国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

基于離散元法的凸圓刃式深松鏟減阻效果仿真分析與試驗

2019-02-23 03:54:00馬躍進趙建國郝建軍李建昌馬璐萍趙偉博
農(nóng)業(yè)工程學報 2019年3期
關鍵詞:耕深田間試驗耕作

馬躍進,王 安,趙建國,郝建軍,李建昌,馬璐萍,趙偉博,吳 月

?

基于離散元法的凸圓刃式深松鏟減阻效果仿真分析與試驗

馬躍進,王 安,趙建國,郝建軍,李建昌,馬璐萍,趙偉博,吳 月

(河北農(nóng)業(yè)大學機電工程學院,保定 071001)

針對深松作業(yè)阻力大、能耗高等問題,該文在深松鏟鏟尖頂部設計了一種能有效減阻降耗的凸圓刃。以安裝凸圓刃的凸圓刃式深松鏟為研究對象,建立了土壤模型。為提高土壤模型的準確性,選用非線性粘結(jié)彈性塑形接觸模型(edinburgh elasto-plastic adhesion model,EEPA),對凸圓刃式深松鏟進行耕作阻力虛擬仿真。利用插件將顆粒與深松鏟接觸作用力導出,分析凸圓刃式深松鏟應力和形變,校驗其結(jié)構強度;采用EDEM軟件分析不同耕深和速度對深松耕作阻力的影響,并以國標深松鏟為比較對象,分析了凸圓刃式深松鏟的減阻效果;通過田間試驗驗證了土壤模型和凸圓刃式深松鏟設計的準確性和可行性。田間試驗結(jié)果表明,與國標深松鏟相比,凸圓刃式深松鏟耕作阻力平均降低了10.24%。仿真結(jié)果與實測值較為接近,數(shù)值誤差在3%~10%,證明土壤模型基本符合土壤的力學特性,能近似代替真實的土壤環(huán)境。該研究證明了采用離散元法分析深松耕作阻力可行性,可為進一步優(yōu)化深松鏟結(jié)構提供參考。

農(nóng)業(yè)機械;離散元法;深松;試驗;凸圓刃;耕作阻力

0 引 言

深松可以改善土壤的耕層結(jié)構,增強土壤的通透性,提高土壤蓄水能力和改善植物根系生長環(huán)境,從而提高作物的產(chǎn)量[1-2]。由于土壤工況復雜多變,欲通過田間試驗的方法,研究土壤的變形、破碎和觸土部件的受力狀態(tài),不僅過程繁瑣,而且很難獲得理想的結(jié)果。因此,Mouazen和張強等[3-4]采用有限元方法(finite element method,F(xiàn)EM)研究土壤對深松鏟阻力作用,其把土壤假設成一個時間和空間上的連續(xù)介質(zhì)模型,但其僅表征了土壤物理特性而未考慮土壤顆粒特性[5]。此外,文獻[6]采用光滑質(zhì)子動力學方法(smoothed particle hydrodynamics,SPH),該方法把土壤顆粒簡化成單一的質(zhì)點,并未考慮顆粒形狀的影響。由于土壤是由呈膠狀或凝聚狀不同粒徑的巖石風化礦物質(zhì)顆粒堆積而成[7],本身具有離散性,耕作過程中土壤的運動、變形和撕裂用FEM或SPH方法處理存在較大的誤差。于是Cundall和Strack[8]提出一種以不連續(xù)、獨立運動單體為研究對象的離散元方法(discrete element method,DEM),單體的運動和力由與之接觸單體之間的靜態(tài)力和牛頓第二定律決定。采用離散元方法研究耕整地機械觸土部件受力和土壤擾動情況,改變了將土壤視為連續(xù)單元的方式,與實際土壤條件較類似。Shmulevich等[9]通過對推土板的虛擬仿真分析研究發(fā)現(xiàn),離散元方法更適合分析土壤高塑性變形和顆粒流動問題。目前,基于EDEM軟件應用的土壤顆粒接觸模型多數(shù)只考慮土壤顆粒間的接觸力和摩擦力,只有少部分同時考慮土壤顆粒間的黏聚和塑性形變。趙淑紅等[10]采用Hertz-Mindlin 無滑動接觸模型研究了深松鏟鏟尖土壤顆粒的運動軌跡,并根據(jù)運動軌跡擬合設計了深松鏟。但無滑動接觸模型只考慮土壤間的接觸力和摩擦力,并不能研究土壤塑性形變和黏性作用對深松鏟尖的影響;Hang Chengguang和方會敏等[11-12]采用Hertz-Mindlin粘結(jié)模型,表征土壤的黏聚力,對土壤的擾動機理進行了研究。當顆粒間的接觸力達到粘結(jié)模型最大可承受的法向或切向剪切應力時,顆粒間的粘結(jié)鍵斷裂,但斷裂后的顆粒不會發(fā)生二次黏聚,與實際的土壤顆粒存在一定差異;王金武等[13]采用Hertz-Mindlin JKR粘結(jié)模型,表征了含水土壤的黏聚力,分析了深埋秸稈還田機耕作業(yè)時土壤和秸稈的運動軌跡,但其接觸模型并不能分析土壤塑性形變的影響;Walton等[14]針對塑性材料變形問題創(chuàng)建遲滯彈簧模型(hysteretic spring model,HSM),表征物料的塑性形變,以某一設定值為標準,當顆粒間接觸未超過該值時,顆粒間接觸按線彈性接觸模型計算;反之,顆粒間接觸按照塑性接觸模型計算。Janda等[15-16]通過土壤在靜態(tài)載荷作用下的力學特性仿真分析和后掠式深松鏟在無黏性土壤中的仿真分析,驗證了HSM的準確性;Ucgul等[17-18]將遲滯彈簧模型(HSM)和法向粘聚力模型(linear cohension model,LCM)結(jié)合來表征土壤的塑性形變和黏聚力,解決了黏性土壤塑性形變問題。鄭凱等根據(jù)耕作層、犁底層和心土層的土壤性質(zhì),設計了具有不同滑切角的折線深松鏟柄,通過試驗分析,驗證了HSM+ LCM接觸模型和設計的合理性[19]。

