王傳娟,張彥群,王建東,許 迪,龔時宏,吳忠東
東北典型區(qū)覆膜滴灌春玉米節(jié)水增產(chǎn)的光合生理響應(yīng)
王傳娟1,2,張彥群1,王建東2※,許 迪1,龔時宏1,吳忠東3
(1. 中國水利水電科學(xué)研究院水利研究所,北京 100048;2. 中國農(nóng)業(yè)科學(xué)院農(nóng)業(yè)環(huán)境與可持續(xù)發(fā)展研究所,北京 100081;3. 山東理工大學(xué)資源與環(huán)境工程學(xué)院,淄博 255049)
研究覆膜滴灌條件下春玉米光合生理響應(yīng)特征,有助于從光合生理角度揭示覆膜滴灌提高作物產(chǎn)量及水分利用效率的內(nèi)因。研究設(shè)置包括覆膜滴灌(MD)、不覆膜滴灌(ND)和傳統(tǒng)對照(CK),基于2017—2018年東北典型區(qū)春玉米不同生育期葉片的光合-光響應(yīng)測定,定量比較了處理間產(chǎn)量、水分利用效率及不同生育期的生理學(xué)參數(shù)指標(biāo)的差異。研究結(jié)果表明,2017—2018年MD比CK處理分別顯著提高產(chǎn)量和水分利用效率的范圍為20.9%~22.4%和13.6%~21.6%;MD比CK處理平均提高光合能力達(dá)12.9%~22.8%,同時提高了表觀光量子效率、氣孔導(dǎo)度和比葉重,降低了13C同位素分辨率。此外,覆膜滴灌顯著影響了葉片氮含量與光合能力、氣孔導(dǎo)度與光合能力之間的相關(guān)關(guān)系,顯著提高了葉片的光合氮利用效率?;谝陨戏治?,覆膜滴灌處理下的光合參數(shù)的提高或降低是春玉米產(chǎn)量及水分利用效率提高的關(guān)鍵原因。
灌溉;光合;生理;產(chǎn)量;水分利用效率;葉片氮含量
玉米()是世界上產(chǎn)量最高、適應(yīng)性強的糧食作物[1],其營養(yǎng)價值高、增產(chǎn)潛力大,且種植面積和產(chǎn)量僅次于水稻和小麥。中國年產(chǎn)玉米量占世界第二位,而東北地區(qū)是重要的糧食產(chǎn)區(qū),該區(qū)玉米種植面積占中國的30%,是保障國家糧食安全的重要戰(zhàn)略區(qū)域[2]。覆膜滴灌由于能夠提高作物產(chǎn)量與水分利用效率成為近年來持續(xù)研究的熱點和重點[3]-[4]。眾多實踐表明,覆膜農(nóng)藝措施結(jié)合滴灌節(jié)水技術(shù),能為作物提供一個良好的生長環(huán)境,可以增加作物產(chǎn)量同時提高水分利用效率。
作物的產(chǎn)量基本上取決于光合系統(tǒng)的大小和性能[5],張彥群等[6]在華北地區(qū)的研究表明,光合參數(shù)與作物產(chǎn)量具有一定的線性相關(guān)關(guān)系。光合性能衡量指標(biāo)有光合速率、蒸騰速率、氣孔導(dǎo)度和胞間CO2濃度等[7]。作物光合性能受多種因素的影響,光合速率的提高主要與氣孔的調(diào)節(jié)有關(guān),同時,氣孔的調(diào)節(jié)又與地膜覆蓋所提供的土壤溫度和水分的增加有關(guān)。覆膜滴灌措施有效保持土壤水分和溫度[8],改變冠層輻射能量分配[9],影響土壤蒸發(fā)和植株蒸騰量之間的分配,降低蒸騰量[10],而這些參數(shù)的變化會影響作物光合的過程,從而影響作物光合參數(shù)的變化,進(jìn)而影響作物的產(chǎn)量和水分利用效率。Zhang等[11]在中國干旱區(qū)的試驗研究表明,覆膜改善了土壤水分與溫度,同時提高了作物蒸騰速率和氣孔導(dǎo)度,其中起壟半覆蓋模式顯著增加了兩季平均光合速率為12.4%。Hou等[12]研究發(fā)現(xiàn),覆膜條件處理的土豆葉片葉綠素含量、光合速率、核酮糖1、5-二磷酸羧化酶活性和葉面積指數(shù)等分別高于對照組。
盡管覆膜滴灌措施節(jié)水增產(chǎn)效果明顯且得到大力推廣[13],但目前國內(nèi)外研究主要集中于覆膜滴灌措施對土壤水分、溫度及玉米生長發(fā)育的影響[14]-[17],此外,現(xiàn)有覆膜滴灌下作物生理生態(tài)響應(yīng)機制的研究較多集中在干旱以及半干旱地區(qū)[18]。東北地區(qū)屬于光熱資源充足的半濕潤區(qū),該區(qū)的春季低溫的特點明顯,深入揭示該區(qū)覆膜滴灌措施下春玉米的光合參數(shù)指標(biāo)和生物學(xué)指標(biāo)的定量變化,對于進(jìn)一步推廣覆膜滴灌,深刻闡述國家節(jié)水增糧行動的深刻內(nèi)涵十分重要。研究基于東北地區(qū)田間定位試驗觀測,定量分析了覆膜滴灌(MD)、不覆膜滴灌(ND)和對照組(CK)之間的作物光合參數(shù)及生物學(xué)指標(biāo)的變化差異及其內(nèi)在原因,相關(guān)研究結(jié)論以期能為揭示覆膜滴灌下作物節(jié)水增產(chǎn)的光合生理響應(yīng)機理提供科學(xué)依據(jù)。
試驗在黑龍江水利科技試驗研究中心(125°45′E,45°22′N)進(jìn)行。試驗地氣候?qū)僦袦貛Т箨懶约撅L(fēng)氣候,多年平均降雨量為400~650 mm,其中80%集中在5月至9月。試驗地0~80 cm土層深度的土壤質(zhì)地為粉壤土,0~80 cm剖面的田間持水率和土壤容重分別為0.35 cm3/cm3和1.29 g/cm3。田間試驗于2017年5月至2018年10月進(jìn)行,以春玉米為研究對象,研究選用的玉米品種為東福1號。
