周麗平,袁亮,趙秉強(qiáng),李燕婷,林治安
?
不同用量風(fēng)化煤腐殖酸對(duì)玉米根系的影響
周麗平,袁亮,趙秉強(qiáng),李燕婷,林治安
(中國(guó)農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與農(nóng)業(yè)區(qū)劃研究所/農(nóng)業(yè)農(nóng)村部植物營(yíng)養(yǎng)與肥料重點(diǎn)實(shí)驗(yàn)室,北京 100081)
【目的】我國(guó)風(fēng)化煤腐殖酸儲(chǔ)量豐富,腐殖酸含有多種活性官能團(tuán),其對(duì)植物生長(zhǎng)發(fā)育具有重要意義。當(dāng)腐殖酸施于土壤時(shí),根系對(duì)腐殖酸的響應(yīng)是促進(jìn)植物生長(zhǎng)的最初動(dòng)力。因此,研究腐殖酸對(duì)玉米根系生長(zhǎng)發(fā)育的影響機(jī)制,可為風(fēng)化煤腐殖酸資源的高效利用和作物的增產(chǎn)提質(zhì)提供理論依據(jù)?!痉椒ā坎捎没舾裉m營(yíng)養(yǎng)液溶液培養(yǎng)試驗(yàn),供試玉米品種為鄭單958,待玉米幼苗長(zhǎng)至兩葉一心時(shí)移到營(yíng)養(yǎng)液培養(yǎng)盆缽中緩苗1 d,外源添加不同添加量(0、5、10、15和20 mg C·L-1)腐殖酸,研究其對(duì)玉米生物量、根冠比、根系形態(tài)以及根部養(yǎng)分狀況的影響。【結(jié)果】(1)腐殖酸可顯著增加玉米根系和地上部干物質(zhì)量、根冠比、根系活力和根系TTC還原總量,較對(duì)照分別平均提高42.31%、19.33%、18.18%、46.54%和81.01%。(2)腐殖酸可改善玉米根系的形態(tài),其處理玉米總根長(zhǎng)、總根數(shù)量、根體積、根表面積和平均直徑分別比對(duì)照平均提高13.51%、16.74%、69.62%、14.68%和49.28%。(3)添加腐殖酸可增加玉米根系的軸根數(shù)、軸根長(zhǎng)度和側(cè)根數(shù),腐殖酸處理分別比對(duì)照提高16.28%、21.65%和16.80%。(4)隨腐殖酸添加量的增加,對(duì)玉米根系生長(zhǎng)的促進(jìn)作用呈現(xiàn)先升高后降低的變化,以中等濃度(10mg C·L-1)腐殖酸對(duì)玉米根系的作用效果最明顯,其根干物質(zhì)量和根系活力分別比對(duì)照提高了69.36%和69.07%。(5)腐殖酸處理(尤其是10 mg C·L-1)可有效增加玉米根系糖類、碳水化合物、脂類物質(zhì)、蛋白質(zhì)、多肽和氨基酸類物質(zhì)等的含量?!窘Y(jié)論】添加腐殖酸可明顯增加玉米干物質(zhì)量和根系活力,增加根冠比,改善根系形態(tài),有效增加玉米根系主要化學(xué)組分的含量。本試驗(yàn)條件下,中等濃度(10 mg C·L-1)的腐殖酸對(duì)玉米根系的促進(jìn)作用最好。
腐殖酸;玉米;根系;風(fēng)化煤;添加量
【研究意義】腐殖酸是動(dòng)植物遺骸經(jīng)過(guò)微生物的分解和轉(zhuǎn)化以及地球化學(xué)、物理的一系列變化過(guò)程而形成積累起來(lái)的一類具有多種官能團(tuán)的大分子有機(jī)弱酸混合物[1]?;钚怨倌軋F(tuán)使腐殖酸具有酸性、親水性、界面活性、陽(yáng)離子交換能力、絡(luò)合作用及吸附分散能力[2-3],這些特性使其對(duì)作物生長(zhǎng)具有良好的促進(jìn)作用。腐殖酸廣泛存在于土壤、水和煤中。其中土壤和水中的腐殖酸含量很低,而一些低熱值的煤炭,如泥煤、褐煤和風(fēng)化煤不僅儲(chǔ)量豐富,腐殖酸含量也很高,具有較好的開(kāi)發(fā)利用價(jià)值[1]。國(guó)外的研究多集中在土壤、泥炭和褐煤腐殖酸上,對(duì)風(fēng)化煤腐殖酸的研究較少。我國(guó)風(fēng)化煤資源儲(chǔ)量豐富,其腐殖酸含量較高,且含氧官能團(tuán)的數(shù)量相對(duì)較高[4-5],在農(nóng)業(yè)中具有極大的應(yīng)用前景[6-7]。研究發(fā)現(xiàn),在植物生長(zhǎng)過(guò)程中,腐殖酸對(duì)根系生長(zhǎng)的刺激作用是其對(duì)植物產(chǎn)生刺激作用的最初動(dòng)力[8]。