近年來,HSM和LCM結(jié)合,常用來作為土壤顆粒的接觸模型[17-20]。但研究發(fā)現(xiàn)HSM+LCM模型的法向力隨顆粒間迭代量呈線性關系,實際在土壤擠壓變形過程中塑性形變和黏聚力是非線性,與土壤擠壓變形過程有一定差別。因此本文采用非線性粘結(jié)彈性塑形接觸模型(edinburgh elasto-plastic adhesion model,EEPA),建立土壤模型并對自行設計的凸圓刃式深松鏟耕作阻力進行分析和驗證。

1 凸圓刃式深松鏟結(jié)構參數(shù)設計

圖1 凸圓刃式深松鏟結(jié)構示意圖

如圖2所示,設計中,凸圓刃刃口曲線形式選用一元二次函數(shù),并建立坐標系,曲線的方程為

=2++(2)

求導得

= 2+(3)

= -6.594×10–32+5.573×10–1+64.471 (4)

注:o為坐標原點;x為刃口曲線橫坐標,mm;y為刃口曲線縱坐標,mm;AB為圓弧刃線;bA為在凸圓刃A點的滑切角,(°);g為深松鏟入土角[24],g=23°;l為深松鏟鏟尖長度[24],l=165 mm;β凸圓刃刃口任意點滑切角,(°);n為凸圓刃刃口任意點法向方向;v為深松鏟的運動速度,m·s-1。

2 離散元土壤模型建立

2.1 土壤顆粒模型

根據(jù)文獻[25-26],土壤顆粒的形狀通常為核狀、條狀、片狀、塊狀等幾種形式,如圖3所示。土壤顆粒的粒徑越小,仿真計算用時越長,為提高計算效率節(jié)省計算時間,用半徑10 mm的球形顆粒分別組合成核狀、條狀、片狀和塊狀4種形式。因犁底層土壤團聚現(xiàn)象十分明顯,為了模擬的準確性,犁底層土壤采用半徑為1.5~3.5 mm球形顆粒填充的團聚體模擬[25];土壤顆粒密度為2 600 kg/m3,土壤剪切模量1′106Pa,土壤顆粒泊松比0.3[27]。土壤和土壤之間恢復系數(shù)0.6[16],土壤間靜摩擦系數(shù)和滾動摩擦系數(shù)設置參考文獻[19],如表1所示。

核狀 Nucleation條狀 Strip片狀1 Flake 1片狀2 Flake 2塊狀 Lump團聚體 Aggregate

表1 土壤間接觸參數(shù)[19]

Table 1 Contact parameters between soils[19]

2.2 土壤接觸模型

注:fn為顆粒間法向力,N;δ為顆粒間的法向重疊量,m;f0為顆粒間現(xiàn)存的接觸力,如范德華力或靜電力等,N;k1為初始加載剛度,N·m–1;k2為卸載/重新加載剛度,N·m–1;fmax為顆粒間最大粘結(jié)力,N;–kabh為粘結(jié)力衰減剛度,N·m–1。

