張克交 楊艷敏 張彥棟 徐美玲 周建玲 莊馨瑛
[摘要]胰島素抵抗是多種代謝性疾病的發(fā)病基礎(chǔ),其分子機(jī)制復(fù)雜。線粒體作為細(xì)胞主要的能量供應(yīng)器,同時(shí)參與氧化還原狀態(tài)調(diào)節(jié)、凋亡等細(xì)胞過程,對于維持細(xì)胞正常生理至關(guān)重要。本文通過文獻(xiàn)回顧,對線粒體功能狀態(tài)與胰島素抵抗之間的聯(lián)系進(jìn)行總結(jié),并介紹相關(guān)中醫(yī)藥研究進(jìn)展,為胰島素抵抗的治療提供新的研究思路。
[關(guān)鍵詞]胰島素抵抗;線粒體功能;代謝性疾病;凋亡
[中圖分類號] R587.1? ? ? ? ? [文獻(xiàn)標(biāo)識碼] A? ? ? ? ? [文章編號] 1674-4721(2019)11(b)-0016-04
Research progress on the relationship between mitochondria and insulin resistance
ZHANG Ke-jiao? ?YANG Yan-min? ?ZHANG Yan-dong? ?XU Mei-ling? ?ZHOU Jian-ling? ?ZHUANG Xin-ying
Level-3 Laboratory of National Administration of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming? ?650500, China
[Abstract] Insulin resistance is the basis of many metabolic diseases, and its molecular mechanism is complex. As the main energy supply of cells, mitochondria participate in cellular processes such as redox state regulation and apoptosis, which are essential for maintaining the normal physiology of cells. This article summarizes the relationship between mitochondrial function status and insulin resistance through literature review and introducs the relevant research progress of traditional Chinese medicine, so as to provide new research ideas for the treatment of insulin resistance.
[Key words] Insulin resistance; Mitochondrial function; Metabolic disease; Apoptosis
胰島素抵抗(insulin resistance,IR)是肥胖、代謝綜合征、2型糖尿病及非酒精性脂肪肝等疾病的共同病理生理基礎(chǔ),給人類健康帶來極大危害。線粒體是物質(zhì)和能量的代謝中心,在不同的營養(yǎng)狀態(tài)下,線粒體具有調(diào)節(jié)其功能并適應(yīng)相應(yīng)能量供應(yīng)物質(zhì)的能力,線粒體調(diào)節(jié)功能失調(diào)會(huì)導(dǎo)致其不能適應(yīng)外界營養(yǎng)狀況的變化,從而引起機(jī)體的代謝異常[1]。本文綜述近年IR與線粒體功能狀態(tài)關(guān)系的研究,同時(shí)對通過調(diào)節(jié)線粒體功能發(fā)揮改善IR的中藥和天然產(chǎn)物進(jìn)行總結(jié)。
1 IR的定義
胰島素是一種合成代謝激素,通過影響代謝相關(guān)蛋白的基因表達(dá)或蛋白磷酸化水平調(diào)節(jié)機(jī)體多種糖脂代謝途徑[2-4]。IR是指胰島素作用的靶器官肝臟、肌肉和脂肪對胰島素的敏感性和反應(yīng)性降低,導(dǎo)致生理劑量的胰島素不能發(fā)揮正常的生理效應(yīng)。盡管關(guān)于IR的病因研究已取得很大進(jìn)步,但其具體發(fā)生機(jī)制目前仍不清楚。
2線粒體功能異常與IR