因此,研究明確風(fēng)化煤腐殖酸對(duì)玉米根系的影響規(guī)律,對(duì)于我國(guó)農(nóng)業(yè)生產(chǎn)意義重大?!厩叭搜芯窟M(jìn)展】DOBBSS等[9]的研究表明,腐殖酸可促進(jìn)植物根系的生長(zhǎng)發(fā)育,蚯蚓糞腐殖酸促進(jìn)不同作物生長(zhǎng)的最適濃度不同,對(duì)于擬南芥、玉米和番茄,誘導(dǎo)側(cè)根出苗的腐殖質(zhì)的最適濃度分別為3.87、2.05和4.54 mmol C·L-1。MAGGIONI等[10]的研究結(jié)果表明,中間濃度的土壤腐殖酸對(duì)燕麥根系K+和SO42-吸收的促進(jìn)效果明顯優(yōu)于過(guò)低或過(guò)高濃度的腐殖酸處理。AZCONA等[11]研究了200和500 mg C·L-1的堆肥污泥腐殖酸和褐煤腐殖酸對(duì)番茄根系生長(zhǎng)的影響,結(jié)果發(fā)現(xiàn),500 mg C·L-1的堆肥污泥腐殖酸和褐煤腐殖酸處理的根干重均明顯高于200 mg C·L-1的處理。MORA等[12]研究了低濃度(5mg·L-1)和高濃度(100 mg·L-1)的褐煤腐殖酸對(duì)黃瓜生長(zhǎng)的影響,結(jié)果發(fā)現(xiàn),高濃度腐殖酸具有較好的促根效果,并且腐殖酸對(duì)黃瓜地上部生長(zhǎng)的影響涉及在植株根系和芽中與硝酸鹽濃度有關(guān)的細(xì)胞分裂素、多胺和礦質(zhì)營(yíng)養(yǎng)濃度的變化。【本研究切入點(diǎn)】過(guò)去關(guān)于腐殖酸添加量對(duì)作物根系生長(zhǎng)發(fā)育影響的研究多集中在土壤腐殖酸和褐煤腐殖酸,對(duì)于風(fēng)化煤腐殖酸對(duì)作物根系調(diào)控的研究相對(duì)較少,且結(jié)論不一?!緮M解決的關(guān)鍵問(wèn)題】本研究以來(lái)源較廣的風(fēng)化煤腐殖酸為試驗(yàn)材料,以研究玉米根系對(duì)不同添加量風(fēng)化煤腐殖酸的響應(yīng),探究風(fēng)化煤腐殖酸對(duì)玉米根系的作用規(guī)律,從而為風(fēng)化煤腐殖酸資源在農(nóng)業(yè)中的優(yōu)化利用提供理論依據(jù)和技術(shù)支持。
供試夏玉米品種為鄭單958(L.)。供試風(fēng)化煤來(lái)自內(nèi)蒙古棋盤(pán)井煤礦(東經(jīng)107°12'E,北緯 39°21'N,內(nèi)蒙古自治區(qū)鄂爾多斯市),腐殖酸是采用IHSS標(biāo)準(zhǔn)方法從風(fēng)化煤中提取[13],提取率為50.40%。供試腐殖酸的碳、氫、氧和氮含量分別為47.00%、4.89%、1.04%和33.56%。
試驗(yàn)在中國(guó)農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與農(nóng)業(yè)區(qū)劃研究所人工氣候室進(jìn)行,白天溫度為28 ℃,夜間溫度為20 ℃,光照強(qiáng)度為500 μmol·m-2·s-1。試驗(yàn)共設(shè)置5個(gè)處理,分別為不添加腐殖酸對(duì)照(CK),添加5mg C·L-1腐殖酸(HA1),添加10 mg C·L-1腐殖酸(HA2),添加15 mg C·L-1腐殖酸(HA3)和添加20 mg C·L-1腐殖酸(HA4)。每個(gè)處理6次重復(fù),隨機(jī)區(qū)組排列,為測(cè)定不同的生物指標(biāo),試驗(yàn)分3次進(jìn)行。
所用營(yíng)養(yǎng)液為霍格蘭營(yíng)養(yǎng)液,其組分為Ca(NO3)2·4H2O:1.18 g·L-1;KNO3:0.51 g·L-1;MgSO4·7H2O:0.49 g·L-1;KH2PO4:0.14 g·L-1;EDTA- Fe:0.036 g·L-1;H3BO3:2.86 mg·L-1;MnCl2·4H2O:1.81 mg·L-1;ZnSO4·7H2O:0.22 mg·L-1;CuSO4·5H2O:0.08 mg·L-1;H2MoO4·4H2O:0.09 mg·L-1[14]。
