国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

轉(zhuǎn)錄因子BES1/BZR1調(diào)控植物生長(zhǎng)發(fā)育及抗逆性

2019-03-19 02:49:14于好強(qiáng)孫福艾馮文奇路風(fēng)中李晚忱付鳳玲
遺傳 2019年3期
關(guān)鍵詞:信號(hào)轉(zhuǎn)導(dǎo)磷酸化調(diào)控

于好強(qiáng),孫福艾,馮文奇,路風(fēng)中,李晚忱,付鳳玲

?

轉(zhuǎn)錄因子BES1/BZR1調(diào)控植物生長(zhǎng)發(fā)育及抗逆性

于好強(qiáng),孫福艾,馮文奇,路風(fēng)中,李晚忱,付鳳玲

四川農(nóng)業(yè)大學(xué)玉米研究所,農(nóng)業(yè)部西南玉米生物學(xué)與遺傳育種重點(diǎn)實(shí)驗(yàn)室,溫江 611130

油菜素內(nèi)酯(brassinosteroid, BR)是植物特有的甾體激素,在植物生長(zhǎng)發(fā)育及逆境應(yīng)答過(guò)程中起重要作用。轉(zhuǎn)錄因子BES1/BZR1(BRI1 EMS SUPPRESSOR 1/BRASSINAZOLE RESISTANT 1)是BR信號(hào)轉(zhuǎn)導(dǎo)的核心成員,被BR信號(hào)激活后,結(jié)合到下游靶基因啟動(dòng)子區(qū)的E框(CANNTG)或BRRE元件(CGTGT/CG),調(diào)節(jié)靶基因表達(dá)。除介導(dǎo)BR信號(hào),BES1/BZR1還參與脫落酸、赤霉素及光等信號(hào)轉(zhuǎn)導(dǎo)途徑,協(xié)同調(diào)控植物的生長(zhǎng)發(fā)育。最新研究發(fā)現(xiàn),BES1/BZR1還參與調(diào)控植物的抗逆性。本文對(duì)轉(zhuǎn)錄因子BES1/BZR1通過(guò)信號(hào)轉(zhuǎn)導(dǎo)調(diào)控植物生長(zhǎng)發(fā)育和抗逆性分子機(jī)制的新近研究進(jìn)展進(jìn)行了綜述,以期為相關(guān)研究提供參考。

油菜素內(nèi)酯;生長(zhǎng)發(fā)育;信號(hào)轉(zhuǎn)導(dǎo);抗逆性;BES1/BZR1轉(zhuǎn)錄因子

油菜素內(nèi)酯(brassinosteroid, BR)是植物特有的甾體激素,在生長(zhǎng)發(fā)育及環(huán)境脅迫應(yīng)答中起重要作用,其生理活性遠(yuǎn)高于生長(zhǎng)素(auxin, IAA)、赤霉素(gibberellins, GA)、細(xì)胞分裂素(cytokinin, CTK)、脫落酸(abscisic acid, ABA)和乙烯(ethylene, ET)[1,2]。BR合成基因過(guò)量表達(dá)或缺失對(duì)植物生長(zhǎng)發(fā)育及產(chǎn)量、品質(zhì)等農(nóng)藝性狀育均產(chǎn)生嚴(yán)重影響[3~6]。BR信號(hào)轉(zhuǎn)導(dǎo)被阻斷的植物則顯現(xiàn)矮化、開(kāi)花延遲、早衰等缺陷表型[7,8]。

BR被細(xì)胞膜上BRASSINOSTEROID INSEN-SITIVE 1 (BRI1)及BRI1-ASSOCIATED RECEPTOR KINASE1 (BAK1)等激酶接受后,通過(guò)信號(hào)轉(zhuǎn)導(dǎo)激活轉(zhuǎn)錄因子BRI1 EMS SUPPRESSOR 1 (BES1)及其同源蛋白BRASSINAZOLE RESISTANT 1 (BZR1)的活性[9,10]。BES1與BZR1氨基酸序列相似性達(dá)88%,N端結(jié)構(gòu)域相似性高達(dá)97%[11],編碼基因以家族形式存在,本課題組在前期研究中將其統(tǒng)一命名為BES1/BZR1[12]。被BR信號(hào)激活后,BES1/BZR1直接或與其他轉(zhuǎn)錄因子一起結(jié)合到生長(zhǎng)發(fā)育相關(guān)基因啟動(dòng)子的E框(CANNTG)或BRRE元件(CGTGT/ CG),調(diào)節(jié)這些基因的表達(dá)[13~15]。例如,BES1/BZR1抑制葉腋分生組織發(fā)育基因表達(dá),可促進(jìn)小穗發(fā)育,增加水稻產(chǎn)量[16]。BES1/BZR1調(diào)節(jié)根尖分生組織發(fā)育相關(guān)基因表達(dá),進(jìn)而調(diào)控根發(fā)育[4,17~19]。除介導(dǎo)BR信號(hào),BES1/BZR1還參與ABA、GA及光等信號(hào)轉(zhuǎn)導(dǎo)途徑,調(diào)控植物的生長(zhǎng)發(fā)育以及抗凍、耐旱、抗病等抗逆性。