線粒體主要功能是進(jìn)行氧化磷酸化,合成腺苷三磷酸(ATP),調(diào)控活性氧物種(ROS)依賴的胞內(nèi)信號,參與細(xì)胞凋亡和自噬,為生命活動(dòng)提供能量。然而,線粒體在IR中的具體作用尚未達(dá)成統(tǒng)一認(rèn)識。40年前首次提出線粒體異常與糖不耐受的關(guān)系[5]。研究發(fā)現(xiàn)肥胖和IR患者線粒體發(fā)生異常、線粒體氧化酶活性和肌肉脂質(zhì)代謝水平降低有關(guān)[6-8]。Kelley等[9]報(bào)道肥胖糖尿病個(gè)體骨骼肌存在更低的煙酰胺腺嘌呤二核苷酸(NADH)、O2氧化還原酶活性及更小的線粒體尺寸。Mootha等[10-11]通過基因芯片發(fā)現(xiàn)2型糖尿病患者及有糖尿病家族史的個(gè)體與正常個(gè)體相比,線粒體生成和氧化磷酸化通路均出現(xiàn)下調(diào),并證實(shí)線粒體代謝調(diào)控γ輔激活因子1α(PGC-1α)的改變是線粒體功能下降的主要原因,且線粒體遺傳的缺陷和引起的效應(yīng)發(fā)生在前糖尿病狀態(tài)。但研究也發(fā)現(xiàn),IR個(gè)體中并沒有同時(shí)出現(xiàn)肌肉線粒體標(biāo)志物的變化,在脂肪供給增加時(shí),線粒體氧化能力甚至有代償性的升高[12]。嚙齒動(dòng)物在給予高脂飲食后顯示出糖耐量和胰島素敏感性異常,但對脂肪酸的氧化能力增加,同時(shí)肌肉線粒體氧化蛋白含量和活性都增加[13-15]。在IR狀態(tài)下線粒體功能存在三種情況,即減少、不變及代償性增加,這可能說明線粒體功能異常不是IR的必然特征,但通過調(diào)節(jié)線粒體狀態(tài)確實(shí)可以改善IR。
3線粒體ROS與IR
導(dǎo)致IR和線粒體功能障礙的另一潛在機(jī)制是氧化應(yīng)激水平的升高[16]。ROS生成和信號轉(zhuǎn)導(dǎo)對細(xì)胞和線粒體功能是至關(guān)重要的,過多的ROS損傷線粒體蛋白、線粒體DNA和線粒體膜上脂類,從而引起線粒體損傷。過量ROS還可導(dǎo)致機(jī)體的慢性炎癥,線粒體ROS通過激活核轉(zhuǎn)錄因子(NF-κB)、腺苷酸活化蛋白激酶(AMPK)、一氧化氮合酶(iNOS)和高遷移率族蛋白1(HMGB1)等轉(zhuǎn)錄因子,共同調(diào)控炎癥過程[17]。IR與炎癥密切相關(guān),多種炎癥因子,如腫瘤壞死因子-α(TNF-α)、C反應(yīng)蛋白(CRP)、白介素-6(IL-6)等在IR個(gè)體中顯著增加[18]。同時(shí)TNF-α在IR中起著重要作用[19],說明炎癥是導(dǎo)致IR形成的重要原因。因此減少線粒體ROS含量,降低線粒體氧化應(yīng)激損傷,可以有效預(yù)防及減輕IR。
4線粒體生物合成與IR
線粒體生物合成是調(diào)節(jié)線粒體新陳代謝的重要通路。線粒體生物合成是一個(gè)復(fù)雜的過程,涉及線粒體和核基因組的協(xié)同調(diào)節(jié)。細(xì)胞核DNA通過編碼一系列功能性蛋白來調(diào)控線粒體的生物合成,包括過氧化物酶體增殖物激活受體PGC-1α、線粒體轉(zhuǎn)錄因子A(TFAM)、凋亡誘導(dǎo)因子(AIF)等。PGC-1α是核編碼的轉(zhuǎn)錄共激活因子,是線粒體生物合成和多個(gè)線粒體基因的調(diào)節(jié)因子。研究發(fā)現(xiàn)通過上調(diào)PGC-1α的表達(dá),可增加肌肉線粒體生成,提高糖尿病動(dòng)物耗氧量,改善IR[20]。
5線粒體自噬與IR
線粒體自噬是指在氧化應(yīng)激、衰老及能量限制等刺激下,細(xì)胞內(nèi)線粒體發(fā)生去極化損傷,自噬體會(huì)特異性識別并包裹受損線粒體,與溶酶體融合,使受損線粒體降解,最終受損線粒體得以清除,從而維持細(xì)胞內(nèi)環(huán)境穩(wěn)態(tài)的一個(gè)過程。因此,在IR的治療過程中,線粒體自噬可以作為一個(gè)新的研究方向。Pink-1/Parkin信號傳導(dǎo)通路是線粒體自噬依賴的重要通路,當(dāng)細(xì)胞受到病理因素的刺激而導(dǎo)致線粒體受損時(shí),可通過Pink-1/Parkin通路誘導(dǎo)受損線粒體自噬[21]。SIRT3作為Sirtuins家族的一員,能夠調(diào)控線粒體的形態(tài)與功能。SIRT3通過增強(qiáng)線粒體分裂間接促進(jìn)線粒體自噬的發(fā)生,在SIRT3敲除的糖尿病小鼠中出現(xiàn)線粒體自噬功能被抑制的現(xiàn)象[22]。SIRT3還可通過其去乙?;富钚裕咕€粒體呼吸鏈復(fù)合體亞基蛋白去乙?;赃_(dá)到促進(jìn)能量產(chǎn)生的作用[23]。
