2014:415721.
[21]Davis FM,AzimiⅠ,Faville RA,et al.Ⅰnduction of epitheli‐al‐mesenchymal transition(EMT)in breast cancer cells is calcium signal dependent[J].Oncogene,2014,33(18):2307‐2316.
[22]Lee HK,Lee DS,Park JC.Nuclear factorⅠ‐C regulates E‐cadherin via control of KLF4 in breast cancer[J].BMC Cancer,2015,15:113.
[23]Nowrin K,Sohal SS,Peterson G,et al.Epithelial‐mesen‐chymal transition as a fundamental underlying pathogenic process in COPD airways:fibrosis,remodeling and cancer[J].Expert Rev Respir Med,2014,8(5):547‐559.
[24]Douchi D,Ohtsuka H,Ariake K,et al.Silencing of LR‐RFⅠP1 reverses the epithelial‐mesenchymal transition via inhibition of the Wnt/β‐catenin signaling pathway[J].Can‐cer Lett,2015,365(1):132‐140.
[25]Scanlon CS,Van Tubergen EA,Ⅰnglehart RC,et al.Bio‐markers of epithelial‐mesenchymal transition in squamous cell carcinoma[J].J Dent Res,2013,92(2):114‐121.
[26]Ⅰorio MV,Croce CM.MicroRNA dysregulation in cancer:diagnostics,monitoring and therapeutics.A comprehen‐sive review[J].EMBO Mol Med,2012,4(3):143‐159.
[27]Luo M,Li Z,Wang W,et al.Long non‐coding RNA H19 increases bladder cancer metastasis by associating with EZH2 and inhibiting E‐cadherin expression[J].Cancer Lett,2013,333(2):213‐221.
[28]Vergara D,Simeone P,Latorre D,et al.Proteomics analy‐sis of E‐cadherin knockdown in epithelial breast cancer cells[J].J Biotechnol,2015,202:3‐11.
[29]Fulga V,Rudico L,Balica AR,et al.Differential expres‐sion of e‐cadherin in primary breast cancer and corre‐sponding lymph node metastases[J].Anticancer Res,2015,35(2):759‐765.
[30]Mi?e BP,Telesmani? VD,Tomi? S,et al.Correlation be‐tween e‐cadherin immunoexpression and efficacy of first line platinum‐based chemotherapy in advanced high grade serous ovarian cancer[J].Pathol Oncol Res,2015,21(2):347‐356.
[31]Anastas JN,Moon RT.WNT signalling pathways as thera‐peutic targets in cancer[J].Nat Rev Cancer,2013,13(1):11‐26.
[32]Ghahhari NM,Babashah S.Ⅰnterplay between microRNAs and WNT/β‐catenin signalling pathway regulates epitheli‐al‐mesenchymal transition in cancer[J].Eur J Cancer,2015,51(12):1638‐1649.
[33]Leijnse N,Oddershede LB,Bendix PM.An updated look at actin dynamics in filopodia[J].Cytoskeleton,2015,72(2):71‐79.
[34]Jacquemet G,Hamidi H,Ⅰvaska J.Filopodia in cell adhe‐sion,3D migration and cancer cell invasion[J].Curr Opin Cell Biol,2015,36:23‐31.
[35]Kanjhan R,Noakes PG,Bellingham MC.Emerging roles of filopodia and dendritic spines in motoneuron plasticity during development and disease[J].Neural Plast,2016,2016:3423267.
[36]Agarwal N,Adhikari AS,Ⅰyer SV,et al.MTBP suppresses cell migration and filopodia formation by inhibiting ACTN4[J].Oncogene,2013,32(4):462‐470.
[37]Li Y,Zhang Z,Zhou X,et al.The oncoprotein HBXⅠP en‐hances migration of breast cancer cells through increasing filopodiaformationinvolvingMEKK2/ERK1/2/Capn4 signaling[J].Cancer Lett,2014,355(2):288‐296.
[38]Guillou H,Depraz‐Depland A,Planus E,et al.Lamellipo‐dia nucleation by filopodia depends on integrin occupancy and downstream Rac1 signaling[J].Exp Cell Res,2008,314(3):478‐488.
[39]Wang D,Sun SQ,Yu YH,et al.Suppression of SCⅠN in‐hibits human prostate cancer cell proliferation and induces G0/G1 phase arrest[J].Ⅰnt J Oncol,2014,44(1):161‐166.
[40]Liu H,Shi D,Liu T,et al.Lentivirus‐mediated silencing of SCⅠN inhibits proliferation of human lung carcinoma cells[J].Gene,2015,554(1):32‐39.
[41]Khurana S,George SP.Regulation of cell structure and function by actin‐binding proteins:villin’s perspective[J].FEBS Lett,2008,582(14):2128‐2139.