玉米種子經(jīng)70%的酒精表面消毒10 min,用蒸餾水洗凈后,在蒸餾水中浸泡24 h,轉(zhuǎn)移至石英砂中,在25 ℃下遮光環(huán)境中萌發(fā)3 d,出苗后移入生長(zhǎng)室。兩葉一心時(shí),精選出苗整齊的幼苗,去掉胚乳后移入盆缽中緩苗,每盆一株。緩苗營(yíng)養(yǎng)液pH為 6.0±0.5(用1 mol·L-1的NaOH溶液和1 mol·L-1的HCl溶液調(diào)節(jié)營(yíng)養(yǎng)液pH),2 d后換成完全營(yíng)養(yǎng)液,每隔一天更換一次營(yíng)養(yǎng)液。
1.3.1 干物質(zhì)量測(cè)定 移苗20 d后,將植株分為地上部與根系,蒸餾水清洗后,于105 ℃下殺青30 min,65 ℃下烘干至恒重并稱重。根冠比為根系干重與地上部干重的比值。
1.3.2 根系活力測(cè)定 移苗20 d后,采集植株根系,蒸餾水洗凈后,采用TTC還原法測(cè)定根系活力[15],根系TTC還原總量為根鮮重與TTC還原強(qiáng)度的乘積。
1.3.3 根系形態(tài)指標(biāo)測(cè)定 移苗20 d后,截取植株 根系,蒸餾水洗凈后,利用平板掃描儀掃描(掃描儀設(shè)置:專業(yè)模式、膠片(帶導(dǎo)軌)、8位灰度、400 dpi、黑白正片、保存格式.tif格式)得到根系掃描圖片,圖片利用WinRhizo根系分析軟件處理分析,獲得玉米根系形態(tài)指標(biāo)(總根長(zhǎng)、根體積、根表面積和根平均直徑),并測(cè)定軸根長(zhǎng)和軸根數(shù),計(jì)算出總側(cè)根長(zhǎng)和側(cè)根密度。
1.3.4 植株紅外光譜分析 將烘干的玉米植株根系磨碎后過(guò)0.2 mm篩,分別稱取1 mg樣品與200 mg溴化鉀(KBr),放入瑪瑙研缽中研磨均勻后進(jìn)行壓片,采用傅里葉變換紅外光譜儀(型號(hào):VERTEX 70,德國(guó)Bruker公司)檢測(cè)玉米根系的光譜特征(波數(shù)范圍為400—4 000 cm-1,分辨率為4 cm-1,掃描次數(shù)為32次)。
試驗(yàn)數(shù)據(jù)采用 Excel 2003和Origin 9.0軟件對(duì)數(shù)據(jù)進(jìn)行處理和作圖,采用 SAS 9.1統(tǒng)計(jì)軟件 Duncan方法進(jìn)行方差分析。
腐殖酸處理可提高玉米根系與地上部干物質(zhì)量,各部位干物質(zhì)量隨腐殖酸添加量的增加呈先增加后降低的趨勢(shì)(表1,>0.05)。與對(duì)照相比,腐殖酸處理根系干物質(zhì)量提高17.95%—69.36%,地上部干物質(zhì)量提高12.43%—32.02%,總重提高15.00%—38.70%,其中,HA2處理各部位干物質(zhì)量最高??傮w來(lái)看,腐殖酸處理玉米根系、地上部與總干物質(zhì)量比對(duì)照分別提高42.28%、18.73%和22.94%,根冠比提高19.03%。
表1 腐殖酸對(duì)玉米干物質(zhì)量的影響
CK:不添加腐殖酸;HA1:添加5 mg C·L-1腐殖酸;HA2:添加10 mg C·L-1腐殖酸;HA3:添加15 mg C·L-1腐殖酸; HA4:添加20 mg C·L-1腐殖酸。同列不同字母表示處理間差異達(dá)5%顯著水平。下同
CK: No HA; HA1: 5 mg C·L-1HA; HA2: 10 mg C·L-1HA; HA3: 15 mg C·L-1HA; HA4: 20 mg C·L-1HA. Different letters in acolumn mean significant difference at the 5% level. The same as below
腐殖酸處理可顯著提高玉米根系活力(表2,<0.05)。TTC還原強(qiáng)度與TTC還原總量隨腐殖酸添加量的提高先增加后降低。與對(duì)照相比,腐殖酸處理玉米根系TTC還原強(qiáng)度和TTC還原總量分別提高46.53%和81.03%。其中,HA2處理(腐殖酸添加量為10 mg C·L-1)效果最好,其玉米根系TTC還原強(qiáng)度和TTC還原總量分別比對(duì)照提高69.07%和136.15%。HA3、HA4和HA1處理的玉米根系的TTC還原強(qiáng)度分別比對(duì)照提高48.83%、39.40%和28.82%,玉米根系TTC還原總量分別比對(duì)照提高75.48%、68.05%和44.45%。