2.3 土壤模型和深松鏟幾何仿真模型構建

由于長期的淺翻、旋耕作業(yè)和車輪碾壓,致使耕作層和心土層之間形成一層堅硬密實的犁底層,故仿真用土壤模型分為耕作層、犁底層和心土層3層。土壤耕作層厚度在150 mm左右[33],犁底層平均厚度約為120 mm[34],通過土壤顆粒模型構建和接觸模型的選取,建立1 200 mm(長)′800 mm(寬)′600 mm(高)虛擬土槽。參考文獻[26],在填充虛擬土槽時,條狀、片狀1、片狀2的顆粒數(shù),在各土層的占比基本一致,變化不大;而核狀顆粒數(shù)量占比隨土層深度的增而增加,塊狀顆粒占比隨土層深度增加而減少。因此,虛擬土槽仿真設置0~150 mm為耕作層,尺寸分布為0.95~1.05,隨機填充核狀2 948個、條狀1 129個、片狀1共1 285個、片狀2共1 112個和塊狀565個;150~270 mm為犁底層,尺寸分布(生成顆粒半徑同原始顆粒土壤模型半徑的倍數(shù))為1,隨機填充粘聚體18 494個;270~570 mm為心土層,尺寸分布為0.95~1.05,隨機填充核狀24 980個、條狀2 185個、片狀1共3 615個、片狀2共1 469個和塊狀57個。

采用INVENTOR三維軟件創(chuàng)建的國標深松鏟和凸圓刃式深松鏟的幾何模型,材料選用65 Mn,材料密度 7 820 kg/m3,彈性模量2.11×10-11N/m2,屈服極限強度430 MPa,泊松比0.288。深松鏟和土壤之間恢復系數(shù)為0.6。深松鏟同耕作層、犁底層和心土層之間的靜摩擦因數(shù)分別為0.313、0.639和0.427;滾動摩擦因數(shù)分別為0.107、0.13和0.078[19]。三維模型和仿真土槽如圖4所示。

圖5 土槽與深松鏟仿真模型

3 仿真與結(jié)果分析

利用土槽仿真模型,對凸圓刃式深松鏟和國標深松鏟進行仿真試驗,檢驗凸圓刃的減阻效果。根據(jù)虛擬土槽長度和深松深度農(nóng)藝要求,設置深松鏟作業(yè)速度為1.14和1.42 m/s,耕深250和350 mm。仿真Rayleigh時間步長采用自動時間步,網(wǎng)格尺寸單元為2.5倍的最小顆粒半徑,進行離散元仿真分析。深松鏟耕作阻力仿真曲線如圖6所示。

如圖6可知:凸圓刃式深松鏟耕作阻力小于國標深松鏟耕作阻力。隨著深松鏟從左側(cè)進入虛擬土槽,深松鏟的阻力從0開始逐漸增加,深松鏟完全進入虛擬土槽后阻力基本處于穩(wěn)定狀態(tài)。因在仿真過程中深松鏟前面的土壤顆粒的積累,導致耕作阻力增加,仿真曲線呈現(xiàn)上升趨勢。采用深松鏟完全入土后的平均阻力來模擬耕作阻力,結(jié)果如表2所示。耕深250 mm、作業(yè)速度1.14 m/s,耕深250 mm、作業(yè)速度1.42 m/s,耕深350 mm、作業(yè)速度1.14 m/s和耕深350 mm、作業(yè)速度1.42 m/s 的4種作業(yè)條件下,與國標深松鏟相比,凸圓刃式深松鏟的平均耕作阻力分別降低了7.89%、7.19%、7.26%和8.33%。仿真結(jié)果表明凸圓刃式深松鏟具有減阻效果,平均減阻7.56%。

為了校驗凸圓刃式深松鏟的結(jié)構強度,本文采用EDEM_Addin_1.0.0接口,將仿真過程中土壤模型顆粒同凸圓刃式深松鏟上的接觸作用力導入ANSYS WORKBENCH 17.0中;對凸圓刃式深松鏟進行網(wǎng)格劃分,共劃分633,得到1 412個節(jié)點;由于深松鏟在鏟柄端部由螺栓固定在機架上,所以對深松鏟柄端部添加固定約束。有限元分析結(jié)果如圖7所示,凸圓刃式深松鏟工作時最大變形量發(fā)生在鏟尖處,為8.68 mm;凸圓刃式深松鏟其整體所受應力較小且多在80 MPa以下,在鏟柄固定處應力最大為123.36 MPa,但遠小于材料的屈服極限強度430 MPa,最大應力小于材料本身的許用應力[35](150~286 MPa),故凸圓刃式深松鏟在工作狀態(tài)下滿足設計要求。