本文對(duì)轉(zhuǎn)錄因子BES1/BZR1通過(guò)信號(hào)轉(zhuǎn)導(dǎo)調(diào)控植物生長(zhǎng)發(fā)育和抗逆性分子機(jī)制的新近研究進(jìn)展進(jìn)行了綜述,以期為相關(guān)研究提供參考。

1 BES1/BZR1介導(dǎo)BR信號(hào)轉(zhuǎn)導(dǎo)

2002年,Wang等[20]利用EMS誘變篩選到一個(gè)BR合成抑制突變體(),圖位克隆獲得基因,該基因編碼核蛋白且受BR誘導(dǎo)。同年,Yin等[21]利用EMS誘變篩選到BR受體抑制因子BES1,受BR誘導(dǎo)并在細(xì)胞核中積累。后經(jīng)證實(shí)BES1是一個(gè)BZR1類(lèi)蛋白(BZR1- like protein),二者具有高度的序列相似性,N端均有一個(gè)核定位信號(hào)(NLS),C端均有22~24個(gè)絲氨酸或蘇氨酸殘基(S/TXXXS/T),該殘基是BIN2、GSK-3等激酶磷酸化位點(diǎn),磷酸化后進(jìn)入細(xì)胞質(zhì)被14-3-4蛋白降解[16,20,21]。直至2005年,Yin等[10]進(jìn)一步證實(shí)BES1/BZR1是植物中特有的新一類(lèi)轉(zhuǎn)錄因子,也是BR信號(hào)轉(zhuǎn)導(dǎo)途徑的唯一轉(zhuǎn)錄因子。細(xì)胞膜上的BRI1、BKI1和BAK1等激酶接受BR信號(hào)后,自身磷酸化并催化BRASSINOSTEROID-SIGNALLING KINASE1 (BSK)和CONSTITUTIVE DIFFERENTIAL GROWTH1 (CDG1)磷酸化,BSK與CDG1進(jìn)一步磷酸化BRI1-SUPPRESSOR1 (BSU1),BSU1催化BRASSINOSTEROID INSENSITIVE2 (BIN2)去磷酸化,導(dǎo)致其自身被蛋白酶體降解,削弱BIN2對(duì)BES1/BZR1的磷酸化從而使其活性增加[9,10,21~23],BES1/BZR1通過(guò)調(diào)節(jié)下游靶基因的表達(dá),調(diào)控植物的生長(zhǎng)發(fā)育(圖1A)。

BES1/BZR1成員N端均有一個(gè)bHLH結(jié)構(gòu)域,可特異性結(jié)合到靶基因啟動(dòng)子區(qū)的E框或BRRE元件[10,24~26]。此外,多數(shù)BES1/BZR1成員均含有能被BIN2等激酶磷酸化的絲氨酸(serine, S)富集位點(diǎn),個(gè)別成員包含一個(gè)與蛋白穩(wěn)定性緊密相關(guān)的脯氨酸(proline, P)、谷氨酸(glutamic acid, E)、絲氨酸(serine, S)和蘇氨酸(threonine, T)富集區(qū)(PEST基序)[10]。目前,擬南芥()和水稻()BES1/BZR1基因家族已被全部鑒定:擬南芥AtBES1/BZR1基因家族有6個(gè)成員,且功能存在部分冗余[10,20,21];水稻OsBES1/BZR1基因家族有4個(gè)成員[27]。玉米()ZmBES1/BZR1基因家族有11個(gè)成員[23,28]。此外,從白菜(ssp)、棉花()、油菜()和桉樹(shù)()中均鑒定出多個(gè)BES1/ BZR1基因家族成員[29~33](表1)。進(jìn)一步研究證實(shí),BES1/BZR1基因家族成員通過(guò)不同信號(hào)途徑調(diào)控植物生理代謝過(guò)程,進(jìn)而調(diào)控植物生長(zhǎng)發(fā)育及逆境響應(yīng)。

:未知過(guò)程;:相互作用;:促進(jìn)作用;:抑制作用

A:BES1/BZR1介導(dǎo)的BR信號(hào)轉(zhuǎn)導(dǎo);B:BES1/BZR1參與的ABA信號(hào)途徑;C:BES1/BZR1參與的GA信號(hào)途徑;D:BES1/BZR1參與的光信號(hào)途徑;E:BES1/BZR1調(diào)控逆境應(yīng)答途徑;F:BES1/BZR1參與的生長(zhǎng)素、乙烯及其他信號(hào)途徑。BR:油菜素內(nèi)酯;BES1/BZR1:轉(zhuǎn)錄因子;BKI1、BRI1、BAK1、BSK1及CDG1:蛋白激酶;BSU1:BRI1抑制因子;ABA:脫落酸;GA:赤霉素;PP2C:2C型絲氨酸蘇//氨酸蛋白激酶;PP2A:2A型絲氨酸/蘇氨酸蛋白激酶;PYL:ABA受體;BIN2:磷酸激酶;ABI3與ABI5:ABA響應(yīng)的bZIP轉(zhuǎn)錄因子;DELLA:赤霉素負(fù)調(diào)控轉(zhuǎn)錄因子;SINAT與COP1:E3泛素連接酶;GATA2與HY5:光形態(tài)建成相關(guān)轉(zhuǎn)錄因子;UVR8:紫外光受體;PIF4:光敏色素互作因子;CRY:隱花色素。RD26與WRKY26:干旱相關(guān)轉(zhuǎn)錄因子;REF:乙烯應(yīng)答因子;MEK6:促細(xì)胞分裂原活化蛋白激酶;P:磷。