添加腐殖酸可增加玉米根系的總根長(zhǎng)、總根數(shù)量、根體積、根表面積和平均直徑(表3)。與對(duì)照相比,腐殖酸處理的玉米總根長(zhǎng)、總根數(shù)量、根體積、根表面積和平均直徑的平均值分別比對(duì)照增加了13.51%、16.74%、69.62%、14.68%和49.28%。各項(xiàng)指標(biāo)隨腐殖酸添加量的增加先增加后降低。腐殖酸處理玉米總根長(zhǎng)、總根數(shù)量、根體積、根表面積和平均直徑分別比對(duì)照提高6.26%—24.78%、9.66%—30.92%、47.87%—94.14%、6.39%—26.23%和40.75%—61.55%。各腐殖酸處理中,腐殖酸添加量為10 mg C·L-1時(shí),對(duì)根系構(gòu)型各指標(biāo)提高幅度最大,且與對(duì)照處理均達(dá)到顯著差異(<0.05)。
表2 腐殖酸對(duì)玉米根系活力的影響
表3 腐殖酸對(duì)玉米根系形態(tài)的影響
適量添加腐殖酸可提高玉米根系的軸根數(shù)和軸根長(zhǎng)度(圖1),改善玉米根系的側(cè)根數(shù)和側(cè)根密度(圖2)。腐殖酸處理玉米軸根數(shù)和軸根長(zhǎng)度的平均值分別比對(duì)照提高16.28%和21.65%。HA4處理玉米軸根數(shù)最多、軸根長(zhǎng)度最長(zhǎng),其次為HA2。與對(duì)照相比,HA4、HA2、HA3和HA1的軸根數(shù)分別提高27.91%、18.60%、9.30%和9.30%,軸根長(zhǎng)度分別提高36.51%、30.07%、12.36%和7.67%。適量添加腐殖酸可提高玉米根系的側(cè)根數(shù),但其作用規(guī)律卻與腐殖酸對(duì)玉米主根的影響不同。腐殖酸處理的玉米側(cè)根數(shù)平均比對(duì)照提高16.8%。HA2處理的玉米側(cè)根數(shù)最多。與對(duì)照相比,HA2、HA3、HA4和HA1的側(cè)根數(shù)分別提高31.15%、15.71%、10.47%和9.67%,HA2的側(cè)根密度最大,比對(duì)照處理提高了8.76%。
所有處理的玉米根系均具有相似的主要紅外光譜吸收峰(圖3),主要有(1)3 420 cm-1:-OH的伸縮振動(dòng)和-NH的伸縮振動(dòng),主要來(lái)自糖類等碳水化合物[15];(2)2 920 cm-1:主要來(lái)自脂類物質(zhì)中飽和甲基C-H伸縮振動(dòng)[16-18];(3)1 750—1 500 cm-1:主要來(lái)自蛋白質(zhì)、多肽、氨基酸類物質(zhì)C=O伸縮振動(dòng)、N-H彎曲振動(dòng)[19-20];(4)1 380 cm-1:蛋白質(zhì)甲基彎曲振動(dòng)[20-21];(5)1 250 cm-1:核酸中 P = O 伸縮振動(dòng)[21-23];(6)1 050 cm-1:為糖類C-O-C伸縮振動(dòng),糖類在植物體內(nèi)主要以纖維素、多糖等存在于細(xì)胞壁中[21-24]。
圖1 不同用量腐殖酸的玉米軸根數(shù)和軸根長(zhǎng)度
圖2 不同用量腐殖酸的玉米側(cè)根數(shù)和側(cè)根長(zhǎng)度
腐殖酸處理玉米根系在3 420 cm-1、2 920 cm-1、1 735 cm-1、1 380 cm-1和1 050 cm-1波長(zhǎng)處的透射率均低于CK,這說(shuō)明,腐殖酸處理可有效增加玉米根系糖類、碳水化合物、脂類物質(zhì)、蛋白質(zhì)、多肽、氨基酸類物質(zhì)等的含量。其中,在各腐殖酸處理中,HA2處理玉米根系在各波長(zhǎng)處的透射率最低。
腐殖酸對(duì)植物根系生長(zhǎng)有明顯的刺激作用。根系作為植物體活躍的吸收器官和合成器官,其生長(zhǎng)情況和活力水平直接影響地上部分的生長(zhǎng)和營(yíng)養(yǎng)狀況及產(chǎn)量水平[14],腐殖酸可以增加玉米根系的根系活力,以促進(jìn)玉米對(duì)營(yíng)養(yǎng)物質(zhì)的吸收利用,維持植物旺盛代謝。腐殖酸處理增加根系與地上部干物質(zhì)量,這可能與改善了根系形態(tài)(表3),擴(kuò)展了根系的有效吸收空間以及腐殖酸的超分子結(jié)構(gòu)中含有類似生長(zhǎng)素的物質(zhì)有關(guān)[25-26],這些物質(zhì)可接近植物細(xì)胞和細(xì)胞外的受體,從而增加質(zhì)子泵的活力,促進(jìn)有關(guān)基因的表達(dá),繼而增加側(cè)根出現(xiàn)位點(diǎn)數(shù)量[27],誘導(dǎo)側(cè)根生長(zhǎng)。