試驗采用大壟雙行栽培模式,每壟種植2行玉米,相鄰兩壟間距130 cm,壟寬100 cm,壟高15 cm,溝底寬30 cm。研究設(shè)置覆膜滴灌(MD)、不覆膜滴灌(ND)及傳統(tǒng)對照(CK)處理,每個處理設(shè)置3個重復(fù),各小區(qū)四周各設(shè)置1 m的保護(hù)行。播種前施入基肥(氮(N)量:62 kg/hm2;P2O5:150 kg/hm2;K2O:80 kg/hm2),播種后各處理均追施總氮量230 kg/hm2,MD和ND處理小區(qū)采用文丘里施肥器追肥,分別在拔節(jié)期和抽穗期按照6∶4比例隨水追肥,CK處理在拔節(jié)期通過人工撒施追肥,CK處理無灌溉處理,通過自然降雨補充水分。
試驗期間,MD和ND處理實施充分灌水,灌水方式為地表滴灌,鋪設(shè)方式為一管兩行,0.1 MPa的工作壓力下滴頭流量為1.38 L/h,滴頭間距為30 cm,管外徑為16 cm。灌水下限統(tǒng)一設(shè)置為75%田持,灌水上限為田持,在灌水時間上設(shè)計相同,即以計劃濕潤層土壤含水率先到達(dá)75%田持的處理為同時安排其他處理開始灌水的時間點,但各處理每次灌水定額以實際土壤含水率值為計算下限。苗期為30 cm,拔節(jié)后為50 cm,濕潤比P為0.6,灌溉水利用系數(shù)為0.95,灌水量根據(jù)式(1)計算確定
式中為灌水量,m3;為試驗小區(qū)面積,m2;為土壤濕潤層深度,m;前為灌水前土壤含水率,cm3/cm3;后為灌水后土壤含水率,cm3/cm3;P為濕潤比;為灌溉水利用系數(shù)。
在玉米苗期、拔節(jié)期、抽穗-灌漿期和成熟期,選擇典型晴天采用Li-6400便攜式光合儀進(jìn)行葉片光合-光響應(yīng)曲線測定,測定在上午9時開始,每個處理選擇生長一致的3 株玉米,苗期和拔節(jié)期測定植株最上面完全展開葉,抽穗-灌漿期和成熟期測定穗位葉上第3個葉片。測定時,葉室溫度設(shè)定為26 ℃,葉室CO2濃度設(shè)定為400mol/mol,光強設(shè)定為2 100、1 800、1 500、1 250、1 000、800、500、200、150、110、80、50、20和0mol/(m2·s),從強到弱進(jìn)行測定。
光合-光響應(yīng)曲線測定結(jié)果用非直角雙曲線方程擬合獲得相關(guān)參數(shù),進(jìn)行處理間比較分析。當(dāng)較小時,即0 <<150mol/(m2·s)時,光合速率隨著光強增大而增大,采用線性擬合得到表觀光量子效率和呼吸速率等參數(shù),確定上述參數(shù)后,進(jìn)行非直角雙曲線擬合,得到最大光合速率。非直角雙曲線模型[19]的表達(dá)式為
式中A為植物的凈光合速率,mol/(m2·s);為表觀光量子效率(無量綱);為光合有效輻射,mol/(m2·s);max為最大光合速率(photosynthetic capacity),又稱光合能力,mol /(m2·s);為曲線的曲率(無量綱),曲率越大,曲線的彎曲程度越大;R為暗呼吸速率,mol/(m2·s)。
葉片光合測定完畢后將葉片取樣,測定葉子的長和寬,并乘以轉(zhuǎn)換系數(shù)0.75得到實際葉面積,105 ℃殺青,80 ℃下烘干至恒量,稱取干質(zhì)量,干質(zhì)量與葉面積之比為比葉重(specific leaf weight,SLW,kg/m2)。
將測定完SLW的葉片去掉葉脈,烘干,球磨儀磨碎,送檢。檢測機構(gòu)為中國農(nóng)業(yè)大學(xué)穩(wěn)定同位素比率質(zhì)譜實驗室,采用穩(wěn)定同位素比率質(zhì)譜儀(DELTA V Advantage isotope ratio mass spectrometer,Thermo Fisher Inc,USA)進(jìn)行穩(wěn)定同位素13C和N百分含量的測定。13C分辨率(Δ)根據(jù)穩(wěn)定同位素比率質(zhì)譜儀測定結(jié)果計算。首先檢測樣品的13C與12C比率,再與國際標(biāo)準(zhǔn)物(Pee Dee Belnite 或PDB)比對后計算出樣品的13sample值,已知空氣該值為δ13Cair=?8‰,通過式(3)計算樣品的13C分辨率[20]
收獲時,每個小區(qū)選取1處樣方進(jìn)行考種,每個樣方面積為3 m×2.6 m,分別測量果穗數(shù)、鮮質(zhì)量、穗長以及穗粒數(shù),風(fēng)干后脫粒,測定百粒質(zhì)量和每株玉米的籽粒重,并折算到小區(qū)的產(chǎn)量(Yield,Y,t/hm2),水分利用效率(water-use efficiency,WUE,kg/m3)為產(chǎn)量(Y,t/hm2)與作物總耗水(evapotranspiration,ET,mm)之比。其中,玉米生育期內(nèi)的總耗水量采用水量平衡方法計算,如公式(4)
式中為生育期蒸發(fā)蒸騰總量,mm;P為有效降水量,mm;為灌水量,mm;為地表徑流損失,mm。本研究地區(qū)地勢平坦,且滴灌未形成地表積水,因此可忽略;是播種前和收獲后0~100 cm深度土壤平均含水率的變化量,mm;是滲漏損失,mm,受土壤質(zhì)地及灌水定額影響:(1)當(dāng)100 cm土壤蓄水量小于或等于田間持水量(WFC)時,D= 0;(2)當(dāng)100 cm土壤貯水量大于WFC時,D=W-WFC;(3)研究區(qū)100 cm平均田間持水量為0.35 cm3/cm3,W為第天土壤蓄積量,mm[21]-[22]。
