張紅濤,裴震宇,張曉東,譚 聯(lián),常 艷,朱 洋
?
基于Micro-CT的麥粒內(nèi)害蟲侵染研究
張紅濤1,裴震宇1,張曉東2,譚 聯(lián)1,常 艷1,朱 洋1
(1. 華北水利水電大學電力學院,鄭州 450011;2. 江蘇大學現(xiàn)代農(nóng)業(yè)裝備與技術教育部重點實驗室,鎮(zhèn)江 212013)
準確檢測糧粒內(nèi)部早期蟲害侵蝕,可提前判斷儲糧受侵染狀況,對及時確定合理的防治措施具有重要的意義。該文提出基于Micro-CT系統(tǒng)的麥粒內(nèi)部早期侵染無損檢測的方法。試驗以顯微CT投影數(shù)據(jù)的振蕩幅度和灰度差來確定Micro-CT最佳參數(shù)組合。麥粒主要成分厚度1~6 mm變化時,距麥粒茸毛端基準面等距離處的灰度立方體的平均灰度值,會隨著厚度的降低而增大。分析麥粒長軸朝向與旋轉(zhuǎn)臺面之間的夾角為0、45°、90°的麥粒平均灰度值,得麥粒平均灰度值由0時的80.406上升至90°時的88.544。用FDK算法(Feldkamp,Davis,Kress)重建試驗中侵染粒的投影數(shù)據(jù),統(tǒng)計得出米象橫截面外觀由單個圓形變成卵圓形再轉(zhuǎn)變?yōu)槎鄠€圓形或卵圓形的組合,米象與蟲洞之間的空隙逐漸增大,蟲洞從表皮侵蝕至麥粒腹溝再擴張至表皮附近。利用Mimics平臺繪制的三維可視化數(shù)據(jù)可得,米象發(fā)育過程中米象外觀由桿狀變?yōu)闄E球形再發(fā)育出各個器官,米象長度由卵期0.37~0.5 mm發(fā)育到成蟲期2.7~4.3 mm,寬度由卵期0.26~0.3 mm發(fā)育到成蟲期0.97~1.3 mm,米象體積在蛹期達到最大,蟲洞由表皮逐漸向麥粒中心延伸擴展并最終貫穿整個麥粒。結果表明,利用Micro-CT系統(tǒng)進行無損檢測可準確表達各齡期侵染粒內(nèi)部微觀結構的變化過程,為麥粒內(nèi)部害蟲的早期自動檢測提供理論依據(jù)。
糧食;參數(shù)提??;昆蟲防治;位置效應;侵染變化;Micro-CT
據(jù)國家統(tǒng)計局公布,2017年全國小麥總產(chǎn)量為12 977.4萬t,占糧食作物的21.0%[1]。每年因害蟲為害造成的糧食損失達150~600萬t,直接經(jīng)濟損失在20億元以上[2]?,F(xiàn)階段中國對儲糧害蟲的防治采用一次或多次熏蒸殺蟲,但該方法對治理糧粒內(nèi)部蟲卵、幼蟲效果不佳,同時影響糧食品質(zhì),加重害蟲抗藥性。出現(xiàn)以上問題是因為現(xiàn)階段很難從儲糧外部有效地檢測害蟲,不能實現(xiàn)對儲糧的精準除害。因此,探尋一種無損、準確的谷物內(nèi)部害蟲早期檢測方法是必要而迫切的[3]。
近年來出現(xiàn)了聲測法、近紅外光譜法、軟X射線成像法、近紅外高光譜成像法、生物光子法等新的檢測方法,這些方法還不能檢測侵染程度較低的情況,無法對谷物早期侵染進行自動判別[4-9]。
2015年,Anup等對害蟲侵染和發(fā)芽麥粒應用Micro-CT掃描,通過重建、骨架化及絕對滲透率仿真模擬試驗,得到2種損傷在麥粒中的作用區(qū)域和孔隙度都不相同[10]。2016年,Guelpa等應用CT測量玉米籽粒的體積和密度,以此作為玉米籽粒硬度分類的評價標準[11]。2017年,陳樹人等運用Micro-CT對不同載荷下稻谷籽粒的胚、胚乳及裂紋大小進行定量分析,為谷物內(nèi)部損傷定量表征提供新思路[12]。同年,劉大同等采用顯微CT技術來研究小麥籽粒中水分運輸?shù)臋C制和路徑,并預測小麥穎果中水分排出的方式[13]。
Micro-CT成像法兼具X射線成像技術和顯微成像技術的優(yōu)勢[14],能采集微小樣本并提供高分辨率圖像,對侵染粒自動檢測是一種很有潛力的方法。本文提出應用Micro-CT系統(tǒng)采集侵染粒顯微CT投影數(shù)據(jù),探明麥粒成像的位置效應,通過各個齡期的蟲害侵染重建和可視化結果,確定糧粒內(nèi)害蟲的發(fā)育和蟲洞的變化規(guī)律,為后續(xù)早期侵染粒自動無損檢測奠定基礎。