圖6 深松鏟耕作阻力仿真曲線

表2 凸圓刃式深松鏟與對照深松鏟耕作阻力仿真結(jié)果

圖7 凸圓刃式深松鏟有限元分析結(jié)果

4 田間試驗

4.1 試驗目的與條件

為了進一步驗證凸圓刃式深松鏟設計的合理性并判斷土壤模型構建的合理性,以牽引阻力為指標,于2018年3月在河北省定州市新興莊村農(nóng)田進行試驗。試驗地土壤質(zhì)地為壤土,地勢平坦,土壤緊實度、土壤容重和土壤含水率分別為2.215 MPa、1.453 g/cm3和19.8%。深松鏟牽引阻力測量采用電阻應變片測力方法,試驗設備主要包括東方紅LG150-4拖拉機、深松機架(開元刀神1S-200深松機)、凸圓刃式深松鏟、國標深松鏟[21]、DH5908無線動態(tài)應變測試系統(tǒng)(量程:-30 000~+30 000,系統(tǒng)不確定度:不大于0.5%±3)、SL-TYD土壤硬度計(0~400 mm,0~50 kg/cm2)、BX120-5AA電阻式應變片(量程:120W,靈敏度:2.08,敏感柵尺寸:5 mm′3 mm)、環(huán)刀(體積:100 cm2)、BSA224S電子天平(量程:300 g,精度:0.001 g)、DGG-9626A電熱恒溫鼓風干燥箱(北京雅士林試驗設備有限公司)、秤砣(質(zhì)量:10 kg)、鋼板尺(量程50 mm,精度:1 mm)、卷尺(量程:30 m,精度:1 mm)502膠水等。

4.2 深松鏟標定

深松鏟由河北農(nóng)哈哈機械集團有限公司加工,材料為65 Mn,深松鏟實物如圖8所示。將電阻式應變片粘貼在深松鏟前后兩側(cè)。采用屏蔽線按照半橋連接方式將電阻應變片接入到東華DH5908無線動態(tài)應變采集器中。檢查無誤后,固定鏟柄,在鏟尖一側(cè)垂直向下添加秤砣,每組試驗重復3次,對深松鏟進行標定[36],并采用Duncan氏新復極差法處理得出均值和標準誤,結(jié)果如表3所示。由表3得出深松鏟受力同應變片電阻值的關系,其標定結(jié)果為

4.3 試驗方法

將國標深松鏟和凸圓刃式深松鏟安裝在同一深松機架上。田間試驗速度和耕深同仿真試驗相同,拖拉機的牽引速度設置1.14(低Ⅲ檔)和1.42 m/s(低Ⅳ檔)2個水平。耕深設置250和350 mm 2個水平。動態(tài)應變測試系統(tǒng)采樣頻率10 Hz,選取地勢平坦的地塊進行田間試驗(圖9),每組試驗進行1次,待工作穩(wěn)定后采集耕作阻力。分析對比田間試驗同虛擬仿真阻力結(jié)果相似程度和凸圓刃式深松鏟的減阻效果。

圖8 試驗用深松鏟

表3 深松鏟標定結(jié)果

圖9 田間試驗

4.4 結(jié)果與分析

圖10為2種深松鏟耕作阻力田間試驗對比曲線。由圖10可知,耕作阻力隨時間變化呈現(xiàn)不規(guī)律的上下浮動,主要是由土壤條件差異和土壤中植物根系造成??傮w上,凸圓刃式深松鏟耕作阻力小于國標深松鏟耕作阻力,表明凸圓刃式深松鏟有較好的減阻效果。

圖10 深松鏟耕作阻力試驗曲線

表4為2種類型深松鏟在相同工況條件下的耕作阻力平均值。耕深250 mm、作業(yè)速度1.14 m/s,耕深250 mm、作業(yè)速度1.42 m/s,耕深350mm、作業(yè)速度1.14 m/s和耕深350 mm、作業(yè)速度1.42 m/s的4種條件下,與國標深松鏟相比凸圓刃式深松鏟的耕作阻力分別降低了11.57%、10.42%、9.29%和9.69%。結(jié)果表明,凸圓刃式深松鏟具有減阻的效果,平均減阻10.24%。田間試驗結(jié)果同仿真結(jié)果相比,誤差在3%~10%。分析認為誤差存在的原因:1)田間工況復雜,如存在秸稈、植物根系、碎石等,仿真中未能考慮到這些因素的存在;2)同仿真相比,田間地表平整度,差易造成數(shù)據(jù)的波動。3)仿真是在1 200 mm(長)′800 mm(寬)′500 mm(高)虛擬土槽中進行,土槽的剛性墻會對土壤顆粒的移動產(chǎn)生一定的影響,造成耕作阻力與實際情況不同??傮w而言,仿真結(jié)果與田間試驗結(jié)果基本一致,表明土壤模型基本符合實際土壤的力學特性,進一步驗證了凸圓刃式深松鏟具有較好的減阻效果。同時由表2和表4可知,耕深和作業(yè)速度對耕作阻力有一定的影響,耕作阻力隨耕深或作業(yè)速度的增加而增加。

