国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

電站尾水渠內(nèi)魚道進口位置布局

2019-03-05 04:05:10李廣寧孫雙科郄志紅郭子琪柳海濤鄭鐵剛孫娟娟
農(nóng)業(yè)工程學報 2019年24期
關(guān)鍵詞:尾水渠過魚魚道

李廣寧,孫雙科,郄志紅,郭子琪,,柳海濤,鄭鐵剛,孫娟娟

電站尾水渠內(nèi)魚道進口位置布局

李廣寧1,孫雙科1,郄志紅2,郭子琪1,2,柳海濤1,鄭鐵剛1,孫娟娟3

(1. 中國水利水電科學研究院流域水循環(huán)模擬與調(diào)控國家重點實驗室,北京 100038;2. 河北農(nóng)業(yè)大學城鄉(xiāng)建設(shè)學院,保定 071001;3. 湖北省水利水電規(guī)劃勘測設(shè)計院,武漢 430064)

電站尾水渠是上溯魚類較為理想的聚集場所,利用電站尾水渠合理布置魚道進口,是目前大中型河流魚道建設(shè)中的研究熱點之一。該文通過數(shù)值模擬,結(jié)合魚類游泳能力,對利用電站尾水誘魚的魚道進口布置進行研究。結(jié)果表明:機組運行方式、魚道進口位置與出流方向均對魚道進口誘魚水流產(chǎn)生較大影響。機組運行方式?jīng)Q定了尾水渠內(nèi)主流的位置,并在主流兩側(cè)形成多個回流區(qū)?;亓鲄^(qū)水流的旋轉(zhuǎn)方向和位置對魚道進口誘魚水流的影響較大,魚道進口的誘魚水流動量較小,其出流方向應與回流區(qū)水流方向一致,并可根據(jù)電站運行方式,設(shè)置多個魚道進口。主流與回流區(qū)之間的過渡區(qū)域是布置魚道進口的重點區(qū)域。該研究結(jié)果可為優(yōu)化改進大中型河流魚道進口設(shè)計提供重要參考。

魚道;流場;數(shù)值模擬;尾水渠;誘魚水流;出流方向;機組運行方式

0 引 言

魚道工程是洄游魚類克服水頭差,實現(xiàn)上溯的主要措施之一,在國內(nèi)大中型水利工程中廣泛應用。魚道工程的設(shè)計主要包含2個方面的問題:一是魚道內(nèi)部布置體型對魚類上溯行為的影響[1],二是魚道進口布置對集魚、誘魚效果的影響[2]。在魚道布置體型研究方面[3-6],國內(nèi)外許多學者采用室內(nèi)試驗、數(shù)值模擬、原型觀測等方法,結(jié)合魚類洄游習性,提出了一系列適宜魚類上溯的布置體型,及時滿足了實際工程需要[7-9]。在魚道進口誘魚研究方面,目前國內(nèi)外公認最經(jīng)濟有效的方法是在魚道進口形成誘魚水流[10],利用魚類趨流性將其吸引至魚道內(nèi)[11]。因此,魚道進口水流既是吸引魚類的手段,又是魚類進入魚道所必須克服的障礙,其流速以大于目標魚類的感應流速,又小于該魚類的臨界流速為宜[12,13]。

同時,誘魚水流還應該與環(huán)境流場相互作用形成穩(wěn)定、貫通的,并與目標魚類的游泳能力相適應的上溯通道。由此可見,電站尾水渠內(nèi)魚道進口的布置方案與尾水渠內(nèi)的流場均對魚道進口的誘魚效果產(chǎn)生較大的影響。

大中型河流中,魚道進口的工程尺度通常相對較小[14],且設(shè)計流量普遍偏低,往往造成誘魚水流動量不足、覆蓋范圍較小,誘魚效果欠佳[15]。盡管如此,在實際工程中發(fā)現(xiàn),電站尾水渠是魚類較為理想的聚集場所,如湖北省興隆樞紐工程和崔家營樞紐工程[16]、浙江省小溪灘電站[17]、楠溪江供水工程[18]等均有大量魚類在尾水渠內(nèi)聚集,在此布設(shè)魚道進口具有較好的應用前景。然而,當魚道進口設(shè)置在電站廠房尾水附近時,水輪機的下泄水流又容易使誘魚水流變得模糊[19,20],從而降低魚道進口誘魚效率,如美國Pawtucket工程[21],盡管在尾水渠內(nèi)布置有魚道進口,由于位置欠佳,當電站運行時,流場條件惡化,使得魚類無法找到魚道進口繼續(xù)上溯。因此,如何利用電站尾水渠合理布置魚道進口,是目前大中型河流中魚道建設(shè)所面臨的關(guān)鍵問題之一。