試驗選用的米象來源于河南工業(yè)大學養(yǎng)蟲室。麥粒品種為百農(nóng)207,麥粒長約5.8~7.5 mm,寬約1.8~3.8 mm。
試驗所用儀器為江蘇大學現(xiàn)代農(nóng)業(yè)裝備與技術教育部重點實驗室從瑞士SCANCO MEDICAL公司引進的顯微CT成像系統(tǒng)Micro-CT 100,以及華北水利水電大學的HWHS-250恒溫恒濕培養(yǎng)箱、DHG 9030(A)電熱鼓風干燥箱、QTH-C 糧食水分測定儀等。
1.2.1 樣本培育
將過篩水洗后的小麥置于60 ℃的電熱鼓風干燥箱,使小麥水分保持在15%。將約3 000頭米象和100 g小麥放入飼養(yǎng)瓶中混合均勻,然后置于恒溫恒濕培養(yǎng)箱(30 ℃,70%濕度)中,3 d后篩出成蟲,并放入瓶中繼續(xù)培育。按照同樣的方法可以培育出多批侵染粒。
以米象與完善?;旌虾蟮牟煌瑫r間對麥粒內(nèi)米象5個不同發(fā)育階段進行定義,即米象與完善?;旌虾蟮牡?、9、17、22、28天,分別為米象的卵期、低齡幼蟲期、高齡幼蟲期、蛹期和成蟲期。
從完善粒和被米象侵染的5個時期的侵染粒中分別隨機抽取100粒,將其放入塑料試管中密封,然后放置在冰箱(-20 ℃)中保存[15-16]。
1.2.2 試驗方案
檢測環(huán)境的室內(nèi)溫度為25 ℃、室內(nèi)濕度為45%。檢測前使被測麥粒放置室內(nèi)平衡30 min,消除溫度對樣本的干擾。為避免在CT掃描過程時樣品管中麥粒姿態(tài)發(fā)生偏移,在樣品管內(nèi)選用具有低密度、低X射線吸收率等特點的發(fā)泡聚苯乙烯為麥粒的固定裝置[17]。每支樣品管內(nèi)用固定裝置放置5粒小麥,Micro-CT 100設備的工作轉(zhuǎn)臺一次可以放置12支樣品管。掃描時從工作轉(zhuǎn)臺取一支樣品管至掃描室內(nèi),待掃描結束后取下一樣品管繼續(xù)掃描。
為了獲取穩(wěn)定清晰的糧粒投影圖像,需要確定Micro-CT成像系統(tǒng)的最佳參數(shù)組合,并研究麥粒成像的位置效應。同時,采用每次處理1粒小麥再統(tǒng)計分析所有數(shù)據(jù)的方法對試驗得到的投影圖像進行分析。
2)成像位置效應。麥粒的形狀不規(guī)則、內(nèi)部成分多樣,不同的掃描角度對應麥粒的檢測厚度也不同,故需要探索麥粒不同厚度、長軸朝向與旋轉(zhuǎn)臺面之間的夾角對顯微CT成像的影響。測定同一完善粒在厚度為1~6 mm范圍內(nèi)每隔1 mm變化時的Micro-CT圖像。測量示意圖如圖1所示,其中軸定義為麥粒的長軸。首先在完善粒的茸毛端切出1個與長軸垂直的平面作為掃描觀測的基準面,調(diào)整麥粒切割裝置的深度至6 mm,將基準面朝下放入裝置并去除露出的胚部。處理完畢后,將其放置在樣品管中使其長軸朝向與旋轉(zhuǎn)臺面平行并進行掃描。然后每次在胚部方向?qū)Ⅺ溋Hコ? mm,依次掃描獲得麥粒1~6 mm厚度時的投影圖像。其中,麥粒長軸與旋轉(zhuǎn)臺面夾角示意圖如圖2所示。樣品管垂直放置在旋轉(zhuǎn)臺中,軸與旋轉(zhuǎn)臺面平行,軸與軸的夾角即為麥粒長軸與旋轉(zhuǎn)臺面的夾角。將完善粒置于樣品管中,使用不同的固定裝置使夾角依次呈0、45°和90°[23]。采集不同厚度、不同角度的投影數(shù)據(jù),分析麥粒顯微CT成像的位置效應。
1. 麥粒胚部 2. 麥粒長軸 3. 麥粒茸毛端 4. 游標卡尺 5. 觀測基準面
1. 樣品管 2. 固定裝置 3. 放置麥??孜?4. 麥粒 5. 樣品管底座
1. Sample tube 2. Fixing device 3. Place grain pore position 4. Wheat grain 5. Sample tube base
注:軸定義為麥粒的長軸,即為麥粒長軸與旋轉(zhuǎn)臺面的夾角。
Note:-axis is defined as the long axis of the wheat grains,is angle between long axis of wheat grain and rotating table.