2 BES1/BZR1參與ABA信號(hào)途徑

ABA是植物體內(nèi)重要激素之一,通過(guò)其直接受體PYL (pyrabactin resistance 1-like protein)、第二信使2C型蛋白磷酸酶(PP2C)及第三信使蔗糖非酵解型蛋白激酶(SnRK)向下游進(jìn)行信號(hào)傳遞,在植物生長(zhǎng)發(fā)育及抗逆過(guò)程中扮演重要角色,如衰老、抗旱、耐鹽等[34~36]。研究發(fā)現(xiàn),在突變體中,BZR1結(jié)合到ABA誘導(dǎo)型轉(zhuǎn)錄因子ABA INSENSITIVE 5 (ABI5)編碼基因的啟動(dòng)子,抑制其表達(dá),因而抑制突變體對(duì)ABA誘導(dǎo)的應(yīng)答[37]。同時(shí),BES1抑制ABA調(diào)節(jié)的轉(zhuǎn)錄因子ABI3編碼基因的表達(dá),進(jìn)而抑制ABI3對(duì)下游ABI5轉(zhuǎn)錄因子的激活,致使ABA信號(hào)轉(zhuǎn)導(dǎo)受阻,表現(xiàn)為苗期發(fā)育遲緩[38,39]。

表1 已鑒定的不同植物BES1/BZR1基因家族成員

此外,外源ABA不僅誘導(dǎo)基因表達(dá),而且誘導(dǎo)BES1蛋白磷酸化,使其穩(wěn)定性降低,從而抑制BR信號(hào)轉(zhuǎn)導(dǎo),此過(guò)程依賴(lài)于ABA第二信使PP2C成員ABI1和ABI2[12,29,40,41]。最新研究表明,ABI1、ABI2與BIN2激酶互作后催化BIN2去磷酸化,從而調(diào)控BES1活性。ABA還可促進(jìn)BIN2磷酸化并抑制ABI2的活性[42]。在ABA存在時(shí),BIN2磷酸化ABI5使其穩(wěn)定性增強(qiáng),調(diào)控種子發(fā)育過(guò)程[43]。在大豆()中,PP2C-1與GmBZR1直接互作,催化GmBZR1去磷酸化以增強(qiáng)GmBZR1活性,促進(jìn)種子大小相關(guān)基因()、()和()等表達(dá),調(diào)控種子的大小與重量[44,45]。BZR1也可結(jié)合到ABA受體PYL6編碼基因的啟動(dòng)子區(qū),上調(diào)表達(dá),從而參與PYL6介導(dǎo)的ABA信號(hào)轉(zhuǎn)導(dǎo)[46]。研究還發(fā)現(xiàn),BZR1的PEST結(jié)構(gòu)域與蛋白磷酸酶2A(PP2A)的B亞基直接互作,使BZR1被PP2A去磷酸化,激活BZR1介導(dǎo)的BR信號(hào)途徑,調(diào)控植物的生長(zhǎng)發(fā)育[47](圖1B)。

3 BES1/BZR1參與GA信號(hào)途徑

作為植物體內(nèi)重要激素之一,GA在種子萌發(fā)、細(xì)胞分裂、胚珠形成等生長(zhǎng)發(fā)育過(guò)程中起關(guān)鍵作用[48,49]。研究發(fā)現(xiàn),在BR缺失的突變體中,GA合成關(guān)鍵基因表達(dá)顯著下調(diào),而在突變體中,基因表達(dá)顯著上調(diào)。同時(shí),在和突變體中,基因均受BR誘導(dǎo),表達(dá)顯著上調(diào)。有研究表明,基因啟動(dòng)子區(qū)不含BES1/BZR1轉(zhuǎn)錄因子的結(jié)合位點(diǎn)。研究人員通過(guò)電泳遷移實(shí)驗(yàn)(electroph-oretic mobility shift assays, EMSA)和染色質(zhì)免疫共沉淀(chromatin immunoprecipitation, Chip)實(shí)驗(yàn)證實(shí),BES1/BZR1可結(jié)合基因啟動(dòng)子區(qū)一個(gè)非E-Box且長(zhǎng)度為12 bp的基序(Motif)[50,51]。此外,GA信號(hào)負(fù)調(diào)控因子DELLA家族蛋白(RGA、GAI、RGL1、RGL2和RGL3)可以和BES1/BZR1結(jié)合,阻止BES1/BZR1與靶基因的結(jié)合[50,52~55]。這些研究結(jié)果證實(shí),DELLA蛋白降解可促使BES1/BZR1活性增強(qiáng),BES1/BZR1結(jié)合GA合成相關(guān)基因啟動(dòng)子,使其表達(dá)上調(diào),促進(jìn)GA積累。此外,GA可通過(guò)PP2A促進(jìn)BES1/BZR1的去磷酸化[54]。