6以線粒體功能為靶點(diǎn)的IR調(diào)節(jié)藥物
6.1黃連素
現(xiàn)代研究表明,黃連素不僅可用于細(xì)菌性痢疾的治療,還具有良好的降血糖、降血脂作用,可用于改善IR,治療2型糖尿病等疾病[24]。有研究者[25]在3T3-L1細(xì)胞上證實(shí)黃連素通過激活I(lǐng)RS-1/P13K/Akt/GLUT4通路,增加3T3-L1細(xì)胞對葡萄糖的攝取,提高胰島素敏感性,增加3T3-L1細(xì)胞AMPK磷酸化水平,上調(diào)線粒體解耦聯(lián)蛋白UCP2,增加能量消耗,從而改善IR。另有研究發(fā)現(xiàn),黃連素能夠升高db/db小鼠骨骼肌線粒體COX水平,增加ATP含量,改善能量代謝,從而減輕由高糖引起的線粒體功能損傷[26]。
6.2蓽茇
蓽茇的主要生物堿成分胡椒堿、蓽茇寧、蓽茇酰胺和蓽茇環(huán)堿具有降血脂或改善動(dòng)脈粥樣硬化作用[27-28]。胡椒堿能夠降低IR大鼠血糖、血壓,增加胰島素敏感性[29-30],下調(diào)PPAR活性,抑制PPAR表達(dá)而減弱3T3-L1脂肪細(xì)胞分化,抑制脂肪生成,從而治療肥胖相關(guān)疾病[31]。胡椒堿還能顯著降低高脂飲食(HFD)喂食小鼠肝臟X受體及其脂源性靶基因(SRBEP1C、CHRBP、FAS和CD36)的mRNA表達(dá),降低血漿胰島素水平和葡萄糖濃度,增加HFD喂食小鼠胰島素敏感性。此外,胡椒堿能夠下調(diào)內(nèi)質(zhì)網(wǎng)應(yīng)激相關(guān)基因的表達(dá),上調(diào)PSD小鼠肝細(xì)胞內(nèi)GLUT2從胞漿向質(zhì)膜的轉(zhuǎn)運(yùn),減少內(nèi)質(zhì)網(wǎng)(ER)應(yīng)激和增加胰島素敏感性,防止HFD喂食小鼠肝臟IR的發(fā)生[32]。
6.3沒食子酸酯(EGCG)
EGCG是綠茶的主要活性成分,具有抗氧化、抗癌、抑制肥胖,緩解代謝綜合征等作用。EGCG通過激活A(yù)MPK/Akt信號通路,維持線粒體呼吸鏈的正常運(yùn)作,從而保護(hù)胰島細(xì)胞,改善IR[33]。EGCG還能改善2型糖尿病大鼠海馬線粒體呼吸鏈復(fù)合物酶活性,激活SIRT1/PGC-1α通路,增強(qiáng)海馬線粒體生物合成能力,提高線粒體抗氧化酶表達(dá),增加Mfn2和OPA1蛋白表達(dá),降低Drp1和Fis1蛋白表達(dá),改善海馬線粒體融合/分裂失衡狀態(tài)。EGCG還可提高2型糖尿病大鼠海馬NIX和BNIP3蛋白表達(dá),改善海馬線粒體自噬能力。以上均提示EGCG可作為治療由線粒體功能障礙導(dǎo)致的一系列代謝性疾病的有效策略。
6.4羥基酪醇(hydroxytyrosol,HT)
HT是一種良好的天然抗氧化劑,廣泛存在于橄欖科橄欖屬植物的枝葉及果實(shí)中。HT能夠激活內(nèi)皮細(xì)胞AMPK活性,促進(jìn)FOXO3a的細(xì)胞核內(nèi)轉(zhuǎn)位,上調(diào)過氧化氫酶的含量,緩解氧化損傷。在外周血單核細(xì)胞中,HT通過降低過氧化脂質(zhì)、ROS含量和增加抗氧化酶的活性,防止細(xì)胞內(nèi)DNA被破壞。HT還能增強(qiáng)3T3-L1細(xì)胞線粒體生成[34],調(diào)節(jié)線粒體動(dòng)態(tài)變化,激活Keap1/Nrf2信號通路,防止抗氧化酶減少,從而改善線粒體功能失常。
7小結(jié)
IR是肥胖、高血壓、2型糖尿病、高尿酸血癥、血液高凝態(tài)、非酒精性脂肪肝等疾病的共同病理生理基礎(chǔ)。線粒體是物質(zhì)和能量的代謝中心,機(jī)體的代謝和心腦血管疾病等與線粒體的功能狀態(tài)密切相關(guān)。一些中藥、民族藥及天然產(chǎn)物對IR具有一定的改善作用,進(jìn)一步研究這些中藥或民族藥物對于充分開發(fā)和利用我國特色藥物資源具有重要意義。
[參考文獻(xiàn)]
[1]Gao AW,Canto C,Houtkooper RH.Mitochondrial response to nutrient availability and its role in metabolic disease[J].EMBO Mol Med,2014,6(5):580-589.