光合-光響應(yīng)曲線的擬合均采用SPSS 18.0軟件的自定義非線性擬合進(jìn)行,參數(shù)確定后采用SPSS 18.0軟件的單因素方差分析及Duncan多重比較來確定各處理光合特征等參數(shù)的均值差異。在分析光合參數(shù)與葉片氮含量關(guān)系時,首先采用SPSS 18.0軟件的協(xié)方差分析確定不同處理之間回歸直線斜率和截距是否存在顯著差異,若差異顯著,則采用Excel軟件將覆膜與不覆膜處理數(shù)據(jù)分別進(jìn)行線性回歸分析,若差異不顯著,則將所有處理統(tǒng)一回歸分析,確定回歸方程和統(tǒng)計參數(shù)。
2.1.1 最大光合速率差異
圖1給出了2017年和2018年各生育期的光合-光響應(yīng)參數(shù)光合能力(photosynthetic capacity,max)的差異比較結(jié)果。2017年和2018年max隨生育期的推進(jìn)先增加后逐漸減小,在拔節(jié)期達(dá)最高值。整體來看,各處理的max在13.4~63.6mol/(m2·s)之間波動。2017年4次測量有3次顯著性差異,苗期、拔節(jié)期和抽穗-灌漿期的測定中,MD比CK分別顯著高出32.0%、19.2%和29.7%;2018年的4次測量中有2次顯著性差異,其中拔節(jié)期和成熟期MD比CK分別顯著高出19.7%和21.5%。從全生育期平均值來看,2017年和2018年MD處理比ND的分別提高1.3%和4.1%,比CK處理分別提高22.8%和12.9%。由此可見,覆膜滴灌能夠提高作物的max值。
注:不同小寫字母表示0.05水平上差異顯著,MD、ND和CK分別代表覆膜滴灌處理、不覆膜滴灌處理和對照處理,下同。
Notes: Different lowercase letters indicate statistically significant differences at<0.05; MD, ND and CK represent mulched drip irrigation, non-mulched drip irrigation and traditional treatment respectively, the same below.
圖1 2017和2018年不同處理間光合能力max的處理間差異
Fig.1 Photosynthetic capacitymaxunder different treatment in year of 2017 and 2018
2.1.2 表觀光量子效率差異
圖2給出了2017年和2018年各生育期的光合-光響應(yīng)參數(shù)表觀光量子效率(apparent quantum yield,α)的差異比較結(jié)果。整體來看,2017年和2018年各處理的α在0.026 3~0.067 2之間波動,兩年MD處理α平均值比CK分別提高了15.3%和7.5%。2017年4次測量中有2次顯著性差異,苗期和拔節(jié)期的MD處理下的α值分別比CK顯著高出26.1%和24.6%,MD和ND無顯著性差異。2018年在苗期有1次顯著性差異,MD處理下的α值比CK顯著高出12.5%。由此來看,覆膜滴灌能夠提高春玉米生育前期的α值。
圖2 2017和2018年不同處理間表觀光量子α的處理間差異
2.1.3 氣孔導(dǎo)度差異
圖3為2017年和2018年不同處理間的氣孔導(dǎo)度值(stomatal conductance,g)。整體看g的值隨生育期推進(jìn)呈現(xiàn)先增加后減小趨勢,在拔節(jié)期達(dá)到最高值。2017年和2018年氣孔導(dǎo)度的變化范圍分別為0.12~0.50 mol/(m2·s)和0.07~0.47 mol/(m2·s)。2017年有3次顯著性差異,在苗期、拔節(jié)期和成熟期間MD處理比CK 分別顯著高49.1%、24.8%和57.1%;2018年有2次顯著性差異,其中苗期MD比ND和CK分別顯著高出34.9%和28.1%,成熟期MD比CK顯著高出36.6%。比較2017年和2018年全生育期氣孔導(dǎo)度的平均值,MD比CK分別提高27.2%和15.7%。由此可見,覆膜滴灌提高了葉片氣孔導(dǎo)度值。
圖3 2017和2018年各生育期氣孔導(dǎo)度(gs)的處理間差異
2.1.4 比葉重差異
2017年和2018年各生育期處理間比葉干重差異比較如圖4。整體來看,比葉重(specific leaf weight,SLW)隨生育期推進(jìn)呈現(xiàn)先增加后減小的趨勢,在抽穗-灌漿期達(dá)到最大值。2017年和2018年SLW的波動值范圍分別為0.040~0.087 kg/m2和0.062~0.084 kg/m2。2017年的有2次顯著性差異,苗期和抽穗-灌漿期的MD比CK處理分別顯著高出15.5%和10.4%,比ND分別高出9.4%和5.1%。2018年有3次顯著性差異,苗期、拔節(jié)期和抽穗-灌漿期的MD比CK分別顯著高12.9%、17.0%和10.0%, MD比ND分別高5.7%、11.9%和5.8%。比較2017年和2018年全生育期SLW的平均值,MD比CK分別提高5.0%和14.0%。綜上,覆膜滴灌提高了玉米生育期的SLW,即覆膜滴灌提高單位面積的葉片質(zhì)量,而這有利于max的提升,進(jìn)而有助于光合效率的提升。