現(xiàn)有的魚道設(shè)計導則及相關(guān)研究中,對魚道進口提出了一些基本的布置原則[22,23],但電站尾水渠內(nèi)的流場結(jié)構(gòu)復雜,魚道進口誘魚水流受到多種因素的影響,目前已有研究成果在指導魚道進口在尾水渠內(nèi)的具體布置尚缺乏針對性。本文以某大型電站尾水渠內(nèi)魚道進口布置方案為基礎(chǔ),使用軟件Flow-3D進行數(shù)值模擬,對電站尾水誘魚的魚道進口布置進行研究,評價魚道進口形成的過魚通道與下游河道的聯(lián)通效果,針對大中型河流尾水渠內(nèi)魚道進口提出布置建議。

1 數(shù)值模型及驗證

1.1 基本方程及求解方法

數(shù)值模擬采用standard湍流模型[24],該模型基本方程包括水流連續(xù)方程、動量方程、紊動能及耗散率方程。

(1)連續(xù)方程

(2)動量方程

(3)紊動能方程

(4)紊動能耗散率方程

式(1)~(6)中,為時間,s;、、為時均速度在、、方向的分量,m/s;為密度,kg/m3;、μ分別為粘性系數(shù)和紊動粘性系數(shù),m2/s;為時均壓強,Pa;為紊動能,m2/s2;為紊動能耗散率,m2/s3;G為紊動能產(chǎn)生項,各項紊流常數(shù)取值為C=0.09,σ=1.3,σ=1.0,1ε=1.44,2ε=1.92。

液體自由表面采用VOF(volume of fluid)方法[25]進行處理,模型求解采用有限體積法,二階迎風格式,壓力-速度耦合采用壓力校正法,離散方程的求解采用GMRES(generalized minimal residual)法,時間差分采用全隱格式。

1.2 研究區(qū)域及邊界條件

研究區(qū)域包括某電站廠房尾水出口、尾水渠及下游部分河道,如圖1所示。在電站1號機組尾水出口右側(cè),布置有1#魚道進口;在2號與3號機組之間尾水出口隔墩上,布置2#魚道進口;兩個魚道進口的出流速度均設(shè)定為1 m/s,出流方向均與壩軸線平行并指向左岸,兩個魚道進口的水深均大于1 m,以保證垂向水深滿足過魚要求。

圖1 研究區(qū)域平面布置、魚道進口布置及出流方向

利用數(shù)學模型研究各種運行條件下魚道進口過魚通道與誘魚水流的變化規(guī)律。人工建筑物及河道天然地形采用嵌套加密的矩形網(wǎng)格,坐標與壩軸線平行,坐標與壩軸線垂直,坐標代表高程。魚道出口附近網(wǎng)格尺寸為0.1 m,其余部位網(wǎng)格尺寸從0.3 m到1 m不等,網(wǎng)格總數(shù)約72萬,研究區(qū)域三維數(shù)值模型如圖2所示。

圖2 研究區(qū)域三維數(shù)值模型

電站機組尾水出口為模型入流邊界,依據(jù)計算工況不同,設(shè)定不同進流流量;自電站機組尾水出口向下游1.2 km處河道斷面為模型出口,根據(jù)水位-流量關(guān)系及運行工況設(shè)定水位;周邊固壁滿足無滑移條件;液面為自由水面。

1.3 模型驗證

在前期的研究中,針對某電站尾水渠(圖3)流場進行了物理模型試驗研究,幾何比尺為1∶90,主要建筑物包括上游水庫、泄水閘、消力池、防沖槽、下游河道、電站廠房等(圖4)。其中電站采用河床式廠房,共6臺機組,單機流量464 m3/s,機組尾水渠經(jīng)反坡段與下游河道銜接。模型試驗中采用電磁流量計控制流量;水位采用水位測針測量,測針最小刻度讀數(shù)為0.1 mm;流速采用多普勒電磁流速儀(ADV)進行測量,試驗中多次重復測量取平均值,測量精度為0.001 m/s。