在水稻中,BR誘導(dǎo)GA合成基因表達(dá),促使GA積累。外源GA又抑制BR合成及其信號(hào)轉(zhuǎn)導(dǎo)。進(jìn)一步研究表明,GA合成關(guān)鍵基因、、和的啟動(dòng)子均包含CATGTG、BRRE或G-box元件。BES1/BZR1與這類(lèi)元件直接結(jié)合,調(diào)節(jié)下游基因的表達(dá),進(jìn)而影響GA合成[56]。在番茄()中過(guò)表達(dá),GA合成關(guān)鍵酶之一的酮戊二酸脫氫酶2 (2-ODD2)蛋白水平在果實(shí)成熟期顯著增加,致使GA顯著積累促進(jìn)果實(shí)成熟[57]。水稻OsBZR1能夠促進(jìn)miR396d的積累,調(diào)控其靶基因()的表達(dá),通過(guò)參與的GA合成及信號(hào)轉(zhuǎn)導(dǎo)途徑,調(diào)控水稻株高及葉夾角等形態(tài)建成[58](圖1C)。

4 BES1/BZR1參與光信號(hào)途經(jīng)

光是植物光合作用的能量之源,在調(diào)控植物生長(zhǎng)發(fā)育中起關(guān)鍵作用,如光信號(hào)參與調(diào)控種子萌發(fā)、光形態(tài)建成和開(kāi)花等[59]。轉(zhuǎn)錄因子GATA2、HY5正向調(diào)控植物光形態(tài)建成并受光誘導(dǎo)積累,黑暗促使其降解。研究發(fā)現(xiàn),被BR激活的BZR1直接與GATA2互作,抑制轉(zhuǎn)錄,調(diào)控?cái)M南芥幼苗下胚軸伸長(zhǎng)[60,61]。黑暗條件下,HY5能特異地結(jié)合BZR1,抑制BZR1與子葉開(kāi)閉相關(guān)基因的結(jié)合能力,調(diào)控光形態(tài)建成[61]。光敏色素互作因子(phytochrome interacting factor,PIF)是一類(lèi)bHLH轉(zhuǎn)錄因子,在黑暗條件下,PIF大量積累,促進(jìn)植物暗形態(tài)建成,但在光照條件下,PIF發(fā)生磷酸化后降解,促進(jìn)植物光形態(tài)建成[62,63]。研究發(fā)現(xiàn),BES1/BZR1與PIF 4相互作用,形成異源二聚體后作用于共同靶基因,其中80%靶基因受光誘導(dǎo)參與光形態(tài)建成[11]。此外,BZR1與PIF4共同作用的靶基因還受GA誘導(dǎo),GA促進(jìn)細(xì)胞伸長(zhǎng)的過(guò)程依賴(lài)于BZR1和PIF4。DELLA- BZR1-PIF4復(fù)合體調(diào)控下游靶基因paclobutrazol resistance家族(PREs)表達(dá),促進(jìn)細(xì)胞伸長(zhǎng),調(diào)控光形態(tài)建成[11,53]。在高溫條件下,BZR1和PIF4相互作用,調(diào)控植物熱形態(tài)建成[64]。

最近研究發(fā)現(xiàn),去磷酸化的BES1可與紫外光受體UVR8 (UV RESISTANCE LOCUS 8)互作,二者的復(fù)合體受紫外光(UV-B)誘導(dǎo),并在細(xì)胞核大量積累。同時(shí),UV-B不僅抑制BES1靶基因表達(dá),其受體UVR8又抑制BES1與DNA的結(jié)合作用,最終控制植物光形態(tài)建成過(guò)程[65]。在藍(lán)光條件下,其受體隱花色素(cryptochrome, CRY) CRY1和CRY2特異性與去磷酸化的BES1互作,抑制BES1與DNA結(jié)合活性及其靶基因表達(dá),最終抑制下胚軸伸長(zhǎng)[66]。

綜上所述,BES1/BZR1參與光信號(hào)途徑調(diào)控植物的形態(tài)建成過(guò)程。此外,還有研究發(fā)現(xiàn),植物體內(nèi)BES1/BZR1的磷酸化狀態(tài)及穩(wěn)定性也受光信號(hào)調(diào)控。黑暗條件促進(jìn)BES1/BZR1去磷酸化以增強(qiáng)活性,而光照條件下,大多數(shù)BZR1被BIN2磷酸化以保持失活狀態(tài)[61,67,68]。Kim等[68]研究發(fā)現(xiàn),黑暗條件下,E3泛素連接酶COP1催化磷酸化后的BZR1降解,去磷酸化的BZR1積累。同時(shí),光照條件可誘導(dǎo)E3泛素連接酶SINAT積累,SINAT泛素化BES1促使其降解。相反,黑暗條件抑制SINAT的積累,從而阻止BES1降解[69](圖1D)。