2.1.513C同位素分辨率(Δ)差異
2017年和2018年各生育期處理間13C同位素分辨率(Δ)差異比較如圖5。Δ隨著生育期的推進(jìn)逐漸升高,覆膜能夠降低生育期的Δ值。2017年抽穗-拔節(jié)期Δ處理間差異顯著,MD比CK低13.6%,ND比CK低5.0%。2018年苗期和拔節(jié)期Δ值處理間有差異顯著,MD比ND分別顯著低8.6%和11.0%,比CK分別顯著低7.1%和15.5%,抽穗-灌漿期的MD比ND減小1.1%,但成熟期與2017年相似,MD處理的Δ值顯著大于ND和CK處理,全生育期MD平均比ND降低6.1%。
圖4 2017和2018年各生育期比葉重(SLW)的處理間差異
圖5 2017和2018年各生育期13C同位素分辨率(Δ)的處理間差異
覆膜滴灌能夠顯著提高玉米的產(chǎn)量及產(chǎn)量構(gòu)成要素和水分利用效率(water-use efficiency,WUE)(表1)。與CK相比,2017年MD和ND的產(chǎn)量分別提高了20.9%和17.6%;MD的處理下的WUE比ND和CK分別顯著提高13.6%和10.9%;MD比ND處理的作物騰發(fā)量(evapotranspiration,ET)減小9.7%。2018年MD和ND的產(chǎn)量分別比CK提高22.4%和15.3%;MD處理的WUE比ND和CK分別顯著提高21.6%和30.4%;MD比ND處理的ET減小12.6%。另外,對比2017—2018年各處理的產(chǎn)量構(gòu)成要素,百粒質(zhì)量的MD比CK處理增加了12.8%~22.7%;穗粒數(shù)MD比CK處理增加了3.8%~4.4%。
表1 2017年和2018年東北地區(qū)玉米不同處理間產(chǎn)量(Y)、作物騰發(fā)量(ET)和水分利用效率(WUE)等的變化
注:表中數(shù)據(jù)為平均值±標(biāo)準(zhǔn)差,不同字母表示處理間差異顯著(<0.05)。
Note: Data in the table are mean value ± standard deviation, different lowercase letters in a column mean significant difference at the 5% level.
2.3.1 光合參數(shù)與葉片N含量關(guān)系
2017年和2018年的max與葉片N含量(leaf nitrogen content,mass)顯著線性相關(guān)(圖6a),覆膜與滴灌措施一定程度上影響了二者的相關(guān)關(guān)系。2017年MD、ND與CK處理斜率無顯著性差異,各處理截距有顯著性差異(<0.001),MD、ND和CK的回歸直線決定系數(shù)(2)分別為0.47、0.47和0.47。葉片N含量相同時,MD和ND處理的max值高于CK處理。
2.3.2 光合參數(shù)與氣孔導(dǎo)度的關(guān)系
2017—2018年的max與g呈顯著線性相關(guān)(圖6b),覆膜與滴灌處理影響了二者的相關(guān)關(guān)系。2017年MD、ND與CK處理斜率無顯著性差異,截距有顯著性差異(=0.007),MD、ND和CK的回歸直線決定系數(shù)(2)分別為0.55、0.67和0.58,擬合效果較好。覆膜與滴灌使得回歸直線斜率的減小,同樣的氣孔導(dǎo)度條件下,覆膜滴灌措施的葉片max值較大。
a. Amax與Nmass的關(guān)系圖 a. Relationship between Nmass and Amaxb. Amax與gs的關(guān)系圖 b. Relationship betweengsand Amax
作物生產(chǎn)實質(zhì)是干物質(zhì)量的累積,光合作用是干物質(zhì)量形成和累積的重要來源,玉米作為C4作物本身光合效率較高,其產(chǎn)量的提升一直備受關(guān)注。本研究中覆膜滴灌措施能夠保障玉米對東北地區(qū)光熱等資源的捕獲利用,促進(jìn)了葉片光合作用,進(jìn)而提高了作物產(chǎn)量和水分利用效率。一些研究結(jié)果表明,覆膜滴灌能夠提高作物的光合參數(shù)[23]。李維敏等[24]研究表明,覆膜滴灌促進(jìn)玉米的光合作用,主要是增大了玉米葉片的凈光合速率,植株蒸騰和氣孔導(dǎo)度等參數(shù)。段萌等[25]研究認(rèn)為覆膜能夠緩解由水分虧缺引起的春小麥的光合速率的下降,還可以提高氣孔導(dǎo)度、最大凈光合速率和暗呼吸速率等光合指標(biāo)。本研究中同樣驗證了該結(jié)論,2017年和2018年MD處理下光合能力比CK處理平均提高22.8%和12.9%(圖1),表觀光量子效率比CK處理平均提高15.3%和7.5%(圖2),相應(yīng)年份的作物產(chǎn)量分別顯著提高了20.9%和17.6%(表1),同時覆膜降低了滴灌條件下的作物耗水為9.7%和12.6%,達(dá)到了節(jié)水的效果。
比葉重,即單位葉面積的干物質(zhì)量,是影響作物光合作用的重要參數(shù)之一。當(dāng)SLW增大時葉片一般會增厚[26],較高的單位面積葉片N含量意味著較厚的葉片或者較高的葉肉密度,光合能力一般與SLW正相關(guān)[27]。因此,SLW與葉片N含量可以互為替代因子,用于解釋光合能力的差異。本文的研究中覆膜滴灌措施提高了各生育期的SLW,此結(jié)果從另一方面印證了覆膜滴灌能使葉片性狀向提高光合能力的方向發(fā)展。