注:X=100 m及X=160 m斷面所在的坐標系原點位于壩軸線上。

圖4 主要建筑物物理模型試驗布置

運用本文數(shù)學模型,對電站3臺機組同時運行的工況(1#+2#+3#)進行數(shù)值模擬。數(shù)學模型內(nèi)尾水渠范圍為=64~198 m,=68~213 m,針對尾水渠內(nèi)=100 m和=160 m(圖3)兩個斷面的表層(水面下1 m)流速與水面高程進行提取,并與試驗結(jié)果[26]進行對比,如圖5所示,計算值與試驗值變化趨勢一致。流速最大誤差為0.03 m/s,水面線最大誤差為5 mm。數(shù)學模型計算精度滿足本文針對魚道進口局部誘魚流場開展細化研究的要求[27,28]。

圖5 尾水渠典型斷面實測與計算值比較

2 研究方案及判別條件

2.1 過魚對象

過魚對象主要為分布在長江流域的四大家魚(青魚、草魚、鰱魚、鳙魚),河湖洄游魚類[29],性成熟個體于4—7月進行生殖洄游[30]。四大家魚在水體中的分布因習性而異[31],青魚多于中層與底層水域活動,草魚多于中層水域活動,鰱魚多于表層水域活動,鳙魚多于表層與中層水域活動。

2.2 過魚通道及誘魚水流優(yōu)劣判斷方法

過魚通道內(nèi)流速應大于目標魚類的感應流速且小于魚類臨界流速[12,13]。本文中過魚對象體長約200~500 mm,適宜過魚對象洄游上溯的流速區(qū)間主要集中于0.4~1.2 m/s[32,33]。本研究中將下游河道內(nèi)流速分為4個流速帶,分別為0~0.4、0.4~0.8、0.8~1.2及>1.2 m/s。其中,0~0.4 m/s的流速分布區(qū)域,魚類不易定位主流,為方向感較弱區(qū),不宜作為過魚通道;0.4~0.8 m/s 的流速分布區(qū)域,為魚類喜好流速區(qū)域,可以較為輕松的上溯,為最優(yōu)過魚通道區(qū)域;0.8~1.2 m/s流速分布區(qū),雖同樣在過魚對象喜好流速范圍內(nèi),但魚類上溯時需要耗費較多的能量,為輔助過魚通道;大于1.2 m/s流速區(qū),流速大于過魚對象的臨界流速,該區(qū)域不可作為過魚通道,為流速屏障區(qū)[34]。

本文魚道進口誘魚水流的優(yōu)劣按以下標準判斷:1)誘魚水流覆蓋范圍較大;2)誘魚流速滿足魚類上溯要求;3)誘魚水流與河流中的魚類上溯通道相互連通;4)魚道進口具有足夠的水深。

3 計算結(jié)果及分析

3.1 尾水渠與河流之間的過魚通道

電站機組運行時魚類進入電站尾水渠的現(xiàn)象已被多個實踐工程所證實,但關(guān)于洄游魚類如何進入尾水渠尚缺定論。本文通過分析表1所示工況下尾水渠與下游河道間的過魚通道,對該問題進行說明。

表1 不同運行工況下的流量與尾水渠水位

單臺機組運行時,尾水出流占據(jù)尾水渠的部分面積,主流流速較高(>1.2 m/s),形成流速屏障;兩側(cè)流速適中(0.4~1.2 m/s),可形成過魚通道,并自尾水渠一直連通至下游河道。河道中的魚類往往被發(fā)電尾水吸引向尾水渠方向聚集,并可沿主流兩側(cè)的過魚通道上溯至尾水渠內(nèi),直到機組尾水出口附近。如,1#機組運行時,主流靠近尾水渠右岸,左側(cè)過魚通道自尾水渠一直連通至下游河道(圖6a、6b),6#機組運行時,在主流右側(cè)形成過魚通道(圖6c、6d)。河流內(nèi)的洄游魚類沿尾水主流某一側(cè)的過魚通道上溯至尾水出口附近的概率較大。

多臺機組運行時,雖然尾水出流占據(jù)了尾水渠內(nèi)較大面積,但是在主流的兩側(cè)仍然可以形成過魚通道,并與下游河道相連。如,1#+2#+3#機組運行時,主流靠近尾水渠右半部分,主流流速較高(>1.2 m/s),主流左側(cè)形成過魚通道(圖6e、6f)。4#+5#+6#機組運行時,在主流右側(cè)形成過魚通道(圖6g、6h)。由此可知,當過魚通道貫穿整個尾水渠并與下游河道相連通時,洄游魚類可沿過魚通道上溯至機組尾水出口附近。