表4 深松鏟耕作阻力試驗結(jié)果

5 結(jié)論與討論

1)基于華北平原土壤特性,應用離散元軟件EDEM建立了適用于壤土的土壤模型。采用非線性粘結(jié)彈性塑形接觸模型(EEPA)來表征土壤的應力—應變關系。通過對比分析虛擬仿真與田間試驗驗的深松阻力值,仿真值與實測值之間誤差在3%~10%,表明土壤模型的力學特性基本符合華北平原地區(qū)的土壤特性。

2)為降低深松作業(yè)阻力,在鏟尖頂部設計了凸圓刃。田間試驗結(jié)果表明,安裝凸圓刃的凸圓刃式深松鏟具有減阻的效果,與國標深松鏟相比,耕作阻力平均降低10.24%。

3)利用EDEM_Addin插件將土壤顆粒同凸圓刃式深松鏟的接觸力導入到ANSYS WORKBENCH中對凸圓刃式深松鏟進行靜力學分析分析。凸圓刃式深松鏟應力主要集中在鏟柄固定處,最大應力值為123.36 MPa,最大變形量發(fā)生在鏟尖處,為8.68 mm,滿足設計強度需求。

4)通過仿真分析和田間試驗研究發(fā)現(xiàn)。耕深和作業(yè)速度對耕作阻力影響顯著,耕深或作業(yè)速度越大,耕作阻力越大。

現(xiàn)有深松鏟類型較多,本文對照僅用國標深松鏟深松鏟,不能代替全部,后續(xù)將進一步同其他深松鏟進行耕作阻力對比研究。此外,試驗僅從阻力角度分析了凸圓刃式深松鏟的減阻效果。下一階段還需從土壤擾動系數(shù)、土壤蓬松度等多項指標,綜合評定凸圓刃式深松鏟的作業(yè)性能。

[1] 何明,高煥文,董培巖,等. 一年兩熟地區(qū)保護性耕作深松試驗[J]. 農(nóng)業(yè)機械學報,2018,49(7):58-63. He Ming, Gao Huanwen, Dong Peiyan, et al. Sub-soiling experiment and research in two crops a year and conservation tillage adopted area[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(7): 58-63. (in Chinese with English abstract)

[2] Pikul J L, Aase J K. Water Infiltration and storage affected by subsoiling and subsequent tillage[J]. Soilence Society of America Journal, 2003, 67(3): 859-866.

[3] Mouazen A M, Neményi M. Finite element analysis of subsoiler cutting in non-homogeneous sandy loam soil[J]. Soil & Tillage Research, 1999, 51(1/2): 1-15.

[4] 張強,張璐,于海業(yè),等. 復合形態(tài)深松鏟耕作阻力有限元分析與試驗[J]. 農(nóng)業(yè)機械學報,2012,43(8):61-65. Zhang Qiang, Zhang Lu, Yu Haiye, et al. Finite element analysis and experiment of soil resistance of multiplex- modality subsoile[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(8): 61-65. (in Chinese with English abstract)

[5] 傅巍,蔡九菊,董輝,等. 顆粒流數(shù)值模擬的現(xiàn)狀[J]. 材料與冶金學報,2004,3(3):172-175. Fu Wei, Cai Jiuju, Dong Hui, et al. Current status of numerical simulation of granular flow[J]. Journal of Materials and Metallurgy, 2004, 3(3): 172-175. (in Chinese with English abstract)

[6] 劉宏俊,韓濟遠,陳佳奇,等. 丘陵地區(qū)剛性鎮(zhèn)壓輪性能仿真與試驗[J]. 農(nóng)業(yè)機械學報,2018,49(11):114-122. Liu Hongjun, Han Jiyuan, Chen Jiaqi, et al. Performance simulation and experiment on rigid press wheel for hilly area [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(11): 114-122. (in Chinese with English abstract)

[7] Craig R F. Craig's Soil Mechanics[M]. London: Spon Press, 2004.