氣孔是光合作用氣體交換的通道,而氣孔導(dǎo)度表征葉片氣孔張開的程度,氣孔導(dǎo)度增加,胞間CO2濃度提高導(dǎo)致光合速率提高[28],探尋氣孔導(dǎo)度對覆膜滴灌的響應(yīng)對于闡述作物的光合作用具有重要意義。本研究結(jié)果表明,2017年和2018年的MD處理的g比CK分別提高27.2%和15.7%,覆膜滴灌處理能夠有效的提高葉片氣孔導(dǎo)度,減少了氣孔因素對光合作用的限制,使得作物能夠有效的利用光熱和水肥等資源,促進(jìn)和保障了玉米的高產(chǎn)。
13C同位素分辨率Δ可以直接反映羧化反應(yīng)酶的效率以及CO2在葉片內(nèi)部的擴(kuò)散情況[29],反應(yīng)作物光合速率受環(huán)境因素影響的程度,是指示植物長期累積光合能力的因子,且一定程度上表征植物長期的水分利用效率[20],[30]。一些研究表明Δ是探究作物增產(chǎn)與耗水機理的關(guān)鍵參數(shù),然而,C4作物中Δ較為復(fù)雜,其值與產(chǎn)量的關(guān)系并不明確,需要進(jìn)一步研究[31]-[32]。本研究覆膜能夠降低Δ值,主要在抽穗灌漿期MD處理能夠顯著降低Δ值,對應(yīng)年份的水分利用效率及作物產(chǎn)量相應(yīng)的提高,這與Cui等[33]研究結(jié)果相一致,即葉片Δ與水分利用效率和產(chǎn)量均呈負(fù)相關(guān)關(guān)系。
根據(jù)光合參數(shù)與葉片N含量的關(guān)系圖(圖6a),葉片N含量增加,max隨著提高[34],在本研究范圍內(nèi)呈線性關(guān)系,另外發(fā)現(xiàn),相同的葉片N含量下MD和ND處理的max顯著提高,即覆膜滴灌處理的葉片的光合N利用效率得到提高。由于本研究中各處理的施肥量相同,覆膜滴灌能夠提高葉片的光合N的利用效率,一方面原因可能是覆膜下土壤水分溫度較適合根區(qū)對土壤氮的吸收轉(zhuǎn)運;另一個可能原因是,較適宜的光照資源促進(jìn)了葉片的生長,促進(jìn)了氮等養(yǎng)分向葉片的轉(zhuǎn)移,這與覆膜滴灌處理下的SLW較大的結(jié)果一致[27],[35]。
不同處理間光合參數(shù)的差異可以用葉片N含量和氣孔導(dǎo)度來解釋,不同處理間的max分別與mass和g呈顯著線性正相關(guān)關(guān)系,而且線性擬合關(guān)系受覆膜與滴灌措施的影響,覆蓋滴灌下max對葉片mass和g的敏感性增加。葉片N含量相同時,MD和ND處理的max顯著提高,即覆膜與滴灌措施使得葉片的光合N利用效率顯著提高,同樣的,相同的氣孔導(dǎo)度值對應(yīng)的葉片光合能力也得到顯著提高。葉片中的氮大部分與參與卡爾文循環(huán)的蛋白、類囊體蛋白等密切相關(guān)[36],同時對穗的發(fā)育和產(chǎn)量有重要作用。覆膜滴灌措施使得葉片N更多的參與與光合有關(guān)的蛋白合成或更多的分配到光合器官中[36],同時促進(jìn)了氣孔導(dǎo)度的提升,因此覆膜滴灌能夠提高作物光合作用。
研究基于連續(xù)2a田間試驗,分析了覆膜滴灌處理(MD)、不覆膜滴灌處理(ND)和傳統(tǒng)對照處理(CK)下作物產(chǎn)量、水分利用效率WUE以及作物關(guān)鍵光合參數(shù)指標(biāo)的差異,取得的主要結(jié)論如下:
1)MD處理顯著提高春玉米光合能力max12.9%~22.8%,提高氣孔導(dǎo)度為15.7%~27.2%,提高比葉重為5.0%~14.0%,同時降低了生育期前期的13C同位素分辨率(Δ)值。
2)MD處理提高了春玉米產(chǎn)量和水分利用效率,降低了作物耗水量,這與MD處理提高葉片的光合N利用效率,降低Δ值,從而提高光合參數(shù)max有關(guān)。
3)春玉米max分別與葉片氮含量和氣孔導(dǎo)度的線性關(guān)系結(jié)果表明,覆膜滴灌顯著提高了葉片的光合N利用效率和光合作用關(guān)鍵參數(shù)值。
[1]王罕博,龔道枝,梅旭榮,等. 覆膜和露地旱作春玉米生長與蒸散動態(tài)比較[J]. 農(nóng)業(yè)工程學(xué)報,2012,28(22):88-94. Wang Hanbo, Gong Daozhi, Mei Xurong, et al. Dynamics comparison of rain-fed spring maize growth and evapotranspiration in plastic mulching and un-mulching fields[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(22): 88-94. (in Chinese with English abstract)
[2]Liu Zhijuan. Maize potential yields and yield gaps in the changing climate of Northeast China[J]. Global Change Biology, 2012, 18(11): 3441-3454.