由以上分析可見,當尾水渠與河流之間存在適宜于魚類洄游的過魚通道時,魚類能順利上溯至機組尾水出口附近;當不存在過魚通道時(圖6i、6j),魚類仍可上溯至閘壩下游消力池,伺機進入尾水渠。

注:圖中坐標原點位于壩軸線上尾水渠右側(cè)64m處,X坐標軸指向下游為正向,Y坐標軸指向左岸為正向。綠色區(qū)域為最優(yōu)過魚通道,黃色區(qū)域為輔助過魚通道,紅色區(qū)域為流速屏障。下同。

3.2 尾水渠內(nèi)流場及過魚通道

單臺機組運行時,機組出流對誘魚水流形成兩種典型的影響方式。一種是,尾水出流導致魚道出口附近形成回流區(qū),誘魚水流與回流區(qū)的水流方向相同,兩股水流匯合,誘魚水流覆蓋范圍加大,過魚通道沿水流方向延長。如2#和3#機組分別單獨運行時的1#魚道進口處的過魚通道。另一種是,尾水出口位于魚道進口的外部,誘魚水流難以穿透尾水出流,從而改變方向并與主流融合,過魚通道沿主流邊緣延伸至下游。如1#機組單獨運行時的1#魚道進口;3#機組單獨運行時的2#魚道進口處的過魚通道,如圖7所示。

多臺機組運行時,尾水渠內(nèi)形成具有多個回流區(qū)的復雜流場結(jié)構(gòu),其影響誘魚水流的方式與單臺機組類似,如圖8所示。如,工況2#+4#機組、2#+5#機組、3#+4#機組運行時,1#魚道進口的誘魚水流與回流方向相同,兩股水流匯合,覆蓋范圍得到加強;又如,3#+5#機組、3#+6#機組運行時,機組尾水出口正好位于2#魚道進口的外部,誘魚水流與主流合并。特別的,當誘魚水流出流方向與旋轉(zhuǎn)水流方向相反時,誘魚水流往往被抑制,覆蓋范圍減小。如,工況2#+4#機組運行、2#+5#機組運行時,2#魚道進口的誘魚水流與回流方向相反,誘魚水流被部分抵消,過魚通道變短。

3.3 魚道進口影響因素分析及布置建議

魚道進口的出流方向、出流位置以及機組運行方式均對魚道進口誘魚水流產(chǎn)生較大影響(表2)。機組運行方式不僅決定了尾水渠內(nèi)主流的位置,同時還形成了多個回流區(qū),其旋轉(zhuǎn)方向和位置對誘魚水流的影響較大。當魚道進口的誘魚水流與回流區(qū)的旋轉(zhuǎn)水流方向相一致時,誘魚水流往往被加強,從而增加其覆蓋范圍。當魚道進口的誘魚水流與回流的旋轉(zhuǎn)水流方向相矛盾時,往往被迫改變水流方向,其影響范圍大大減小。即使魚道進口的誘魚水流的流速相對較高,但是由于誘魚水流的動量較小,依然難以穿透回流區(qū)。

圖7 單機運行典型過魚通道

圖8 兩臺機組運行典型過魚通道

通過分析尾水渠內(nèi)流場結(jié)構(gòu),認為尾水渠內(nèi)魚道進口布置方式可主要分為以下三類:

1)靠近邊墻的一臺機組單獨運行時,可將主流與回流區(qū)之間的過渡區(qū)域作為布置魚道進口的重點區(qū)域。此種流場結(jié)構(gòu)中,主流居于尾水渠內(nèi)正對機組出口的一側(cè),另一側(cè)較為寬闊,未形成明顯旋流,誘魚水流難以穿透尾水出流,誘魚水流適宜布置在主流邊緣的位置,從而與主流匯合,形成沿主流邊緣的過魚通道,如圖9a所示。