在根系伸長(zhǎng)區(qū)和分化區(qū)有很多小的、分布密集的分生組織細(xì)胞,它們具有連續(xù)的代謝活性并易受腐殖酸的刺激[25],從而促進(jìn)根系的形成。此外,腐殖酸對(duì)植物根系的促進(jìn)作用,也可能與腐殖酸含有生物活性物質(zhì)有關(guān)。腐殖酸含有多種官能團(tuán),具有很高的生物活性,由于超分子結(jié)構(gòu)的存在,有些生物活性物質(zhì)(可能是生長(zhǎng)素類物質(zhì))會(huì)封存在腐殖質(zhì)上層結(jié)構(gòu)的異質(zhì)和移動(dòng)分子中,這些生物活性物質(zhì)可以促進(jìn)根系的生長(zhǎng)發(fā)育[28]。而且以小分子量物質(zhì)為主的腐殖酸本身是一種營(yíng)養(yǎng)物質(zhì),更易于為植物吸收利用[3]。
圖3 不同用量腐殖酸玉米根系FTIR光譜圖
Fig. 3 FTIR spectra of maize roots with different additive amounts of humic acids
此外,腐殖酸作為一種外源添加物,能夠通過(guò)不同的途徑影響植物體的原生代謝和次生代謝過(guò)程,以影響根系糖類、碳水化合物、脂類物質(zhì)、蛋白質(zhì)、多肽和氨基酸類物質(zhì)等的含量[29-31]。腐殖酸影響植物體的代謝可通過(guò)多種途徑發(fā)揮作用,其中一個(gè)原因是腐殖酸可發(fā)揮生物刺激素功能,腐殖酸可以影響根系質(zhì)膜H+-ATP酶的活性,促進(jìn)H+泵作用,降低細(xì)胞壁的pH值,激活細(xì)胞壁上的pH敏感酶和蛋白質(zhì),使細(xì)胞壁疏松,以使植物生長(zhǎng)[32]。
腐殖酸對(duì)植物生長(zhǎng)的刺激作用與添加量密切相關(guān),添加量過(guò)高,對(duì)根系的生長(zhǎng)有明顯的抑制作用[27]。在本研究中,10 mg C·L-1添加量的風(fēng)化煤腐殖酸對(duì)玉米根系的促進(jìn)作用最為顯著,添加量繼續(xù)增高,根系干物質(zhì)量與根系構(gòu)型改善幅度均開(kāi)始受到限制,這與薛世川等[33]、GARCíA等[34]的研究類似。這可能因?yàn)?,腐殖酸?duì)根系的作用效果除了受濃度的影響,還受官能團(tuán)、成分、分子量和來(lái)源的影響,添加不同量的腐殖酸就伴隨引入了不同含量的官能團(tuán)和成分,腐殖酸對(duì)玉米根系作用效果的不同是否歸因于官能團(tuán)和成分的含量仍有待確定。
本研究是在水培環(huán)境中開(kāi)展,而腐殖酸在土壤中的作用效果與水培環(huán)境中的異同值得關(guān)注。另外,腐殖酸的結(jié)構(gòu)和成分對(duì)根系的作用效果影響很大。Malcolm、Mato和Pflug等的研究表明,羧基和羥基官能團(tuán)可能在決定腐殖物質(zhì)活性方面起主要作用,同時(shí),雖然腐殖物質(zhì)的高分子量組分具有殘余效果,但是腐殖物質(zhì)的低分子量組分特別活躍[28,35-36]。Zandonadi等研究了土壤、蚯蚓糞和污泥中腐殖酸對(duì)玉米根系的影響,結(jié)果發(fā)現(xiàn),其作用效果主要受分子量和聚合程度的影響[25]。腐殖酸結(jié)構(gòu)和成分十分復(fù)雜,其對(duì)根系的影響可能是正作用和負(fù)作用結(jié)構(gòu)/成分的綜合效果,深入研究腐殖酸的結(jié)構(gòu)-性質(zhì)-功能關(guān)系,明確起作用的腐殖酸結(jié)構(gòu)及成分,探明其作用機(jī)理具有重要的理論和實(shí)踐意義。
添加風(fēng)化煤腐殖酸可以增加玉米生物量、根冠比、根系活力和根系TTC還原總量,從而促進(jìn)玉米根系的生長(zhǎng)發(fā)育,同時(shí),風(fēng)化煤腐殖酸可以通過(guò)增加玉米根系的總根長(zhǎng)、總根數(shù)量、根體積、根表面積和平均直徑改善其根系形態(tài),并增加玉米根系糖類、碳水化合物、脂類物質(zhì)、蛋白質(zhì)、多肽、氨基酸類物質(zhì)等的含量。本試驗(yàn)條件下,添加10 mg C·L-1的腐殖酸對(duì)玉米根系生長(zhǎng)的促進(jìn)作用最明顯。