[3]Bi Yinli, Qiu Lang, Zhakypbek Yryszhan, et al. Combination of plastic film mulching and AMF inoculation promotes maize growth, yield and water use efficiency in the semiarid region of Northwest China[J]. Agricultural Water Management, 2018, 201, 278-286.
[4]Yu Yueyuan, Turner Neil C, Gong Yanhong, et al. Benefits and limitations to straw- and plastic-film mulch on maize yield and water use efficiency: A meta-analysis across hydrothermal gradients[J]. European Journal of Agronomy, 2018, 99, 138-147.
[5]Kossuth S V.Book reviews: Biochemical basis of plant breeding. Volume I: Carbon metabolism[J]. Forest Science, 1986, 1(4): 1096-1097.
[6]張彥群,王建東,龔時宏,等. 秸稈覆蓋和滴灌制度對冬小麥光合特性和產(chǎn)量的影響[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(12):162-169. Zhang Yanqun, Wang Jiandong, Gong Shihong, et al. Effects of straw mulching and drip irrigation scheduling on photosynthetic characteristic and yield of winter wheat[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(12): 162-169. (in Chinese with English abstract)
[7]高玉紅,??×x,徐銳,等. 不同覆膜方式對玉米葉片光合、蒸騰及水分利用效率的影響[J]. 草業(yè)學(xué)報,2012,21(5):178-184. Gao Yuhong, Niu Junyi, Xu Rui, et al. Effects of different film mulching on photosynthesis, transpiration rate and leaf water use efficiency of maize[J]. Acta Prataculturae Sinica, 2012, 21(5): 178-184. (in Chinese with English abstract)
[8]Dong Qin’ge, Yang Yuchen, Yu Kun, et al. Effects of straw mulching and plastic film mulching on improving soil organic carbon and nitrogen fractions, crop yield and water use efficiency in the Loess Plateau, China[J]. Agricultural Water Management, 2018, 201, 133-143.
[9]張彥群,王建東,龔時宏,等. 基于液流計估測蒸騰分析覆膜滴灌玉米節(jié)水增產(chǎn)機理[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(21):89-97. Zhang Yanqun, Wang Jiandong, Gong Shihong, et al. Analysis of water saving and yield increasing mechanism in maize field with drip irrigation under film mulching based on transpiration estimated by sap flow meter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(21): 89-97. (in Chinese with English abstract)
[10]Zhang Yanqun, Wang Jiandong, Gong Shihong, et al.Effects of film mulching on evapotranspiration, yield and water use efficiency of a maize field with drip irrigation in Northeastern China[J]. Agricultural Water Management, 2018, 205: 90-99.
[11]Zhang Xudong, Yang Linchuan, Xue Xuanke, et al. Plastic film mulching stimulates soil wet-dry alternation and stomatal behavior to improve maize yield and resource use efficiency in a semi-arid region[J]. Field Crops Research, 2019, 233, 101-113.
[12]Hou Fuyun, Zhang Liming, Xie Beitao, et al. Effect of plastic mulching on the photosynthetic capacity, endogenous hormones and root yield of summer-sown sweet potato () in Northern China[J]. Acta Physiologiae Plantarum, 2015, 37(8):164.
[13]王建東,龔時宏,許迪,等. 東北節(jié)水增糧玉米膜下滴灌研究需重點關(guān)注的幾個方面[J]. 灌溉排水學(xué)報,2015,34(1):1-4. Wang Jiandong, Gong Shihong, Xu Di, et al. Several aspects of the research for corn under film drip irrigation in Northeast China[J]. Journal of Irrigation and Drainage, 2015, 34(1):1-4. (in Chinese with English abstract)
[14]Bu Lingduo, Liu Jianliang, Zhu Lin, et al. The effects of mulching on maize growth, yield and water use in a semi-arid region[J]. Agricultural Water Management, 2013, 123: 71-78.
[15]Liu Yi, Li Shiqing, Chen Fang, et al. Soil water dynamics and water use efficiency in spring maize () fields subjected to different water management practices on the Loess Plateau[J]. Agricultural Water Management, 2010, 97(5): 769-775.
[16]Yang Qidong, Zuo Hongchao, Xia Xiao, et al. Modelling the effects of plastic mulch on water, heat and CO2fluxes over cropland in an arid region[J]. Journal of Hydrology, 2012, 452/453(7): 102-118.
[17]申麗霞,王璞,張麗麗. 可降解地膜對土壤溫度、水分及玉米生長發(fā)育的影響[J]. 農(nóng)業(yè)工程學(xué)報,2011,27(6):25-30. Shen Lixia, Wang Pu, Zhang Lili. Effects of degradable film on soil temperature, moisture and growth of maize[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(6): 25-30. (in Chinese with English abstract)
[18]Deng Xipeng, Shan Lun , Zhang Heping , et al. Improving agricultural water use efficiency in arid and semiarid areas of China[J]. Agricultural Water Management, 2006, 80(1/2/3): 23-40.