2)運行機組的出流位置距離邊墻有一定距離時,魚道誘魚水流出流方向應與旋轉(zhuǎn)水流方向保持一致。在此種流場結(jié)構(gòu)中,主流與邊墻間容易形成強烈的小型回流區(qū),如圖9b所示,若機組出流位置與邊墻距離進一步加大,則該回流區(qū)的直徑也增大,但是強度有一定程度減弱,即旋轉(zhuǎn)水流的流速一定程度減小,如圖9c所示,當水流沿壩軸線方向出流時,往往會獲得較長的有效誘魚范圍。

3)機組間隔運行,即兩臺運行機組之間存在不運行的機組時,兩個主流間形成兩個逆向的回流區(qū),兩個回流區(qū)水流方向相反,如圖9d所示。在此種流場結(jié)構(gòu)中,布置原則與第二類水流結(jié)構(gòu)類似,建議布置魚道進口時保證魚道誘魚水流出流方向與旋轉(zhuǎn)水流方向一致。

表2 不同機組運行方式對誘魚水流的影響

4 結(jié) 論

本文采用三維數(shù)值模擬,通過分析電站尾水誘魚的魚道進口布置、電站機組運行方式對尾水渠內(nèi)魚道進口誘魚水流的影響,對利用電站尾水誘魚的魚道進口布置進行了研究,得出以下結(jié)論:

1)電站機組運行時產(chǎn)生的水流具有較大動量,使尾水渠與河流之間產(chǎn)生適宜于魚類洄游的過魚通道,魚類可以沿此通道上溯。

2)機組運行方式對魚道進口位置的選擇影響較大。不同的運行方式下過魚通道位置有較大差異,且伴隨不同尺度、位置的回流區(qū),進口布置時應考慮其布置位置,盡可能在較多工況下使誘魚水流與過魚通道連接。

3)魚道進口誘魚水流動量較小,難以穿透尾水渠內(nèi)的回流區(qū)。當誘魚水流與回流區(qū)旋轉(zhuǎn)水流方向一致時,水流得到增強,誘魚范圍增大;當誘魚水流與回流區(qū)方向相反時,水流受到抑制,誘魚范圍減小。誘魚水流方向應與回流的方向保持一致,主流與回流區(qū)之間的過渡區(qū)域是布置魚道進口的重點區(qū)域。

[1]Rajaratnam N, Vinne G V D, Katopodis C. Hydraulics of vertical slot fishways[J]. Journal of Hydraulic Engineering, 1986, 112(10): 909-927.

[2]Li Guangning, Sun Shuangke, Liu Haitao, et al. Optimizing the entrance location for a fish pass facility with limited attraction flow in a large river: A case study of the Jinsha River, China[J]. Canadian Journal of Civil Engineering, 2019. Doi: 10. 1139/cjce-2018-0523.

[3]Liu M, Rajaratnam N, Zhu D Z. Mean flow and turbulence structure in vertical slot fishways[J]. Journal of Hydraulic Engineering, 2006, 132(8), 765-777.

[4]Kim S, Yu K, Yoon B, et al. A numerical study on hydraulic characteristics in the ice harbor-type fishway[J]. KSCE J Civil Eng, 2012, 16(2): 265-272.

[5]Marriner B A, Baki A B M, Zhu D Z, et al. Field and numerical assessment of turning pool hydraulics in a vertical slot fishway[J]. Ecological Engineering, 2014, 63: 88-101.

[6]李廣寧,孫雙科,郭子琪,等. 仿自然魚道水力及過魚性能物理模型試驗[J]. 農(nóng)業(yè)工程學報,2019,35(9):147-154. Li Guangning, Sun Shuangke, Guo Ziqi, et al. Physical model test on hydraulic characteristics and fish passing performance of nature-like fishway[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(9): 147-154. (in Chinese with English abstract)

[7]Marriner B A, Baki A B M, Zhu D Z, et al. The hydraulics of a vertical slot fishway: A case study on the multi-species Vianney-Legendre fishway in Quebec, Canada[J]. Ecological Engineering, 2016, 90, 190-202.

[8]徐體兵,孫雙科. 豎縫式魚道水流結(jié)構(gòu)的數(shù)值模擬[J]. 水利學報,2009,40(11):1386-1391. Xu Tibing, Sun Shuangke. Numerical simulation of the flow structure in vertical slot fishway[J]. Journal of Hydraulic Engineering, 2009, 40(11): 1386-1391. (in Chinese with English abstract)

[9]邊永歡,孫雙科,豎縫式魚道的水力特性研究[J]. 水利學報,2013,44(12):1462-1467. Bian Yonghuan, Sun Shuangke. Study on hydraulic characteristic of flow in the vertical slot fishway[J]. Journal of Hydraulic Engineering, 2013, 44(12): 1462-1467. (in Chinese with English abstract)

[10]Williams J G, Armstrong G, Katopodis C, et al. Thinking like a fish: A key ingredient for development of effective fish passage facilities at river obstructions[J]. River Res Appl, 2012, 28, 407-417.