[2]Zhao X,Bak S,Pedersen AJ,et al.Insulin increases phosphorylation of mitochondrial proteins in human skeletal muscle in vivo[J].J Proteome Res,2014,13(5):2359-2369.
[3]Perry RJ,Samuel VT,Petersen KF,et al.The role of hepatic lipids in hepatic insulin resistance and type 2 diabetes[J].Nature,2014,510(7503):84-91.
[4]Matsuzaka T,Shimano H.Molecular mechanisms involved in hepatic steatosis and insulin resistance[J].J Diabetes Investig,2011,2(3):170-175.
[5]Yamada T,Ida T,Yamaoka Y,et al.Two distinct patterns of glucose intolerance in icteric rats and rabbits.Relationship to impaired liver mitochondria function[J].J Lab Clin Med,1975,86(1):38-45.
[6]Kelley DE,Goodpaster B,Wing RR,et al.Skeletal muscle fatty acid metabolism in association with insulin resistance,obesity,and weight loss[J].Am J Physiol,1999,277(6 Pt 1):E1130-1141.
[7]Simoneau JA,Veerkamp JH,Turcotte LP,et al.Markers of capacity to utilize fatty acids in human skeletal muscle:relation to insulin resistance and obesity and effects of weight loss[J].FASEB J,1999,13(14):2051-2060.
[8]Kim JY,Hickner RC,Cortright RL,et al.Lipid oxidation is reduced in obese human skeletal muscle[J].Am J Physiol Endocrinol Metab,2000,279(5):E1039-1044.
[9]Kelley DE,He J,Menshikova EV,et al.Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes[J].Diabetes,2002,51(10):2944-2950.
[10]Mootha VK,Lindgren CM,Eriksson KF,et al.PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes[J].Nat Genet,2003,34(3):267-273.
[11]Patti ME,Butte AJ,Crunkhorn S,et al.Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes:Potential role of PGC1 and NRF1[J].Proc Natl Acad Sci U S A,2003,100(14):8466-8471.
[12]Samocha-Bonet D,Campbell LV,Mori TA,et al.Overfeeding reduces insulin sensitivity and increases oxidative stress,without altering markers of mitochondrial content and function in humans[J].PLoS One,2012,7(5):e36320.
[13]Turner N,Bruce CR,Beale SM,et al.Excess lipid availability increases mitochondrial fatty acid oxidative capacity in muscle:evidence against a role for reduced fatty acid oxidation in lipid-induced insulin resistance in rodents[J].Diabetes,2007,56(8):2085-2092.
[14]Turner N,Hariharan K,TidAng J,et al.Enhancement of muscle mitochondrial oxidative capacity and alterations in insulin action are lipid species dependent:potent tissue-specific effects of medium-chain fatty acids[J].Diabetes,2009,58(11):2547-2554.
[15]de Wilde J,Mohren R,van den Berg S,et al.Short-term high fat-feeding results in morphological and metabolic adaptations in the skeletal muscle of C57BL/6J mice[J].Physiol Genomics,2008,32(3):360-369.
[16]Quinlan CL,Perevoshchikova IV,Hey-Mogensen M,et al.Sites of reactive oxygen species generation by mitochondria oxidizing different substrates[J].Redox Biol,2013,1:304-312.