[8] Cundall P A, Strack O D L. A discrete numerical mode for granular assemblies[J]. Géotechnique, 1979, 29(1): 47-65.

[9] Shmulevich I, Horn R. State of the art modeling of soil-tillage interaction using discrete element method[J]. Soil & Tillage Research, 2010, 111(1): 41-53.

[10] 趙淑紅,王加一,陳君執(zhí),等. 保護性耕作擬合曲線型深松鏟設計與試驗[J]. 農(nóng)業(yè)機械學報,2018,49(2):82-92. Zhao Shuhong, Wang Jiayi, Chen Junzhi, et al. Design and experiment of fitting curve subsoiler of conservation tillage[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(2): 82-92. (in Chinese with English abstract)

[11] Hang Chengguang, Gao Xijie, Yuan Mengchan, et al. Discrete element simulations and experiments of soil disturbance as affected by the tine spacing of subsoiler[J]. Biosystems Engineering, 2017, 168: 73-82.

[12] 方會敏,姬長英,張慶怡,等. 基于離散元法的旋耕刀受力分析[J]. 農(nóng)業(yè)工程學報,2016,32(21):54-59. Fang Huimin, Ji Changying, Zhang Qingyi, et al. Force analysis of rotary blade based on distinct element method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(21): 54-59. (in Chinese with English abstract)

[13] 王金武,王奇,唐漢,等. 水稻秸稈深埋整稈還田裝置設計與試驗[J]. 農(nóng)業(yè)機械學報,2015,46(9):112-117. Wang Jinwu, Wang Qi, Tang Han, et al. Design and experiment of rice straw deep buried and whole straw returning device[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(9): 112-117. (in Chinese with English abstract)

[14] Walton O R, Braun R L. Stress calculations for assemblies of inelastic speres in uniform shear[J]. Acta Mechanica, 1986, 63(1-4): 73-86.

[15] Janda A, Jin Y O. DEM modeling of cone penetration and unconfined compression in cohesive solids[J]. Powder Technology, 2016, 293: 60-68.

[16] Ucgul M, Fielke J M, Saunders C. 3D DEM tillage simulation: Validation of a hysteretic spring (plastic) contact model for a sweep tool operating in a cohesionless soil[J]. Soil & Tillage Research, 2014, 144(4): 220-227.

[17] Ucgul M, Fielke J M, Saunders C. Three-dimensional discrete element modelling (DEM) of tillage: Accounting for soil cohesion and adhesion[J]. Biosystems Engineering, 2015, 129: 298-306.

[18] Ucgul M, Fielke J M, Saunders C. Three-dimensional discrete element modelling of tillage: Determination of a suitable contact model and parameters for a cohesionless soil[J]. Biosystems Engineering, 2014, 121(2): 105-117.

[19] 鄭侃,何進,李洪文,等. 基于離散元深松土壤模型的折線破土刃深松鏟研究[J]. 農(nóng)業(yè)機械學報,2016,47(9): 62-72. Zheng Kan, He Jin, Li Hongwen, et al. Research on polyline soil-breaking blade subsoiler based on subsoiling soil model using discrete element method[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(9): 62-72. (in Chinese with English abstract)

[20] 石林榕,趙武云,孫偉. 基于離散元的西北旱區(qū)農(nóng)田土壤顆粒接觸模型和參數(shù)標定[J]. 農(nóng)業(yè)工程學報,2017,33(21):181-187. Shi Linrong, Zhao Wuyun, Sun Wei. Parameter calibration of soil particles contact model of farmland soil in northwest arid region based on discrete element method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(21): 181-187. (in Chinese with English abstract)

[21] 全國農(nóng)業(yè)機械標準化技術委員會. 深松鏟和深松鏟柄:JB/T9788-1999 [S]. 北京.中國標準出版社.1999:2-6

[22] 尋懷義. 滑切理論探討[J]. 農(nóng)業(yè)機械學報,1979(4): 107-111.

[23] 龐聲海. 關于滑切理論與滑切角的選用[J]. 華中農(nóng)學院學報,1982(2):64-69.

[24] 西涅阿科夫,李福桂,高爾光,等. 土壤耕作機械的理論和計算[M]. 北京:中國農(nóng)業(yè)機械出版社,1981.