圖2 麥粒長軸與旋轉(zhuǎn)臺面夾角的定義
Fig.2 Definition of angle between long axis of wheatgrain and rotating table
2.1.1 陽極電壓優(yōu)化
以X射線從麥粒腹股溝朝外的角度射向麥粒的投影圖像為例進行對比分析,圖3為45、55 kV 2種陽極電壓等級、濾過器同為AL0.1的投影數(shù)據(jù)。由圖3可見,圖3a麥粒整體灰度值比圖3b低,可表現(xiàn)出麥粒受到侵蝕,但麥粒內(nèi)米象的輪廓模糊。圖3b麥粒整體灰度值高于圖3a,侵蝕情況可良好地表現(xiàn),能清晰地展現(xiàn)米象的輪廓。
圖3 不同陽極電壓試驗結果
Fig.3 Projection experiment results of different anode voltages
圖4 2種投影圖像的第266列灰度統(tǒng)計比較
2.1.2 濾過器優(yōu)化
圖5為3種濾過器同一角度且陽極電壓同為55 kV的投影圖像,由圖可見當濾過器為CU0.1時,整體投影圖像過于模糊,難以看出麥粒內(nèi)蟲洞輪廓。在選用Air和AL0.1時,可以獲得較為清晰的麥粒圖像,但是在Air的情況下麥粒周圍噪聲過多。由于沒有濾過器,X射線中有部分無效成分產(chǎn)生的干擾未被去除,因此無法準確獲取麥粒內(nèi)部有效信息。從成像效果可得應用AL0.1濾過器后提高了投影圖像的質(zhì)量。
圖6為3種不同濾過器投影數(shù)據(jù)隨機抽取麥粒中部一列(=383)的灰度值的統(tǒng)計結果。在第200個像素位置可以看出,灰度差最大的是Air濾過器投影數(shù)據(jù),AL0.1投影數(shù)據(jù)次之,CU0.1投影數(shù)據(jù)最小,表明在對比度方面,成像效果優(yōu)劣依次為Air、AL0.1、CU0.1。像素點200~400區(qū)間內(nèi)大致為麥粒區(qū)域,像素灰度值浮動最大的是CU0.1濾過器投影數(shù)據(jù),Air濾過器投影數(shù)據(jù)次之,AL0.1濾過器投影數(shù)據(jù)最小,表明在去噪方面,成像效果由好到差依次為AL0.1、Air、CU0.1。使用Air濾過器時,由于沒能吸收低能的X光子,未對X射線進行整形,造成圖像整體灰度值低,噪聲強度較大。綜上,Micro-CT系統(tǒng)在陽極電壓為55 kV、濾過器為AL0.1時更適合麥粒的檢測。
圖5 不同濾過器試驗結果
圖6 3種濾過器投影圖像的第383列灰度統(tǒng)計比較
2.2.1 麥粒不同厚度的Micro-CT圖像采集
獲取三維重建后的1~6 mm不同厚度完善粒的立體圖像,在相同照射角度距基準面10像素處選取1個大小為40×40×40像素的立方體,各厚度對應的立方體的平均灰度值如表1所示。隨著麥粒厚度降低,Micro-CT所獲得立方體的灰度值逐漸增加。即當麥粒厚度較小時,X射線穿過的路徑較短,獲得投影圖像的平均灰度值增大,麥粒Micro-CT成像獲得的圖像有較高的對比度[24],提高了投影圖像的質(zhì)量。因此,使麥粒保持較小的照射厚度,有利于獲得良好的投影數(shù)據(jù)。
表1 不同麥粒厚度下立方體的灰度值
2.2.2 麥粒長軸朝向與旋轉(zhuǎn)臺面之間的夾角對Micro-CT成像的影響
Micro-CT 100系統(tǒng)的掃描方式是旋轉(zhuǎn)臺面在控制器控制下360°旋轉(zhuǎn)[25]。當麥粒長軸與旋轉(zhuǎn)臺面夾角增大時,X射線穿過麥粒平均路徑長度減小。0、45°、90°分別為X射線穿過的籽粒路徑變化最大、居中、最小的3個狀態(tài),能夠表征麥粒長軸與旋轉(zhuǎn)臺面夾角變化時穿過的籽粒厚度變化。
用同一粒小麥使其長軸與旋轉(zhuǎn)臺面分別呈0、45°和90°進行掃描,不同角度下整個麥粒的平均灰度值如表2所示。由表2可見,夾角呈45°時麥粒的平均灰度值比0提高了5.805,夾角呈90°時麥粒的平均灰度比45°提高了2.333,比0提高了8.138。