[17]Su YW,Chiou WF,Chao SH,et al.Ligustilide prevents LPS-induced iNOS expression in RAW 264.7 macrophages by preventing ROS production and down-regulating the MAPK,NF-κB and AP-1 signaling pathways[J].Int Immunopharmacol,2011,11(9):1166-1172.
[18]Phosat C,Panprathip P,Chumpathat N,et al.Elevated C-reactive protein,interleukin 6,tumor necrosis factor alpha and glycemic load associated with type 2 diabetes mellitus in rural Thais:a cross-sectional study[J].BMC Endocr Disord,2017,17(1):44.
[19]徐海波,閆曉光,鐘威.新診斷2型糖尿病患者血清Nesfatin-1、腫瘤壞死因子-α水平與胰島素抵抗的相關(guān)性研究[J].中國糖尿病雜志,2017,25(1):45-48.
[20]Zhang LN,Zhou HY,F(xiàn)u YY,et al.Novel small-molecule PGC-1α transcriptional regulator with beneficial effects on diabetic db/db mice[J].Diabetes,2013,62(4):1297-1307.
[21]Pickrell AM,Youle RJ.The roles of PINK1,parkin,and mitochondrial fidelity in Parkinson′s disease[J].Neuron,2015, 85(2):257-273.
[22]Yu W,Gao B,Li N,et al.Sirt3 deficiency exacerbates diabetic cardiac dysfunction:Role of Foxo3A-Parkin-mediated mitophagy[J].Biochim Biophys Acta Mol Basis Dis,2017,1863(8):1973-1983.
[23]Finley LW,Haas W,Desquiret-Dumas V,et al.Succinate dehydrogenase is a direct target of sirtuin 3 deacetylase activity[J].PLoS One,2011,6(8):e23295.
[24]Pang B,Zhao LH,Zhou Q,et al.Application of berberine on treating type 2 diabetes mellitus[J].Int J Endocrinol,2015,2015:905 749.
[25]Xu LJ,Lu FE,Yi P,et al.8-hydroxy-dihydroberberine ameliorated insulin resistance induced by high FFA and high glucose in 3T3-L1 adipocytes[J].Yao Xue Xue Bao,2009,44(11):1304-1308.
[26]王會(huì)玲,李燕,胡偉鋒,等.小檗堿影響AMPK/PGC-1信號途徑改善糖尿病胰島素抵抗和線粒體功能的研究[J].中華臨床醫(yī)師雜志(電子版),2014,8(5):896-900.
[27]Bao L,Borjihan G.Hypolipidemic effects of piperlonguminine in HepG2 cells and in Wistar rats[J].Pharmazie,2012, 67(10):858-861.
[28]張鵬,黃啟來,華子春.蓽茇酰胺的藥理作用研究進(jìn)展[J].中草藥,2012,43(1):201-204.
[29]Atal S,Agrawal RP,Vyas S,et al.Evaluation of the effect of piperine per se on blood glucose level in alloxan-induced diabetic mice[J].Acta Pol Pharm,2012,69(5):965-969.
[30]Jin Z,Borjihan G,Zhao R,et al.Antihyperlipidemic compounds from the fruit of Piper longum L[J].Phytother Res,2009,23(8):1194-1196.
[31]Park UH,Jeong HS,Jo EY,et al.Piperine,a component of black pepper,inhibits adipogenesis by antagonizing PPAR gamma activity in 3T3-L1 cells[J].J Agric Food Chem,2012, 60(15):3853-3860.
[32]Jwa H,Choi Y,Park UH,et al.Piperine,an LXRα antagonist,protects against hepatic steatosis and improves insulin signaling in mice fed a high-fat diet[J].Biochem Pharmacol,2012,84(11):1501-1510.
[33]Li Y,Zhao S,Zhang W,et al.Epigallocatechin-3-O-gallate (EGCG) attenuates FFAs-induced peripheral insulin resistance through AMPK pathway and insulin signaling pathway in vivo[J].Diabetes Res Clin Pract,2011,93(2):205-214.
[34]Hao J,Shen W,Yu G,et al.Hydroxytyrosol promotes mitochondrial biogenesis and mitochondrial function in 3T3-L1 adipocytes[J].J Nutr Biochem,2010,21(7):634-644.
(收稿日期:2019-05-14? 本文編輯:任秀蘭)