[1] 鄭平. 煤炭腐植酸的生產(chǎn)和應(yīng)用. 北京: 化學(xué)工業(yè)出版社, 1991: 28.
ZHENG P.. Beijing: Chemical Industry Press, 1991: 28. (in Chinese)
[2] 韋良開(kāi), 李瑞, 潘杰, 黃興國(guó). 腐植酸類物質(zhì)的生物學(xué)功能及其在畜禽養(yǎng)殖中的應(yīng)用. 中國(guó)飼料, 2017(14): 10-14.
WEI L K, LI R, PAN J, HUANG X G. Biological function of humic acid substances and its application in livestock production.2017(14): 10-14. (in Chinese)
[3] CANELLAS L P, PICCOLO A, DOBBSS L B, SPACCINI R, OLIVARES F L, ZANDONADI D B, FA?ANHA A R. Chemical composition and bioactivity properties of size fractions separated from a vermicompost humic acid., 2010, 78(4): 457-466.
[4] 李善祥. 我國(guó)煤炭腐植酸資源及其利用. 腐植酸, 2002(3): 7-13.
LI S X. China's coal humic acid resources and their utilization., 2002(3): 7-13. (in Chinese)
[5] 文雅, 李東旭. 風(fēng)化煤腐殖酸在土壤改良中的應(yīng)用. 科技情報(bào)開(kāi)發(fā)與經(jīng)濟(jì), 2010, 20(33): 148-150.
WEN Y, LI D X. The applications of weathered coal humic acid in soil amelioration.2010, 20(33): 148-150. (in Chinese)
[6] TAO Z, YANG Y, SHENG F. Spectroscopic and structural characterization of a fulvic acid from weathered coal., 2008, 49(1/2): 45-56.
[7] MARINO G, RIGHI V, SIMONI A, SCHENETTI L, MUCCI A, TUGNOLI V, MUZZI E, FRANCIOSO O. Effect of a peat humic acid on morphogenesis in leaf explants ofand. Metabolomic analysis at an early stage of regeneration., 2013, 61(21): 4979-4987.
[8] CALVO P, NELSON L, KLOEPPER J W. Agricultural uses of plant biostimulants., 2014, 383(1/2): 3-41.
[9] DOBBSS L B, CANELLAS L P, OLIVARES F L, AGUIAR N O, PERES L E P, AZEVEDO M, SPACCINI R, PICCOLO A, FA?ANHA A R. Bioactivity of chemically transformed humic matter from vermicompost on plant root growth., 2010, 58(6): 3681-3688.
[10] MAGGIONI A, VARANINI Z, NARDI S, PINTON R. Action of soil humic matter on plant roots: Stimulation of ion uptake and effects on (Mg2++K+) ATPase activity., 1987, 62(87): 355-363.