X射線穿過麥粒路徑長度的變化,會引起麥粒投影圖像平均灰度值的變化,X射線穿過的路徑越短,投影圖像的平均灰度值越大。麥粒的長寬比為1.53~4.17,在360°旋轉(zhuǎn)成像時,其成像時的不同姿態(tài),對X射線穿過其路徑的變化有較大的影響。在麥粒二維投影成像時,隨著麥粒長軸與旋轉(zhuǎn)臺面夾角的增大,X射線穿過麥粒的平均路徑長度減小,且路徑長度的變化率降低,則投影圖像的平均灰度值增大,且提高了麥粒投影成像的一致性。因此,試驗中麥粒長軸朝向與旋轉(zhuǎn)臺夾角為90°時最利于圖像采集。
表2 不同夾角下麥粒的平均灰度值
為了獲得麥粒內(nèi)害蟲的蟲態(tài)以及侵蝕狀況的二維、三維特征并實現(xiàn)三維可視化,需要獲得被測麥粒的切片數(shù)據(jù)。對顯微CT投影數(shù)據(jù)進行預處理,然后應用FDK重建算法(Feldkamp,Davis,Kress)處理得到重建切片[26]。圖7為完善粒和米象各個齡期的侵染重建的切片結果,由圖7b~7f可反映出米象不同齡期的發(fā)育和麥粒侵蝕的差異。
圖7 麥粒內(nèi)各個齡期的切片樣圖
通過統(tǒng)計試驗的切片結果,在米象卵期,卵呈圓形且最大橫截面積微小,與蟲洞形成圓環(huán)形空隙,蟲洞位置在表皮附近;在米象低齡幼蟲期,幼蟲呈圓形且最大橫截面積有所增加,與蟲洞形成圓環(huán)形空隙,蟲洞位置臨近麥粒腹溝;在高齡幼蟲期,幼蟲呈卵圓形且最大橫截面積隨幼蟲的發(fā)育而變大,與蟲洞形成橢圓環(huán)形空隙,蟲洞橫截面從腹溝向外擴張;在米象蛹期,發(fā)育出口器、足等器官且與胸、腹貼在一起,此時最大橫截面積繼續(xù)增大,蛹與蟲洞間的空隙增大,蟲洞擴張至表皮附近;在成蟲期,米象最大橫截面積略有減小,各器官發(fā)育完成,口器和足不會同時出現(xiàn)在一張切片圖像中,米象與蟲洞空隙進一步擴大,蟲洞無顯著地橫向擴張。
為了更加直觀地展現(xiàn)米象的發(fā)育趨勢和麥粒的侵染過程,對各齡期受侵染麥粒進行三維可視化分析。這里應用Mimics(materialise's interactive medical image control system)圖像處理軟件[27-30]對不同時期被測麥粒的原始數(shù)據(jù)進行處理。選取合適的閾值區(qū)間對圖像進行分割,應用形態(tài)學操作對圖片進行處理,利用區(qū)域生長法提取感興趣區(qū),其結果如圖8所示。改變圖8b~8f的麥粒部分的透明度,提高米象的著色程度,以更清晰地顯現(xiàn)麥粒內(nèi)部不同時期米象的形態(tài)發(fā)育和蟲洞的變化。
通過統(tǒng)計試驗的可視化結果,在米象卵期,卵的體積微小,呈桿狀且一端略有膨大,長0.37~0.5 mm,寬0.26~0.3 mm,蟲洞淺且靠近表皮;在米象低齡幼蟲期,幼蟲呈卵圓形,長0.85~1.03 mm,寬0.56~0.64 mm,蟲洞由表皮向麥粒中心蜿蜒;在米象高齡幼蟲期,幼蟲呈橢球形,長1.37~2.21 mm,寬0.79~1.51 mm,頭部較寬,背部彎曲,腹部肥大,蟲洞繼續(xù)延伸擴大并且向四周侵蝕;在米象蛹期,其體積達到整個變態(tài)發(fā)育過程的最大值,頭胸腹3部分可清晰分辨,口器彎貼在胸部下方與前足鄰近,后足和翅蜷縮在一起,長2.5~3.7 mm,寬0.89~1.27 mm,蟲洞體積占據(jù)小麥一半左右;在米象成蟲期,米象口器向前,足自然張開,翅發(fā)育完全并附在腹背上,長2.7~4.3 mm,寬0.97~1.3 mm,蟲洞占據(jù)大部分麥粒并出現(xiàn)貫穿麥粒的現(xiàn)象。
圖8 各個齡期的可視化樣圖
2)分析了糧粒主要成分1~6 mm厚度相同照射角度距基準面10像素處灰度立方體的平均灰度值,對比麥粒長軸朝向與旋轉(zhuǎn)臺面夾角為0、45°、90°的麥粒整體平均灰度值,確定了糧粒成像的位置效應,糧粒長軸朝向與旋轉(zhuǎn)臺面之間夾角90°為最佳檢測角度。
3)結合FDK算法重建的麥粒切片數(shù)據(jù)和Mimics平臺繪制的可視化數(shù)據(jù)可得,隨著米象的變態(tài)發(fā)育,米象在麥粒的位置由靠近表皮向中心內(nèi)移動,體積在蛹期達到最大,后經(jīng)器官發(fā)育在成蟲期體積有所減小,蟲洞由靠近麥粒表皮的微小孔洞擴張到貫穿麥粒的較大孔洞。表明利用Micro-CT系統(tǒng)檢測麥粒內(nèi)部害蟲早期侵染是可行的。