5 BES1/BZR1調(diào)控植物抗逆性

BES1/BZR1除調(diào)控植物生長(zhǎng)發(fā)育外,在響應(yīng)生物和非生物逆境脅迫過(guò)程中也起重要作用。Guo等[70]研究發(fā)現(xiàn),BES1/BZR1調(diào)控硫代糖苷合酶基因的表達(dá),促進(jìn)硫代糖苷合成,而硫代糖苷在植物與食草動(dòng)物或與微生物互作中起重要作用。隨后,Miyaji等[71]發(fā)現(xiàn)BZR1可能參與茉莉酸信號(hào)途徑,增強(qiáng)植物抗蟲(chóng)能力。此外,研究表明,病原物相關(guān)分子模式(pathogen-associated molecular pattern, PAMP)感知可促進(jìn)BES1磷酸化,在PAMP誘導(dǎo)的免疫反應(yīng)(PAMP-triggered immunity, PTI)過(guò)程中,BES1作為病原菌誘導(dǎo)的MITOGEN-ACTIVATED PROTEIN KINASE 6 (MPK6)的直接底物被其磷酸化,參與調(diào)控植物對(duì)病菌的免疫反應(yīng)[72]。

Singh等[73]研究發(fā)現(xiàn),低磷脅迫促進(jìn)BES1/ BZR1由細(xì)胞核向細(xì)胞質(zhì)轉(zhuǎn)移,低磷條件下,BES1/ BZR1顯著積累,維持根系正常生長(zhǎng),賦予擬南芥對(duì)低磷脅迫的耐受性。研究表明,BES1/BZR1可促進(jìn)轉(zhuǎn)錄因子CBF (C-repeat binding factor)、WRKY6以及ABA受體PYL6等編碼基因的表達(dá),并與WRKY54轉(zhuǎn)錄因子直接互作,正調(diào)控?cái)M南芥耐寒性,但負(fù)調(diào)控其耐旱性[46,74]。研究還發(fā)現(xiàn),BES1/BZR1與NAC轉(zhuǎn)錄因子家族的RD26存在拮抗關(guān)系,BES1/ BZR1結(jié)合到基因啟動(dòng)子,抑制表達(dá),而RD26蛋白又與BES1/BZR1蛋白結(jié)合,抑制RD26干旱應(yīng)答調(diào)節(jié)功能[75]。同時(shí),在干旱和低碳脅迫下,BES1與泛素受體DSK2互作而被降解,參與脅迫誘導(dǎo)的自噬反應(yīng)過(guò)程,調(diào)控植物適應(yīng)逆境[76]。

此外,在擬南芥、油菜和桉樹(shù)中,BES1/BZR1基因的表達(dá)受鹽、干旱、熱和冷等脅迫的誘導(dǎo)或抑制[29,32,33],表明該基因家族參與這些逆境脅迫響應(yīng)過(guò)程(圖1E)。

6 BES1/BZR1參與的信號(hào)轉(zhuǎn)導(dǎo)網(wǎng)絡(luò)

BES1/BZR1是BR信號(hào)轉(zhuǎn)導(dǎo)途徑特異的轉(zhuǎn)錄因子,通過(guò)介導(dǎo)BR信號(hào)調(diào)控植物生長(zhǎng)發(fā)育。但近年來(lái)研究發(fā)現(xiàn),BES1/BZR1在ABA、GA、光及逆境信號(hào)中也發(fā)揮著重要作用,并且還參與IAA、ET等信號(hào)途徑。如BZR1直接與生長(zhǎng)素誘導(dǎo)基因、的啟動(dòng)子結(jié)合而抑制其表達(dá),從而影響生長(zhǎng)素的合成,調(diào)控植物生長(zhǎng)發(fā)育[77]。BES1/BZR1通過(guò)下調(diào)乙烯合成關(guān)鍵酶基因、和表達(dá),抑制乙烯合成,而且與乙烯響應(yīng)因子ERF72互作調(diào)控其下游基因表達(dá),最終影響植物生長(zhǎng)發(fā)育過(guò)程[4,78](圖1F)。綜上所述,BES1/BZR1參與多種信號(hào)途徑,調(diào)控植物生長(zhǎng)發(fā)育及逆境應(yīng)答,其功能和作用機(jī)制表現(xiàn)出多樣性。但是,BES1/BZR1調(diào)控植物響應(yīng)逆境脅迫方面的研究還不夠深入,除擬南芥外,在作物及其他植物中BES1/BZR1抗逆功能研究尚未見(jiàn)報(bào)道。因此,本文將BES1/BZR1參與的信號(hào)轉(zhuǎn)導(dǎo)網(wǎng)絡(luò)進(jìn)行了歸納總結(jié)(圖1),以期為后續(xù)相關(guān)研究提供參考。

[1] Nolan T, Chen J, Yin Y. Cross-talk of brassinosteroid signaling in controlling growth and stress responses., 2017, 474(16): 2641–2661.

[2] Song XJ. Crop seed size: BR matters., 2017, 10(5): 668–669.

[3] Li XJ, Chen XJ, Guo X, Yin LL, Ahammed GJ, Xu CJ, Chen KS, Liu CC, Xia XJ, Shi K, Zhou J, Zhou YH, Yu JQ.overexpression induces alteration in phytohormone homeostasis, development, architecture and carotenoid accumulation in tomato., 2016, 14: 1021–1033.