[25] 王燕. 基于離散元法的深松鏟結(jié)構與松土效果研究[D].長春:吉林農(nóng)業(yè)大學,2014. Wang Yan. Simulation Analysis of Structure and Effect of the Subsoiler Based on DEM[D]. Changchun: Jilin Agricultural University, 2014. (in Chinese with English abstract)

[26] 王憲良,胡紅,王慶杰,等. 基于離散元的土壤模型參數(shù)標定方法[J]. 農(nóng)業(yè)機械學報,2017,48(12):78-85. Wang Xianliang, Hu Hong, Wang Qingjie, et al. Calibration method of soil contact characteristic parameters based on DEM theory[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(12): 78-85. (in Chinese with English abstract)

[27] Das B M. Advanced soil mechanics[M]. London: TAYLOR & FRANCIS, 2008.

[28] Morrissey J P. Discrete Element Modelling of Iron Ore Pellets to Include the Effects of Moisture and Fines[D]. Edinburgh : University of Edinburgh, 2013.

[29] Thakur S C, Morrissey J P, Sun J, et al. Micromechanical analysis of cohesive granular materials using the discrete element method with an adhesive elasto-plastic contact model[J]. Granular Matter, 2014, 16(3): 383-400.

[30] EDEM 2018 documentation: Version 2018[EB/OL]. (2018-07-14).https://www.edemsimulation.com/login/?redirect_to=%2Fedem-2018-0-documentation. [2018-09-21]

[31] John P M, Subhash C T, Jin Y O. EDEM contact model:adhesive elasto-plastic model[EB/OL]. (2014-06-23).https:// www.edemsimulation.com/resources-learning. [2018-09-21]

[32] EDEM 2018 soils starter pack: compressible sticky materia [EB/OL]. https://www.edemsimulation.com. [2018-09-21].

[33] 石彥琴,高旺盛,陳源泉,等. 耕層厚度對華北高產(chǎn)灌溉農(nóng)田土壤有機碳儲量的影響[J]. 農(nóng)業(yè)工程學報,2010,26(11):85-90. Shi Yanqin, Gao Wangsheng, Chen Yuanquan, et al. Effect of topsoil thickness on soil organic carbon in high-yield and irrigated farmland in North China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(11): 85-90. (in Chinese with English abstract)

[34] 郭家萌,劉振朝,高強,等. 深松對玉米產(chǎn)量和養(yǎng)分吸收的影響[J]. 水土保持學報,2016,30(2):249-254. Guo Jiameng, Liu Zhenchao, Gao Qiang, et al. Effect of subsoiling on yield and nutrient uptake of maize[J]. Journal Soil and Water Conservation, 2016, 30(2): 249-254. (in Chinese with English abstract)

[35] 鄭侃,何進,李洪文,等. 反旋深松聯(lián)合作業(yè)耕整機設計與試驗[J]. 農(nóng)業(yè)機械學報,2017,48(8):61-71. Zheng Kan, He Jin, Li Hongwen, et al. Design and experiment of combined tillage implement of reverse-rotary and Subsoiling [J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(8): 61-71. (in Chinese with English abstract)

[36] 李惠利. 深松鏟工作性能實時測試系統(tǒng)的研究[D]. 保定:河北農(nóng)業(yè)大學,2017. Li Huili. Research on Real-time Working Performance Test System of the Deep Shovel [D]. Baoding: Agricultural University of Hebei, 2017. (in Chinese with English abstract)

Simulation analysis and experiment of drag reduction effect of convex blade subsoiler based on discrete element method

Ma Yuejin, Wang An, Zhao Jianguo, Hao Jianjun, Li Jianchang, Ma Luping, Zhao Weibo, Wu Yue

(071001,)