基于Micro-CT的小麥內(nèi)部害蟲早期無損檢測方法,不僅能檢測害蟲對于麥粒的侵蝕,還可用于檢測其他谷物籽粒的早期侵染。該法每次掃描可獲取1支樣品管中多粒麥粒的投影數(shù)據(jù),可同時對多粒小麥進行無損檢測。通過把麥粒嵌入固定裝置的方法,能有效地避免籽粒黏連的情況。麥粒內(nèi)米象侵染變化規(guī)律的研究揭示了不同齡期麥粒被侵染的特征和害蟲發(fā)育規(guī)律,為下一步提取被測麥粒二維、三維特征并準確、高效地檢測麥粒的侵染狀況奠定基礎。但該法目前存在掃描時間長、數(shù)據(jù)量大等問題。應進一步優(yōu)化掃描方法,在確保檢測效果的同時,降低掃描分辨率,提高檢測效率。
[1] 何中虎,莊巧生,程順和,等. 中國小麥產(chǎn)業(yè)發(fā)展與科技進步[J]. 農(nóng)學學報,2018,8(1):99-106. He Zhonghu, Zhuang Qiaosheng, Cheng Shunhe, et al. Wheat production and technology improvement in China[J]. Journal of Agriculture, 2018, 8(1): 99-106. (in Chinese with English abstract)
[2] 王晶磊,肖雅斌,徐威,等. 糧庫儲糧害蟲防治存在問題及前景展望[J]. 糧食與食品工業(yè),2014,21(3):82-85. Wang Jinglei, Xiao Yabin, Xu Wei, et al. Problems and prospects of pest control of grain storage in grain depot[J]. Cereal and Food Industry, 2014, 21(3): 82-85. (in Chinese with English abstract)
[3] 耿森林,尚志遠. 倉儲糧食中害蟲活動聲的提取與頻譜分析[J]. 西南師范大學學報,2005,30(6):1057-1060. Geng Senlin, Shang Zhiyuan. The sampling of the inset activity sound in the storage grain and its frequency spectrum analysis[J]. Journal of Southwest China Normal University (Natural Science), 2005, 30(6): 1057-1060. (in Chinese with English abstract)
[4] 韓安太,何勇,李劍鋒. 基于無線傳感器網(wǎng)絡的糧蟲聲信號采集系統(tǒng)設計[J]. 農(nóng)業(yè)工程學報,2010,26(6):181-187. Han Antai, He Yong, Li Jianfeng, et al. Design of acoustic signal acquisition system of stored grain pests based on wireless sensor networks[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(6): 181-187. (in Chinese with English abstract)
[5] Eliopoulos P A, Potamitis I, Kontodimas D C,et al. Detection of adult beetles inside the stored wheat mass based on their acoustic emissions[J]. Journal of Economic Entomology, 2015, 108(6): 2808-2814.