[4] Lv B, Tian H, Zhang F, Liu J, Lu S, Bai M, Li C, Ding Z. Brassinosteroids regulate root growth by controlling reactive oxygen species homeostasis and dual effect on ethylene synthesis in., 2018, 14(1): e1007144.

[5] Sahni S, Prasad BD, Liu Q, Grbic V, Sharpe A, Singh SP, Krishna P. Overexpression of the brassinosteroid biosynthetic geneinsimultaneously increases seed yield and stress tolerance., 2016, 6: 28298.

[6] Yang J, Thames S, Best NB, Jiang H, Huang P, Dilkes BP, Eveland AL. Brassinosteroids modulate meristem fate and differentiation of unique inflorescence morphology in., 2018, 30(1): 48–66.

[7] Corvalán C, Choe S. Identification of brassinosteroid genes in., 2017, 17(1): 5.

[8] Kir G, Ye H, Nelissen H, Neelakandan AK, Kusnandar AS, Luo A, Inzé D, Sylvester AW, Yin Y, Becraft PW. RNA interference knockdown of BRASSINOSTEROID INSEN-SITIVE1 in maize reveals novel functions for brassin-osteroid signaling in controlling plant architecture., 2015, 169(1): 826–839.

[9] Belkhadir Y, Jaillais Y. The molecular circuitry of brassinosteroid signaling., 2015, 206(2): 522–540.

[10] Yin Y, Vafeados D, Tao Y, Yoshida S, Asami T, Chory J. A new class of transcription factors mediates brassinosteroid- regulated gene expression in., 2005, 120(2): 249–259.

[11] Wang ZY, Bai MY, Oh E, Zhu JY. Brassinosteroid signaling network and regulation of photomorphogenesis., 2012, 46: 701–724.

[12] Yu H, Feng W, Sun F, Zhang YY, Qu JT, Liu B, Lu F, Yang L, Fu F, Li W. Cloning and characterization of BES1/ BZR1 transcription factor genes in maize., 2018, 86(2): 235–249.

[13] Oh E, Zhu JY, Wang ZY. Interaction between BZR1 and PIF4 integrates brassinosteroid and environmental responses., 2012, 14(8): 802–809.

[14] Qiao S, Sun S, Wang L, Wu Z, Li C, Li X, Wang T, Leng L, Tian W, Lu T, Wang X. The RLA1/SMOS1 transcription factor functions with OsBZR1 to regulate brassinosteroid signaling and rice architecture., 2017, 29(2): 292–309.

[15] Ye H, Li L, Guo H, Yin Y. MYBL2 is a substrate of GSK3-like kinase BIN2 and acts as a corepressor of BES1 in brassinosteroid signaling pathway in., 2012, 109(49): 20142–20147.

[16] Bai XF, Huang Y, Hu Y, Liu HY, Zhang B, Smaczniak C, Hu G, Han ZM, Xing YZ. Duplication of an upstream silencer of FZP increases grain yield in rice., 2017, 3(11): 885–893.

[17] Jiang J, Zhang C, Wang X. A recently evolved isoform of the transcription factor BES1 promotes brassinosteroid signaling and development in., 2015, 27(2): 361–374.

[18] Martins S, Montiel-Jorda A, Cayrel A, Huguet S, Roux CP, Ljung K, Vert G. Brassinosteroid signaling-dependent root responses to prolonged elevated ambient temperature., 2017, 8(1): 309.

[19] Salazar-Henao JE, Lehner R, Betegón-Putze I, Vilarrasa- Blasi J, Ca?o-Delgado AI. BES1 regulates the localization of the brassinosteroid receptor BRL3 within the provascular tissue of theprimary root., 2016, 67(17): 4951–4961.

[20] Wang ZY, Nakano T, Gendron J, He J, Chen M, Vafeados D, Yang Y, Fujioka S, Yoshida S, Asami T, Chory J. Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis., 2002, 2(4): 505–513.

[21] Yin Y, Wang ZY, Mora-Garcia S, Li J, Yoshida S, Asami T, Chory J. BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation., 2002, 109(2): 181–191.

[22] Kim TW, Guan S, Sun Y, Deng Z, Tang W, Shang J X, Sun Y, Burlingame A L, Wang ZY. Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors., 2009, 11(10): 1254–1260.

[23] Kim TW, Guan S, Burlingame AL, Wang ZY. The CDG1 kinase mediates brassinosteroid signal transduction from BRI1 receptor kinase to BSU1 phosphatase and GSK3-like kinase BIN2., 2011, 43(4): 561–571.

[24] He JX, Gendron JM, Sun Y, Gampala SSL, Gendron N, Sun CQ, Wang ZY. BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses., 2005, 307(5715): 1634–1638.

[25] Sun Y, Fan XY, Cao DM, Tang W, He K, Zhu JY, He JX, Bai MY, Zhu S, Oh E, Patil S, Kim TW, Ji H, Wong WH, Rhee SY, Wang ZY. Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in., 2010, 19(5): 765–777.

[26] Yu X, Li L, Zola J, Aluru M, Ye H, Foudree A, Guo H, Anderson S, Aluru S, Liu P, Rodermel S, Yin Y. A brassinosteroid transcriptional network revealed by genome-wide identification of BES1 target genes in., 2011, 65(4): 634–646

[27] Bai MY, Zhang LY, Gampala SS, Zhu SW, Song WY, Chong K, Wang ZY. Functions of OsBZR1 and 14-3-3 proteins in brassinosteroid signaling in rice., 2007, 104(34): 13839–13844.