[11]Cheong T S, Kavvas M L, Anderson E K. Evaluation of adult white sturgeon swimming capabilities and applications to fishway design[J]. Environmental Biology of Fishes, 2006, 77(2): 197-208.

[12]趙希坤,韓楨鍔. 魚類克服流速能力的試驗[J]. 水產(chǎn)學報,1980,4(1):31-37. Zhao Xikun, Han Zhene. Experiments on the current overcoming ability of some freshwater fishes[J]. Journal of Fisheries of China, 1980, 4(1): 31-35. (in Chinese with English abstract)

[13]Rodríguez T T, Agudo J P, Mosquera L P, et al. Evaluating vertical-slot fishway designs in terms of fish swimming capabilities[J]. Ecological Engineering, 2006, 27(1): 37-48.

[14]FAO/DVWK. Fish Passes-Design, Dimensions and Monitoring[M]. Rome: FAO, 2002.

[15]Katopodis C, Williams J G. The development of fish passage research in a historical context[J]. Ecological Engineering, 2011, 48(7), 8-18.

[16]王珂,劉紹平,段辛斌,等. 崔家營航電樞紐工程魚道過魚效果[J]. 農(nóng)業(yè)工程學報,2013,29(3):184-189. Wang Ke, Liu Shaoping, Duan Xinbin, et al. Fishway effect of Cuijiaying navigation-power junction project[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(3): 184-189. (in Chinese with English abstract)

[17]王桂華,夏自強,吳瑤,等. 魚道規(guī)劃設(shè)計與建設(shè)的生態(tài)學方法研究[J]. 水利與建筑工程學報,2007,5(12):7-12. Wang Guihua, Xia Ziqiang, Wu Yao, et al. Study on designing and building of fishway by using ecological way[J]. Journal of Water Resources and Architectural Engineering, 2007, 5(12), 7-12. (in Chinese with English abstract)

[18]史斌,王斌,徐崗,等. 浙江楠溪江攔河閘魚道進口布置優(yōu)化研究[J]. 人民長江,2011,42(1):69-71. Shi Bin, Wang Bin, Xu Gang, et al. Research on optimization of fishway entrance of sluice on Nanxi Riverin Zhejiang Proxince[J]. Yangtze River, 2011, 42(1): 69-71. (in Chinese with English abstract)

[19]Barry T, Kynard B. Attraction of adult American shad to fish lifts at Holyoke Dam, Connecticut River[J]. North American Journal of Fisheries Management, 1986, 6(2): 233-241.

[20]Larinier M, Chanseay M, Bau F, et al. The use of radio telemetry for optimizing fish pass design[C]//Aquatic Telemetry Advances and Applications: Proceedings of The Fifth Conference on Fish Telemetry Ustica. Rome, FAO, 2003.

[21]Sprankle K. Interdam movements and passage attraction of American shad in the lower Merrimack River mainstem[J]. North American Journal of Fisheries Management, 2005, 25(4): 1456-1466.

[22]國家能源局. NB/T35054—2015 水電工程過魚設(shè)施設(shè)計規(guī)范[S]. 北京:中國電力出版社,2015.

[23]汪亞超,陳小虎,張婷,等. 魚道進口布置方案研究[J]. 水生態(tài)學雜志,2013,34(4):30-34. Wang Yachao, Chen Xiaohu, Zhang Ting, et al. Study on layout scheme of fishway entrance[J]. Journal of Hydroecology, 2013, 34(4): 30-34. (in Chinese with English abstract)

[24]李廣寧,孫雙科,柳海濤,等. 仿自然魚道中卵石墻對池室水力特性改善效果[J]. 農(nóng)業(yè)工程學報,2017,33(15):184-189. Li Guangning, Sun Shuangke, Liu Haitao, et al. Improving effect of hydraulic characteristics of nature-like fishway with pools and cobblestone weirs[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(15): 184-189. (in Chinese with English abstract).