Due to long-term shallow ploughing, rotary tillage and tractor wheel rolling, a hard and compact Plow pan layer is formed between the tillage layer and the subsoil layer. The presence of plow pan layer can inhibit roots growing and prevent material transfer between tillage layer and the susoil layer, thus reducing crop yield. The subsoiling can improve the soil water storage, improve soil water retention capacity, promote roots growth, and effectively improve crop yield effectively, but the resistance and energy consumption of subsoiling is high. The convex blade subsoiler was designed to reduce the subsoiling resistance in the paper. The convex blade subsoiler was mainly composed of subsoiler handle, subsoiler tip and convex edge, in the process of subsoiling, the convex edge on the subsoiler tip slip cutting the soil on the upper surface of the subsoiler tip, which reducing the pressure of the soil on the upper surface of the subsoiler tip, thereby reducing the subsoiling resistance. Firstly, the curve expression of convex blade edge was calculated based on the sliding cutting condition. And then, the convex blade subsoiler with convex blade and stander subsoiler were selected as the study object by EDEM simulation and field experiment, which used to verify the drag reduction effect of convex blade and the accuracy of soil simulation model. Taking North China Plain as the research object, the physical parameters of soil particle was determined, and the soil geometry model which consists of tillage layer, the subsoil layer and plow pan layer was constructed by 3D graphics software NVENTOR. In order to improve the accuracy of the soil model, the Edinburgh Elasto-Plastic Adhesion Model was used as soil contact model to simulate the tillage resistance of subsoiler. The EDEM software was employed to analyze the drag reduction effect of convex blade subsoiler at different tillage depths and forward speeds, which had been compared with the stander subsoiler. The experiment results showed that convex blade subsoiler had a drag reduction effect compared with stander subsoiler, and the average drag reduction was 7.56%. In addition, the EDEM_Addin plug-in was used to introduce the contact force of the soil with convex blade subsoiler into ANSYS WORKBENCH 17.0 for finite element analysis, and the results of finite element analysis showed that the convex blade subsoiler stress was mainly concentrated in the fixed position of the subsoiler handle, the maximum stress value was 123.36 MPa and the maximum deformation variable was 8.68 mm at the tip of the subsoiler, which meetting the design requirements. In order to verify the rationality of the designed convex blade subsoiler and judge the rationality of the constructed soil model, the field experiments were carried out according to the tillage depth and the working speed of the simulation. The field experiments proved that the convex blade subsoiler had dragged reduction effect compared with stander subsoiler, and the average drag reduction was 10.24%, and compared with the simulation results, the numerical error was 3%-10%. the tillage depth and forward speed could have an appreciable impact on tillage resistance and the tillage resistance increased with the tillage depth and forward velocity. The results of simulation and experiment showed that the proposed soil model basically matched the soil mechanical properties in North China Plain and could approximating substitute the real soil environment. The study proved that it was feasible to analyze the tillage resistance of the subsoiler by using the DEM and it was of great significance to further optimize the structure of subsoiler.

agricultural machinery; discrete element method;subsoiling; experiment; convex blade; tillage resistance

馬躍進,王 安,趙建國,郝建軍,李建昌,馬璐萍,趙偉博,吳 月. 基于離散元法的凸圓刃式深松鏟減阻效果仿真分析與試驗[J]. 農(nóng)業(yè)工程學報,2019,35(3):16-23. doi:10.11975/j.issn.1002-6819.2019.03.003 http://www.tcsae.org

Ma Yuejin, Wang An, Zhao Jianguo, Hao Jianjun, Li Jianchang, Ma Luping, Zhao Weibo, Wu Yue. Simulation analysis and experiment of drag reduction effect of convex blade subsoiler based on discrete element method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(3): 16-23. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.03.003 http://www.tcsae.org

10.11975/j.issn.1002-6819.2019.03.003

S222.12+9

A

1002-6819(2019)-03-016-08

2018-09-26

2019-01-04

國家“十三五”科技支撐重大項目糧食豐產(chǎn)增效科技創(chuàng)新(2017YFD0300907)

馬躍進,教授,博士生導師,主要從事農(nóng)業(yè)機械裝備與農(nóng)機材料表面改性及涂層制備方面的研究。Email:mayuejin58@126.com

中國農(nóng)業(yè)工程學會會員:馬躍進(E041200452S)

猜你喜歡
耕深田間試驗耕作
拖拉機多重模糊PID變論域耕深調(diào)節(jié)研究
田間試驗化肥減量增效促農(nóng)增收
基于卡爾曼濾波融合算法的深松耕深檢測裝置研究
懸掛式深松機耕深監(jiān)測系統(tǒng)的設計與試驗
價值工程(2019年31期)2019-12-04 04:11:05
線性擬合與Kalman預測法修正耕深測量誤差
耕作深度對紫色土坡地旋耕機耕作侵蝕的影響
玉米保護性耕作的技術要領
草地耕作技術在澳大利亞的應用
土壤與作物(2015年3期)2015-12-08 00:46:58
增效氮肥田間試驗結(jié)果初報
如何提高基層科技人員撰寫田間試驗報告的水平
广德县| 河间市| 鹰潭市| 湛江市| 漯河市| 衡水市| 凤翔县| 龙泉市| 静宁县| 聂拉木县| 锦州市| 攀枝花市| 宝山区| 长沙市| 泾阳县| 屯留县| 集贤县| 崇仁县| 会同县| 济源市| 闸北区| 涿州市| 古蔺县| 成武县| 洞头县| 祁连县| 贵港市| 河北省| 花垣县| 盘锦市| 天全县| 武邑县| 鄂州市| 榕江县| 玛纳斯县| 开平市| 甘孜县| 刚察县| 海晏县| 西和县| 两当县|