[6] Singh C B, Jayas D S, Paliwal J, et al. Identification of insect-damaged wheat kernels using short-wave near-infrared hyperspectral and digital colour[J]. Computers and Electronics in Agriculture, 2010, 73(2): 118-125.
[7] Chelladurai V, Karuppiah K, Jayas D S, et al. Detection of(F.) infestation in soybean using soft X-ray and NIR hyperspectral imaging techniques[J]. Journal of Stored Products Research, 2014, 57(1): 43—48.
[8] 張紅濤,毛罕平,劇森,等. 基于胚部區(qū)域特征的麥粒姿態(tài)自動識別[J]. 農(nóng)業(yè)工程學報,2014,30(14):163-169. Zhang Hongtao, Mao Hanping, Ju Sen, et al. Automatic posture recognition of wheat kernels based on germ features[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(14): 163-169. (in Chinese with English abstract)
[9] Shi Weiya, Jiao Keke, Liang Yitao, et al. Efficient detection of internal infestation in wheat based on biophotonics[J]. Journal of Photochemistry & Photobio-logy, B: Biology, 2016, 106: 408.
[10] Anup S. Real-time 3D visualization and quantitative analysis of internal structure of wheat kernels[J]. Journal of Cereal Science, 2015, 63(1): 81-87.
[11] Guelpa A, Plessis A D, Manley M. A high-throughput X-ray micro-computed tomography (CT) approach for measuring single kernel maize () volumes and densities[J]. Journal of Cereal Science, 2016, 69: 321-328.
[12] 陳樹人,徐李,尹建軍,等. 基于Micro-CT圖像處理的稻谷內(nèi)部損傷定量表征與三維重構[J]. 農(nóng)業(yè)工程學報,2017,33(17):144-151. Chen Shuren, Xu Li, Yin Jianjun, et al. Quantitative characterization of grain internal damage and 3D reconstruction based on Micro-CT image processing[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(17): 144-151. (in Chinese with English abstract)
[13] 劉大同,王忠,閆大偉,等. 作物籽粒中水分運輸路徑及其可視化研究進展[J]. 植物生理學報,2017(11):1947—1954. Liu Datong, Wang Zhong, Yan Dawei, et al. Advances in the pathway and visualization study of water transport in grain[J]. Plant Physiology Journal, 2017(11): 1947-1954. (in Chinese with English abstract)
[14] 張紅濤,胡玉霞,譚聯(lián),等. 一種基于Micro-CT的單籽粒谷物內(nèi)部蟲害檢測方法: CN107610122A[P]. 2018-01-19.
[15] 張會娜,呂建華,白旭光,等. 極端低溫處理對玉米象保護酶活性的影響[J]. 河南工業(yè)大學學報:自然科學版,2015,36(5):1-6. Zhang Huina,Lv Jianhua,Bai Xuguang, et al. Effects of extremely low-temperature exposure on specific activities of protective enzymes in[J]. Journal of Henan University of Technology: Natural Science Edition, 2015, 36(5): 1-6. (in Chinese with English abstract)
[16] 霍鳴飛,呂建華,王殿軒,等. 7種主要儲糧害蟲耐低溫能力研究[J]. 河南工業(yè)大學學報(自然科學版),2017,38(4):101-105, 112. Huo Mingfei,Lv Jianhua,Wang Dianxuan, et al. The study on the cold tolerance of seven main stored grain insects[J]. Journal of Henan University of Technology(Natural Science Edition), 2017, 38(4): 101-105,112. (in Chinese with English abstract)
[17] 汪萍. EPS泡沫塑料/鋼絲復合板的加工應用技術[J]. 塑料科技,2002(6):14-17. Wang Ping. Application and process technology of EPS foamed Plastic/Steel wire clad slab[J]. Plastics & Technology, 2002(6): 14-17. (in Chinese with English abstract)
[18] 張越,萬業(yè)達,何岸葦,等. 不同管電壓下周圍結構對CT值測量影響的研究[J]. 天津醫(yī)科大學學報,2013,19(3):199-202. Zhang Yue, Wan Yeda, He Anwei, et al. Influence of the surrounding structures to the CT values measurement at different tube voltage[J]. Journal of Tianjin Medical University, 2013, 19(3): 199-202. (in Chinese with English abstract).