[11] AZCONA I, PASCUAL I, AGUIRREOLEA J, FUENTES M, GARCíA-MINA J M, SáNCHEZ-DíAZ M. Growth and development of pepper are affected by humic substances derived from composted sludge., 2011, 174(6): 916-924.
[12] MORA V, BACAICOA E, ZAMARRENO A M, AGUIRRE E, GARNICA M, FUENTES M, GARCíA-MINA J M. Action of humic acid on promotion of cucumber shoot growth involves nitrate-related changes associated with the root-to-shoot distribution of cytokinins, polyamines and mineral nutrients., 2012, 167(8): 633-642.
[13] GARCIA-MINA J M. Stability, solubility and maximum metal binding capacity in metal–humic complexes involving humic substances extracted from peat and organic compost., 2006, 37(12): 1960-1972.
[14] 毛達(dá)如, 申建波. 植物營(yíng)養(yǎng)研究方法. 北京: 中國(guó)農(nóng)業(yè)大學(xué)出版社, 2011.
MAO D R, SHEN J B.. Beijing: China Agricultural University Press, 2011. (in Chinese)
[15] 趙世杰, 劉華山, 董新純. 植物生理學(xué)實(shí)驗(yàn)指導(dǎo). 北京: 中國(guó)農(nóng)業(yè)科技出版社, 1998.
ZHAO S J, LIU H S, DONG X C.. Beijing: China Agricultural Science and Technology Press, 1998. (in Chinese)
[16] DZIUBA B, BABUCHOWSKI A, NA??CZ D, NIKLEWICZ M. Identification of lactic acid bacteria using FTIR spectroscopy and cluster analysis.2007, 17(3): 183-189.
[17] JACKSON M. Biomembrane structure from FTIR spectroscopy.1993, 15: 53-69.
[18] WILLIAMS D H, FLEMING I.London: McGraw-Hill, 1996.
[19] SALZMANN D, HANDLEY R, MULLER-SCHARER H. Functional significance of triazine-herbicide resistance in defence ofagainst a rust fungus.2008, 9(5): 577-587.
[20] 孫素琴, 周群, 陳建波. 中藥紅外光譜分析與鑒定. 北京: 化學(xué)工業(yè)出版社, 2010.
SUN S Q, ZHOU Q, CHEN J B.Beijing: Chemical Industry Press, 2010. (in Chinese)
[21] NELSON W H. Modern Techniques for Rapid Microbiological Analysis//Modern Techniques for Rapid Microbial Analysis. Wiley & Sons, 1991: 75-76.
[22] ZEROUAL W, CHOISY C, DOGLIA S M, BOBICHON H, ANGIBOUST J F, MANFAIT M. Monitoring of bacterial growth and structural analysis as probed by FT-IR spectroscopy., 1994, 1222(2): 171-178.
[23] 陸婉珍. 現(xiàn)代近紅外光譜分析技術(shù). 北京: 中國(guó)石化出版社, 2000.
LU W Z.. Beijing: China Petrochemical Press, 2000. (in Chinese)
[24] WONG P T, WONG R K, CAPUTO T A, GODWIN T A, RIGAS B. Infrared spectroscopy of exfoliated human cervical cells: evidence of extensive structural changes during carcinogenesis., 1991, 88(24):10988-10992.
[25] ZANDONADI D B, CANELLAS L P, FA?§ANHA A R. Indolacetic and humic acids induce lateral root development through a concerted plasmalemma and tonoplast H+pumps activation., 2007, 225(6): 1583-1595.
[26] RüCK A, PALME K, VENIS M A, NAPIER R M, FELLE H H. Patch‐clamp analysis establishes a role for an auxin binding protein in the auxin stimulation of plasma membrane current inprotoplasts., 1993, 4(1): 41-46.
[27] CANELLAS L P, OLIVARES F L, OKOROKOVAFA?ANHA A L, FA?ANHA A R. Humic acids isolated from earthworm compost enhance root elongation, lateral root emergence, and plasma membrane H+-ATPase activity in maize roots., 2002, 130(4):1951-1957.
[28] MALCOLM R E, VAUGHAN D. Effects of humic acid fractions on invertase activities in plant tissues., 1979, 11(1): 65-72.
[29] NARDI S, MUSCOLO A, VACCARO S, BAIANO S, SPACCINI R, PICCOLO A. Relationship between molecular characteristics of soil humic fractions and glycolytic pathway and krebs cycle in maize seedlings., 2007, 39(12): 3138-3146.
[30] CANELLAS L P, BALMORI D M, MéDICI L O, AGUIAR, N O, CAMPOSTRINI E, ROSA R C, FA?ANHA A R, OLIVARES F L. A combination of humic substances andinoculation enhances the growth of maize (L.).2013, 366(1/2): 119-132.