[28] Manoli A, Trevisan S, Quaggiotti S, Varotto S. Identification and characterization of the BZR transcription factor family and its expression in response to abiotic stresses inL., 2018, 84(3): 423–436.

[29] Saha G, Park JI, Jung HJ, Ahmed NU, Kayum MA, Kang JG, Nou IS. Molecular characterization of BZR transcriptionfactor family and abiotic stress induced expression profiling in., 2015, 92: 92–104.

[30] Shu HM, Guo SQ, Gong YY, Jiang L, Zhu JW, Ni WC. Identification and expression analysis of the Brassinosteroid signal gene GhBES1 family in upland cotton., 2017, 32(4): 7–12.束紅梅, 郭書(shū)巧, 鞏元勇, 蔣璐, 朱靜雯, 倪萬(wàn)潮. 陸地棉油菜素內(nèi)酯信號(hào)基因GhBES1家族的鑒定及表達(dá)分析. 華北農(nóng)學(xué)報(bào), 2017, 32(4): 7–12.

[31] Guo XL, Lu P, Wang YY, Cai XY, Wang XX, Zhou ZL, Wang YH, Wang CY, Wang KB, Liu F. Genome-wide identification and expression analysis of the gene family encoding Brassinazole resistant transcription factors in cotton., 2017, 29(5): 415–427.郭新磊, 路普, 王園園, 蔡小彥, 王星星, 周忠麗, 王玉紅, 王春英, 王坤波, 劉方. 棉花BZR基因家族的全基因組鑒定及表達(dá)分析. 棉花學(xué)報(bào), 2017, 29(5): 415–427.

[32] Fan C, Guo G, Yan H, Qiu Z, Liu Q, Zeng B. Characterization of Brassinazole resistant (BZR) gene family and stress induced expression in., 2018, 24(5): 821–831.

[33] Song X, Ma X, Li C, Hu J, Yang Q, Wang T, Wang L, Wang J, Guo D, Ge W, Wang Z, Li M, Wang Q, Ren T, Feng S, Wang L, Zhang W, Wang X. Comprehensive analyses of the BES1 gene family inand examination of their evolutionary pattern in representative species., 2018, 19: 346.

[34] Tao Y, Wang YG, Li HJ, Li WC, Fu FL. Upstream messengers of abscisic acid signaling pathway in plant., 2016, 30(9): 1722–1730.陶怡, 王盈閣, 李鴻杰, 李晚忱, 付鳳玲. 植物脫落酸信號(hào)轉(zhuǎn)導(dǎo)途徑的上游信使. 核農(nóng)學(xué)報(bào), 2016, 30(9): 1722–1730.

[35] Raghavendra AS, Gonugunta VK, Christmann A, Grill E. ABA perception and signalling., 2010, 15(7): 395–401.

[36] Li HQ, Chen C, Chen RR, Song XW, Li JN, Zhu YM, Ding XD. Preliminary analysis of the role of.1 andin the ABA and alkaline stress response of the soybean using the CRISPR/Cas9-based gene double-knockout system., 2018, 40(6): 496–507.李慧卿, 陳超, 陳冉冉, 宋雪薇, 李佶娜, 朱延明, 丁曉東. 利用CRISPR/Cas9雙基因敲除系統(tǒng)初步解析大豆和對(duì)ABA及堿脅迫的響應(yīng).遺傳, 2018, 40(6): 496–507.

[37] Yang X, Bai Y, Shang J, Xin R, Tang W. The antagonistic regulation of abscisic acid-inhibited root growth by brassinosteroids is partially mediated via direct suppression of ABSCISIC ACID INSENSITIVE 5 expression by BRASSINAZOLE RESISTANT 1.,, 2016, 39(9): 1994–2003.

[38] Lopez-Molina L, Mongrand S, McLachlin DT, Chait BT, Chua NH. ABI5 acts downstream of ABI3 to execute an ABA-dependent growth arrest during germination., 2002, 32(3): 317–328.

[39] Ryu H, Cho H, Bae W, Hwang I. Control of early seedling development by BES1/TPL/HDA19-mediated epigenetic regulation of ABI3., 2014, 5: 4138.

[40] He JX, Gendron JM, Yang Y, Li J, Wang ZY. The GSK3-like kinase BIN2 phosphorylates and destabilizes BZR1, a positive regulator of the brassinosteroid signaling pathway in., 2002, 99(15): 10185–10190.

[41] Zhang S, Cai Z, Wang X. The primary signaling outputs of brassinosteroids are regulated by abscisic acid signaling., 2009, 106(11): 4543–4548.

[42] Wang H, Tang J, Liu J, Hu J, Liu J, Chen Y, Cai Z, Wang X. Abscisic acid signaling inhibits Brassinosteroid signaling through dampening the dephosphorylation of BIN2 by ABI1 and ABI2.2017, 11(2): 315–325.