[19]Thornley J H M. Mathematical models in plant physiology[J]. Mathematical Models in Plant Physiology, 1976: 307-313.
[20]Farquhar Graham D, O’Leary M H, Berry Joseph A. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves[J]. Australian Journal of Plant Physiology, 1982, 9(2): 121-137.
[21]龔元石,李保國. 應(yīng)用農(nóng)田水量平衡模型估算土壤水滲漏量[J]. 水科學(xué)進(jìn)展,1995,6(1):16-21. Gong Yuanshi, Li Baoguo. Using field water balance model to estimate the percolation of soil water[J]. Advances in Water Science, 1995, 6(1): 16-21. (in Chinese with English abstract)
[22]Wang Chuanjuan, Wang Jiandong, Xu Di, et al. Water consumption patterns and crop coefficient models for drip-irrigated maize () with plastic mulching in Northeastern China[J]. Transactions of the ASABE, 2019, 62(3): 571-584.
[23]胡敏杰,姜良超,李守中,等. 覆膜與滴灌對河套灌區(qū)玉米花粒期葉片光合特征的影響[J]. 應(yīng)用生態(tài)學(xué)報,2017,28(12):3955-3964. Hu Minjie, Jiang Liangchao, Li Shouzhong, et al. Effects of different mulching and drip irrigation patterns on photosynthetic characteristics of maize leaves in the Hetao irrigation district, Inner Mongolia, China[J]. Chinese Journal of Applied Ecology, 2017, 28(12): 3955-3964. (in Chinese with English abstract)
[24]李維敏,周國興,李旭新,等. 不同覆膜方式對玉米光合特性及產(chǎn)量的影響[J]. 內(nèi)蒙古民族大學(xué)學(xué)報(自然科學(xué)版),2017,32(1):50-57. Li Weimin, Zhou Guoxing, Li Xuxin, et al. Effects of mulching methods on photosynthetic characteristics and yield of maize[J]. Journal of Inner Mongolia University for Nationalities (Natural Sciences), 2017, 32(1): 50-57. (in Chinese with English abstract)
[25]段萌,楊偉才,毛曉敏. 覆膜和水分虧缺對春小麥光合特性影響及模型比較[J]. 農(nóng)業(yè)機械學(xué)報,2018,49(1):219-227. Duan Meng, Yang Weicai, Mao Xiaomin. Effects of water deficit on photosynthetic characteristics of spring wheat under plastic mulching and comparison of light response curve models[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(1): 219-227. (in Chinese with English abstract)
[26]Poorter L, Bongers F. Leaf traits are good predictors of plant performance across 53 rain forest species[J]. Ecology, 2006, 87(7): 1733-1743.
[27]張彥群,王建東,龔時宏,等. 滴灌條件下冬小麥?zhǔn)┑霎a(chǎn)的光合生理響應(yīng)[J]. 農(nóng)業(yè)工程學(xué)報,2015,31(6):170-177. Zhang Yanqun, Wang Jiandong, Gong Shihong, et al. Photosynthetic response of yield enhancement by nitrogen fertilization in winter wheat fields with drip irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(6): 170-177. (in Chinese with English abstract)
[28]許大全. 光合作用氣孔限制分析中的一些問題[J]. 植物生理學(xué)通訊,1997,33(4):241-244. Xu Daquan. Some problems in stomatal limitation analysis of photosynthesis[J]. Plant Physiology Communications, 1997, 33(4): 241-244. (in Chinese with English abstract)
[29]Dawson T E, Mambelli S, Plamboeck A H, et al. Stable isotopes in plant ecology[J]. Annual Review of Ecology & Systematics, 2002, 33(1): 507-559.
[30]Wang Zhenchang, Kang Shaozhong, Jensen Christian R, et al. Alternate partial root-zone irrigation reduces bundle-sheath cell leakage to CO2and enhances photosynthetic capacity in maize leaves[J]. Journal of Experimental Botany, 2012, 63(3): 1145-1153.
[31]Monneveux P, Sheshshayee M Sreeman, Akhter Javed, et al. Using carbon isotope discrimination to select maize () inbred lines and hybrids for drought tolerance[J]. Plant Science, 2007, 173(4): 390-396.
[32]Kirda C, Mohamed A R A G, Kumarasinghe Kaushalya, et al. Carbon isotope discrimination at vegetative stage as an indicator of yield and water use efficiency of spring wheat ()[J]. Plant and Soil, 1992, 147(2): 217-223.
[33]Cui Ningbo, Du Taisheng, Kang Shaozhong, et al. Relationship between stable carbon isotope discrimination and water use efficiency under regulated deficit irrigation of pear-jujube tree[J]. Agricultural Water Management, 2009, 96(11): 1615-1622.
[34]Bindraban P S. Impact of canopy nitrogen profile in wheat on growth[J]. Field Crops Research, 1999, 63(1): 63-77.
[35]Li Dandan, Tian Mengyu, Cai Jian, et al. Effects of low nitrogen supply on relationships between photosynthesis and nitrogen status at different leaf position in wheat seedlings[J]. Plant Growth Regulation, 2013, 70(3): 257-263.
[36]Evans, J R. Photosynthesis and nitrogen relationships in leaves of C3 plants[J]. Oecologia, 1989, 78(1): 9-19.