[25]Hirt C W, Nichols B D. Volume of Fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39, 201-225.

[26]李瑞清,李文峰,姚曉敏,等. 湖北碾盤山水利水電樞紐工程整體水工模型試驗研究報告[R]. 武漢:湖北省水利水電勘測設(shè)計院,2017.

[27]孫雙科,李廣寧,柳海濤,等. 金沙江上游蘇洼龍水電站過魚設(shè)施模型試驗研究報告[R]. 北京:中國水利水電科學研究院,2017.

[28]Moriasi D N, Arnold J G, Liew MWV, et al. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations[J]. Transactions of the American Society of Agricultural and Biological Engineers, 2007, 50(3): 885-900.

[29]李建,夏自強,戴會超,等.三峽初期蓄水對典型魚類棲息地適宜性的影響[J]. 水利學報,2013,44(8):892-900. Li Jian, Xia Ziqiang, Dai Huichao, et al. Effect of the Three Gorges Reservoir initial filling on downstream habitat suitability of the typical fishes[J]. Journal of Hydraulic Engineering, 2013, 44(8): 892-900. (in Chinese with English abstract)

[30]王尚玉,廖文根,陳大慶,等. 長江中游四大家魚產(chǎn)卵場的生態(tài)水文特性分析[J]. 長江流域資源與環(huán)境,2008(6):892-897. Wang Shangyu, Liao Wengen, Chen Daqing, et al. Analysis of eco-hydrological characteristics of the four Chinese farmed carps' spawning grounds in the middle reach of the Yangtze river[J]. Resources and Environment in the Yangtze Basin, 2008(6): 892-897. (in Chinese with English abstract)

[31]許承雙,艾志強,肖鳴. 影響長江四大家魚自然繁殖的因素研究現(xiàn)狀[J]. 三峽大學學報:自然科學版,2017,39(4):27-30, 59. Xu Chengshaung, Ai Zhiqiang, Xiao Ming. A review of influencing factors on natural reproduction of four major Chinese carps in Yangtze River[J]. Journal of China Three Gorges University(Natural Sciences), 2017, 39(4): 27-30, 59. (in Chinese with English abstract)

[32]熊鋒,增強船閘過魚能力的水流誘魚試驗研究及數(shù)值模擬[D]. 宜昌:三峽大學,2015. Xiong Feng. Experiment Study about Attractive Effects for Fish in Different Flow Velocity at Ship Lock Model[D]. Yichang: China Three Gorges University, 2015. (in Chinese with English abstract)

[33]熊鋒,王從鋒,劉德富,等. 松花江流域青魚、草魚、鰱及鳙突進游速比較研究[J]. 生態(tài)科學,2014,33(2):339-343. Xiong Feng, Wang Congfeng, Liu Defu, et al. Comparative study of burst swimming speed of black carp, grass carp, silver carp and bighead carp from Songhua River[J]. Ecological Science, 2014, 33(2): 339-343. (in Chinese with English abstract)

[34]鄭鐵剛,孫雙科,柳海濤,等. 基于魚類行為學與水力學的水電站魚道進口位置選擇[J]. 農(nóng)業(yè)工程學報,2016,32(24):164-170. Zheng Tiegang, Sun Shuangke, Liu Haitao, et al. Location choice of fishway entrance in hydropower project based on fish behavioristics and hydraulics[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(24): 164-170. (in Chinese with English abstract)

Arrangement of fishway entrance in power station tailrace channel

Li Guangning1, Sun Shuangke1, Qie Zhihong2, Guo Ziqi1,2, Liu Haitao1, Zheng Tiegang1, Sun Juanjuan3

(1.,,100038,; 2.,,071001,; 3.,430064,)