[19] 代秋聲,徐品,邢曉曼. CTX射線能譜濾過器的優(yōu)化設計[J]. CT理論與應用研究,2011,20(3):331—338. Dai Qiusheng, Xu Pin, Xing Xiaoman. Optimized design of X-ray spectrum filter for CT[J]. CT Theory and Applications, 2011, 20(3): 331-338. (in Chinese with English abstract)
[20] 歐陽斌,丘敏敏,鐘嘉健,等. CT掃描及重建參數(shù)對放療圖像質(zhì)量影響的研究[J]. 中國醫(yī)藥導報,2017,14(1):4-7. Ouyang Bin, Qiu Minmin, Zhong Jiajian, et al. Effect of CT scanning and reconstruction parameters on the quality of imaging for radiation therapy[J]. China Medical Herald, 2017, 14(1): 4-7. (in Chinese with English abstract)
[21] 胡君杰,馬晨欣,閆鑌. CT圖像重建中濾波函數(shù)的優(yōu)化[J]. CT理論與應用研究,2013,22(1):85-92. Hu Junjie, Ma Chenxin, Yan Bin. Optimization of filter function in CT image reconstruction[J]. CT Theory and Applications, 2013, 22(1): 85-92. (in Chinese with English abstract)
[22] 武耀威. Micro-CT工作電壓電流及曝光時間設置范圍研究[D]. 保定:河北大學,2015. Wu Yaowei. The Study on Setting Range of Micro-CT Operating Voltage, Current and Exposure Time[D]. Baoding: Hebei University, 2015. (in Chinese with English abstract)
[23] 王艷紅. 基于應變場強法對焊接鋼結構的疲勞壽命評估[D]. 大連:大連理工大學,2012. Wang Yanhong. Heath Monitoring and Evaluation of Fatigue Life for the Existing Bridge[D]. Dalian: Dalian University of Technology, 2012. (in Chinese with English abstract)
[24] 王朝壯,王鑫,王恩敏,等. 不同厚度CT圖像重建的DRR對射波刀治療頭部腫瘤精度的影響[J]. 中國醫(yī)學物理學雜志,2017,34(9):882—886. Wang Chaozhuang, Wang Xin, Wang Enmin, et al. Effect of different-thickness CT-based digitally reconstructed radiograph on the accuracy of cyberknife for head tumor[J]. Chinese Journal of Medical Physics, 2017, 34(9): 882-886. (in Chinese with English abstract)
[25] 韓綠化,毛罕平,胡建平,等. 基于Micro-CT的穴盤苗夾取結構損傷行為檢測方法和裝置: CN105869187A[P]. 2016-08-17.
[26] Feldkamp L A, Davis L C, Kress J W. Practical cone-beam algorithm[J]. Journal of the Optical Society of America A, 1984, 1(6): 612-619.