Photosynthetic response of water-saving and yield-increasing of mulched drip irrigation for spring maize () in northeast China
Wang Chuanjuan1,2, Zhang Yanqun1, Wang Jiandong2※, Xu Di1, Gong Shihong1, Wu Zhongdong3
(1.,,100048,; 2.,,100081,; 3.,,255049,)
It issignificant to reveal the physiological mechanism of water-saving and yield-increasing effects of spring maize ()under mulched drip irrigation. The objective of this study was to explore the photosynthetic characteristics response of spring maize in a field with drip irrigation under film mulching. Field experiments were carried out from May 2017 to October 2018 for two years at the Heilongjiang Hydraulic Science and Technology Experimental Research Center (45°22′ N, 125°45′ E), located in a typical area of Northeast China, and three treatments were applied: film mulched drip irrigation (MD), non-mulched drip irrigation (ND), and traditional rain-fed practice as a control (CK). The effects of mulched drip irrigation on grain yield and water-use efficiency of maize were analyzed. Based on photosynthetic-light response curves of spring maize leaves at different growth stages from 2017 to 2018, the effects of mulched drip irrigation on photosynthetic capacity, apparent quantum yield, stomatal conductance, specific leaf weight, and13C carbon isotope discrimination rate of maize were also analyzed. In 2017, the results showed that the yield of MD, ND and CK treatment was 11.0, 10.7 and 9.1 t/hm2respectively, and water-use efficiency was 2.34, 2.06 and 2.11 kg/m3for MD, ND and CK treatment respectively. In 2018, the results showed that the yield was 12.0, 11.3 and 9.8 t/hm2respectively, and water-use efficiency was 2.70, 2.22 and 2.07 kg/m3for MD, ND and CK treatment respectively. From 2017 to 2018, photosynthetic capacity first increased and then gradually decreased with the advance of the growth period, and the photosynthetic capacityvalues ranged from 13.4 to 63.6mol/(m2·s). The apparent quantum yieldvalue of different treatments fluctuated between 0.026 and 0.067. The value of stomatal conductance increased first and then decreased with the development of the growth period, and reached the highest value at the jointing stage. The range of stomatal conductance was 0.12-0.50 mol/(m2·s) in 2017 and 0.07-0.47 mol/(m2·s) in 2018, respectively. The specific leaf weight values increased first and then decreased with the advancement of growth stage, and reached the maximum value during the tasseling milk stage. The range of specific leaf weight was 0.040-0.087 kg/m2in 2017 and 0.062-0.084 kg/m2in 2018, respectively.13C carbon isotope discrimination rate value increased with the growth period. From 2017 to 2018, the MD treatment significantly increased the yield by 20.9%-22.4% compared with the CK as well as significantly increased the water-use efficiency by 13.6%-21.6% compared with the ND, respectively.The MD treatment increased the average photosynthetic capacity value significantlyby 12.9%-22.8% (< 0.05),also increasedstomatal conductance by 15.7%-27.2%,increased specific leaf weight by 5%-14%, and decreased the13C carbon isotope discrimination rate of maize, especially in the early growth stage,compared to CK. It showed that mulched drip irrigation could improve the photosynthetic parameters of maize. Also, the MD treatment significantly affected the linear correlation between leaf nitrogen content and photosynthetic capacity, stomatal conductanceand photosynthetic capacity,compared with CK, the slopes of the regression line in the MD and ND treatments were higher, which meant that for a given leaf nitrogen content and stomatal conductance, the MD and ND treatments had a higher photosynthetic capacity values than that of the CK. Also, the results showed that photosynthetic N utilization efficiency and stomatal conductance of leaves was significantly improved by film mulching drip irrigation, which might be the physiological reason for the improvement of photosynthetic capacity, and this might be the key reason for that why yield and water-use efficiency in MD treatment could be significantly increased. Based on the above comprehensive analysis, it was found that the increasing or decreasing of these key photosynthetic parameters under mulched drip irrigation was the key reason for the increase of yield and water-use efficiency of spring maize. This study result provided a theoretical basis for the implementation of film-mulching and drip-irrigation technology in cold spring and water-deficient areas.
irrigation; photosynthesis; physiology; yield; water-use efficiency; leaf nitrogen content
王傳娟,張彥群,王建東,許 迪,龔時宏,吳忠東. 東北典型區(qū)覆膜滴灌春玉米節(jié)水增產(chǎn)的光合生理響應(yīng)[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(24):90-97. doi:10.11975/j.issn.1002-6819.2019.24.011 http://www.tcsae.org
Wang Chuanjuan, Zhang Yanqun, Wang Jiandong, Xu Di, Gong Shihong, Wu Zhongdong. Photosynthetic response of water-saving and yield-increasing of mulched drip irrigation for spring maize () in northeast China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(24): 90-97. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.24.011 http://www.tcsae.org
2019-05-10
2019-10-10
國家自然科學(xué)基金項目(51879277);中國農(nóng)業(yè)科學(xué)院科技創(chuàng)新項目(2018-2020);流域水循環(huán)模擬與調(diào)控國家重點實驗室自主研究課題(SKL2018TS05)
王傳娟,博士生,主要從事農(nóng)業(yè)節(jié)水與作物光合生理機理研究。Email:shandongwcj@163.com
王建東,博士,研究員,主要從事農(nóng)業(yè)節(jié)水原理與技術(shù)研究及節(jié)水灌溉裝備研發(fā)。Email:wangjiandong@caas.cn
10.11975/j.issn.1002-6819.2019.24.011
S161.4
A
1002-6819(2019)-24-0090-08