[31] ERTANI A, FRANCIOSO O, TUGNOLI V, RIGHI V, NARDI S. Effect of commercial lignosulfonate-humate onL. metabolism., 2011, 59(22): 11940-11948.
[32] HAGER A. Role of the plasma membrane H+-ATPase in auxin-induced elongation growth: historical and new aspects., 2003, 116(6): 483-505.
[33] 薛世川, 劉秀芬, 鄧景華. 施用腐植酸復(fù)合肥對(duì)小麥抗旱防衰能力的影響及其機(jī)理. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào), 2006(1): 139-141.
XUE S C, LIU X F, DENG J H. Effect and mechanism of humic acid compound fertilizer on the drought and senility-resistant ability of wheat.2006(1): 139-141. (in Chinese)
[34] GARCíA A C, SOUZA L G A D, PEREIRA M G, CASTRO R N, GARCíAMINA J M, ZONTA E, LISBOA F J G, BERBARA R L L. Structure-property-function relationship in humic substances to explain the biological activity in plants., 2016, 6: 20798.
[35] MATO M C, OLMEDO M G, MENDEZ J. Inhibition of indoleacetic acid-oxidase by soil humic acids fractionated on sephadex., 1972, 4(4): 469-473.
[36] PFLUG W, ZIECHMANN W. Inhibition of malate dehydrogenase by humic acids.1981, 13(4): 293-299.
Response of Maize Roots to Different Additive Amounts of Weathered Coal Humic Acids
ZHOU LiPing, YUAN Liang, ZHAO BingQiang, LI YanTing, LIN ZhiAn
(Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Beijing 100081)
【Objective】Weathered coal humic acid possesses abundant reserves in China, which has multiple active functional groups. The response of roots to humic acid, which acts as a humic acid acting on the first contact organ of plant, is the initial motive force to promote plant growth. Hence researching the effect of humic acid on the growth and development of maize roots is of significance for crops’ production increase and quality improvement, and can provide a theoretical basis for the effective utilization of weathered coal resource of China.【Method】Zhengdan958 maize cultivar was used as the tested cultivar, and Hogland nutrient solution hydroponics was adopted in this experiment. When maize seedlings grew to two leaves and one terminal bud, they were moved to the hydroponic basin for one day for readaption time. Then, the effect of applying different concentrations of humic acid (0, 5, 10, 15, and 20 mg C·L-1) on the growth of maize biomass, root-shoot ratio, root systematic architecture and root nutrient were studied. 【Result】 (1) Humic acids could significantly increase the root dry weight, shoot dry weight, root-shoot ratio, root activity, and root TTC reducing amount of maize roots. Compared with the control treatment (0 humic acid), the average value of the above indicators with humic acid treatment increased by 42.31%, 19.33%, 18.18%, 46.54%, and 81.01%, respectively. (2) Humic acid could improve the root morphology of maize roots by increasing root length, root number, root volume, root surface area, and average diameter of the maize roots. Compared with the control, the average value of the total root length, total root number, root volume, root surface area and average diameter of maize with humic acid treatment increased by 13.51%, 16.74%, 69.62%, 14.68%, and 49.28%, respectively. (3) The addition of humic acid increased the number of axial roots, length of axial roots and number of lateral roots in maize roots. The average value above of maize roots with the addition of humic acids increased by 16.28%, 21.65% and 16.80%, respectively, compared with the control treatments. (4) The promoting effect of humic acid on the growth of maize roots showed the tread of first increase and then decrease with the increasing additive amount of humic acid. When the medium concentration was 10 mg C/L, the promotion effect on maize roots was the most significant. Compared with the control, the root dry weight and root activity of maize roots increased by 69.36% and 69.07%, respectively. (5) The addition of humic acids (10 mg C·L-1) could increase the content of carbohydrates, lipids, proteins, peptides, amino acids, and nucleic acids in maize roots. 【Conclusion】The addition of humic acid could significantly increase the biomass, root activity and root-shoot ratio of maize. In addition, it could also improve the root architecture of the maize and the content of main chemical components in maize roots. The medium concentration (10 mg C·L-1) of humic acid had the most significant effect on the promotion of maize roots.
humic acid; maize; root; weathered coal; additive amount
10.3864/j.issn.0578-1752.2019.02.008
2018-09-10;
2018-10-25
“十三五”國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2016YFD0200402)
周麗平,E-mail: zhoulipingcaas@126.com。通信作者趙秉強(qiáng),E-mail: zhaobingqiang@caas.cn
(責(zé)任編輯 李云霞)