In large and middle rivers, the scale of the fish way entrance is relatively small, and the design discharge is really low, which often leads to insufficient momentum of the attraction flow, and induce poor attraction effect. In practice, tailrace channel of power station is an ideal gathering place for the migration fish. Therefore, how to reasonable arrange the fishway entrance in tailrace channel is one of the key problems in fishway construction in nowadays. Although, there are some basic principles for the fishway entrance layout, but they are not enough to apply because of the complexity of flow field structure in the tailrace channel. The present research results are still not effectively to guide the specific layout of the fishway entrance in the tailrace channel. In this paper, numerical simulations are used to study the flow field for the arrangement of fishway entrance in the tailrace channel, and to evaluate the connectivity of the migration corridor to downstream river. First of all, a physical model experiment is carried out to verify the numerical model, the maximum error of the flow velocity is 0.03 m/s and the maximum error of the water surface line is less than 5 mm. Then, the numerical simulation is used to analyze the fishway entrance arrangement in the tailrace of a power station, based on the typical three-dimensional flow structure and the swimming ability of the fish. The results showed that the water flow produced by the power station unit has great momentum, and a passage which is suitable for fish migration is formed between the tail water channel and the river. The inducing fish flow is greatly influenced by the operation mode of the unit, the location of the fish inlet and the outlet direction. The operation mode of the power station not only determines the location of the main stream in the tailrace, but also forms several recirculation zones on both sides of the main stream. The flow rotation direction and position in recirculation zones have great influence on the inducing fish flow. The transition region between the mainstream and the recirculation zones is the key area for the layout of the fishway entrance. The selection of the specific location should consider the swimming ability of fish, and the connectivity with the migratory passage downstream. Because the momentum of attraction flow is less than flow of the recirculation zones, the former is enhanced and the coverage range is increased when the attraction flow has the same flow direction with the recirculation zones. When the attraction flow is opposite to the flow direction of the recirculation zones, it is restrained and the cover range will be reduced. The layout design of fish entrance should be designed through the operation mode of the power unit reasonable position and outflow direction. In practice the momentum of attraction flow is usually relatively small, the direction of the attraction flow should be in accordance with the direction of the flow in recirculation zones, and the fish entrances can be arranged in multiple locations according to the operation mode of the unit. The research results will provide important reference for the layout optimization of the fishway entrance design in the large and medium-sized river.

fishways; flow field; numerical simulation; tailrace channel; attraction flow; outflow direction; operation mode of unit

李廣寧,孫雙科,郄志紅,郭子琪,柳海濤,鄭鐵剛,孫娟娟. 電站尾水渠內(nèi)魚道進口位置布局[J]. 農(nóng)業(yè)工程學報,2019,35(24):81-89.doi:10.11975/j.issn.1002-6819.2019.24.010 http://www.tcsae.org

Li Guangning, Sun Shuangke, Qie Zhihong, Guo Ziqi, Liu Haitao, Zheng Tiegang, Sun Juanjuan. Arrangement of fishway entrance in power station tailrace channel[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(24): 81-89. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.24.010 http://www.tcsae.org

2019-07-30

2019-12-06

國家自然科學基金(51709278,51679261);國家重點實驗室團隊重點項目(SKL2018ZY08);中國水科院青年研究專項(HY0145B162019,HY0145B152018)

李廣寧,高級工程師,博士,主要從事水力學研究工作。Email:lgnchina@163.com

10.11975/j.issn.1002-6819.2019.24.010

S956

A

1002-6819(2019)-24-0081-09

猜你喜歡
尾水渠過魚魚道
基于PIT遙測技術(shù)的豎縫式魚道過魚效率及魚類行為分析
蜿蜒式魚道與豎縫式魚道的水力特性對比分析
中國過魚設(shè)施數(shù)據(jù)庫框架設(shè)計初步研究
紊流特性對魚道結(jié)構(gòu)的影響
卷宗(2020年16期)2020-08-10 18:21:27
國內(nèi)外過魚設(shè)施運行效果評估與監(jiān)測技術(shù)研究綜述
假如人過魚的生活
兩種主要技術(shù)型魚道的水力特性研究進展
烏魯瓦提水利樞紐尾水渠及下游河道應急防洪工程設(shè)計思路
基于滲流場與應力場耦合分析的尾水渠施工期滲流場數(shù)值分析
岸邊式電站廠房復雜尾水渠水力學計算
西北水電(2015年3期)2015-03-16 09:18:16
隆化县| 若羌县| 莱州市| 兰州市| 兰考县| 苏尼特左旗| 青阳县| 荔波县| 乌拉特后旗| 海口市| 白沙| 青田县| 东源县| 登封市| 江陵县| 临澧县| 化州市| 武安市| 吉木乃县| 安国市| 宁晋县| 南华县| 揭阳市| 承德市| 临夏县| 永寿县| 济南市| 交口县| 清远市| 军事| 永仁县| 民和| 新化县| 怀安县| 鄂伦春自治旗| 永川市| 盐边县| 沛县| 章丘市| 建昌县| 新和县|