[27] Materialise Inc. Medical Image Segmentation/Anatomical Analysis/Materialise. [EB/OL]. 2017-12-10[2018-05-09]. https://www.materialise.com/zh-hans/medical/mimics-innovation-suite/medical-image-segmentation
[28] 李孝林. 基于CT圖像應用Mimics軟件快速構建人體胸腰段骨骼有限元模型[J]. 中國組織工程研究與臨床康復,2009,13(39):7619-7622. Li Xiaolin. Reconstructing a bone finite element model of human thoracolumbar spine based on CT images by using Mimics software[J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2009, 13(39): 7619—7622. (in Chinese with English abstract)
[29] 樊文勃,趙凱,崔斌,等. 逆向工程軟件Mimics在復雜性Cotton骨折手術治療中的應用研究[J]. 中國數(shù)字醫(yī)學,2017,12(6):73-75. Fan Wenbo, Zhao Kai, Cui Bin, et al. Application and study of the reverse engineering software Mimics in the surgical treatment of complicated Cotton fractures[J]. China Digital Medicine, 2017, 12(6): 73-75. (in Chinese with English abstract)
[30] 杜雨. 《Mimics操作指南》漢譯實踐報告[D]. 哈爾濱:哈爾濱師范大學,2018. Du Yu. A Report on the Translation of Mimics Medical Reference Guide[D]. Harbin: Harbin Normal University, 2018. (in Chinese with English abstract)
Research on changes of insect infestation in wheat grain for Micro-computed tomography
Zhang Hongtao1, Pei Zhenyu1, Zhang Xiaodong2, Tan Lian1, Chang Yan1, Zhu Yang1
(1.450011,; 2.212013,)
The accurate detection about early insect pest insidegrains can determine the infection of the grain in advance, which has great significant for developing reasonable control measures. This paper proposed a method for non-destructive detection of early infestation of wheat kernels based on Micro-CT system.The 3rd, 9th, 17th, 22nd and 28th day after the mixture of Sitophilus oryzae Linne and the perfect grain, were named respectively the egg stage, the young larva stage, the elder larva stage, the pupa stage and the adult stage under the experimental conditions. A series of micro-CT projection data was randomly selected near the middle of the grain for gray scale statistics, and the oscillation amplitude and gray scale difference were used as the basis for judgment. And the optimal parameter combination of the Micro-CT grain detection system was determined to be 55 kV anode voltage and 0.1 mm aluminum filter. When the main component of the grain changed by 1-6 mm, as the thickness of the grain decreased, the average gray value of the gray cube at the equidistance from the reference surface of the grain end of the grain gradually increased. That is, when the thickness of the grain was small, the path through which the X-ray passed was short, and the average gray value of the obtained projected image was increased. The change of the length of the X-ray through the path of the wheat grain caused a change in the average gray value of the projected image of the grain, and the shorter the path through which the X-ray passed, the larger the average gray value of the projected image. The aspect ratio of the grain was 1.53-4.17. When 360° rotation imaging, the different attitudes during imaging had a great influence on the length of the X-ray passing through its path. In the two-dimensional projection imaging of wheat grain, as the angle between the long axis of the grain and the rotating table increased, the average path length of the X-ray through the grain decreased, and the rate of change of the path length decreased, therefore the average gray value of the projected image increased and improved the consistency of the grain projection imaging. As a result, it was determined that the optimum scanning angle was that the long axis of the grain is oriented at 90° to the rotating table. Statistics the projection data of the infected grains in tests, through the slice data reconstructed by FDK algorithm, it could be seen that, the cross-sectional appearance of the grain image changed from a single circle to an oval shape and then to a multiple combination of circle or oval shape, while the spacing between the rice and wormholes expanded gradually, and the wormholes erode from the epidermis to the grain groin and then expanded around epidermis. The three-dimensional visualization data drawn by Mimics platform showed that, during the development of the grain image, the appearance of the grain image changed from rod to ellipsoid and then each organ developed, when the volume of the grain image arrived to its maximum in the pupa stage and the wormhole gradually extended from the epidermis to the center of the grain and eventually extended through the whole grain. The results showed that the non-destructive testing using Micro-CT system could accurately express the changes of the internal microstructure of wheat grains, and provided evidences for the study of early infective grains.
grain; parameter extraction; insect control; position effect; infection change; Micro-CT
張紅濤,裴震宇,張曉東,譚 聯(lián),常 艷,朱 洋. 基于Micro-CT的麥粒內(nèi)害蟲侵染研究[J]. 農(nóng)業(yè)工程學報,2019,35(3):274-280. doi:10.11975/j.issn.1002-6819.2019.03.034 http://www.tcsae.org
Zhang Hongtao, Pei Zhenyu, Zhang Xiaodong, Tan Lian, Chang Yan, Zhu Yang. Research on changes of insect infestation in wheat grain for Micro-computed tomography[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(3): 274-280. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.03.034 http://www.tcsae.org
2018-08-27
2019-01-09
國家自然科學基金資助項目(31671580);河南省科技攻關項目(162102110112) ;華北水利水電大學第九屆研究生創(chuàng)新課題(YK2017-05)
張紅濤,博士,教授,主要從事圖像識別、計算機視覺等方面的研究。Email:39583633@qq.com
10.11975/j.issn.1002-6819.2019.03.034
TP391.4;S512.1+1
A
1002-6819(2019)-03-0274-07