[43] Hu Y, Yu D. BRASSINOSTEROID INSENSITIVE2 interacts with ABSCISIC ACID INSENSITIVE5 to mediate the antagonism of brassinosteroids to abscisic acid during seed germination in., 2014, 26(11): 4394–4408.

[44] Jiang WB, Huang HY, Hu YW, Zhu SW, Wang ZY, Lin WH. Brassinosteroid regulates seed size and shape in., 2013, 162(4): 1965–1977.

[45] Lu X, Xiong Q, Cheng T, Li QT, Liu XL, Bi YD, Li W, Zhang WK, Ma B, Lai YC, Du WG, Man WQ, Chen SY, Zhang JS. A PP2C-1 allele underlying a quantitative trait locus enhances soybean 100-seed weight., 2017, 10(5): 670–684.

[46] Li H, Ye K, Shi Y, Cheng J, Zhang X, Yang S. BZR1 positively regulates freezing tolerance via CBF-dependent and CBF-independent pathways in, 2017, 10(4): 545–559.

[47] Tang W, Yuan M, Wang R, Yang Y, Wang C, Oses-Prieto JA, Kim TW, Zhou HW, Deng Z, Gampala SS, Gendron JM, Jonassen EM, Lillo C, DeLong A, Burlingame AL, Sun Y, Wang ZY. PP2A activates brassinosteroid-responsive gene expression and plant growth by dephosphorylating BZR1., 2011, 13(2): 124–131.

[48] Gomez MD, Barro-Trastoy D, Escoms E, Saura-Sánchez M, Sánchez I, Briones-Moreno A, Vera-Sirera F, Carrera E, Ripoll JJ, Yanofsky MF, Lopez-Diaz I, Alonso JM, Perez-Amador MA. Gibberellins negatively modulate ovule number in plants., 2018, 145(13), doi: 10.1242/dev.163865.

[49] Vishal B, Kumar PP. Regulation of seed germination and abiotic stresses by gibberellins and abscisic acid., 2018, 9: 838.

[50] Gallego-Bartolomé J, Minguet EG, Grau-Enguix F, Abbas M, Locascio A, Thomas SG, Alabadí D, Blázquez MA. Molecular mechanism for the interaction between gibberellin and brassinosteroid signaling pathways in., 2012, 109(33): 13446–13451.

[51] Unterholzner SJ, Rozhon W, Papacek M, Ciomas J, Lange T, Kugler KG, Mayer KF, Sieberer T, Poppenberger B. Brassinosteroids are master regulators of gibberellin biosynthesis in., 2015, 27(8): 2261–2272.

[52] Allen HR, Ptashnyk M. Mathematical modelling and analysis of the brassinosteroid and gibberellin signalling pathways and their interactions., 2017, 432: 109–131.

[53] Bai MY, Shang JX, Oh E, Fan M, Bai Y, Zentella R, Sun TP, Wang ZY. Brassinosteroid, gibberellin and phytochrome impinge on a common transcription module in., 2012, 14(8): 810–817.

[54] Li QF, Wang C, Jiang L, Li S, Sun SS, He JX. An interaction between BZR1 and DELLAs mediates direct signaling crosstalk between brassinosteroids and gibberellins in., 2012, 5(244): ra72.

[55] Li QF, He JX. Mechanisms of signaling crosstalk between brassinosteroids and gibberellins., 2013, 8(7): e24686.

[56] Tong H, Xiao Y, Liu D, Gao S, Liu L, Yin Y, Jin Y, Qian Q, Chu C. Brassinosteroid regulates cell elongation by modulating gibberellin metabolism in rice., 2014, 26(11): 4376–4393.

[57] Liu L, Liu H, Li S, Zhang X, Zhang M, Zhu N, Dufresne CP, Chen S, Wang Q. Regulation of BZR1 in fruit ripening revealed by iTRAQ proteomics analysis., 2016, 6: 33635.

[58] Tang Y, Liu H, Guo S, Wang B, Li Z, Chong K, Xu Y. OsmiR396d affects gibberellin and brassinosteroid signaling to regulate plant architecture., 2018, 176(1): 946–959.

[59] Kami C, Lorrain S, Hornitschek P, Fankhauser C. Light-regulated plant growth and development., 2010, 91: 29–66.

[60] Luo XM, Lin WH, Zhu S, Zhu JY, Sun Y, Fan XY, Cheng M, Hao Y, Oh E, Tian M, Liu L, Zhang M, Xie Q, Chong K, Wang ZY. Integration of light- and brassinosteroid- signaling pathways by a GATA transcription factor in., 2010, 19(6): 872–883.

[61] Li QF, He JX. BZR1 interacts with HY5 to mediate Brassinosteroid- and light-regulated cotyledon opening inin darkness., 2015, 9(1): 113–125.

[62] Chen M, Chory J. Phytochrome signaling mechanisms and the control of plant development., 2011, 21(11): 664–671.

[63] Leivar P, Quail PH. PIFs: pivotal components in a cellular signaling hub., 2011, 16(1): 19–28.

[64] Ibanez C, Delker C, Martinez C, Bürstenbinder K, Janitza P, Lippmann R, Ludwig W, Sun H, James GV, Klecker M, Grossjohann A, Schneeberger K, Prat S, Quint M. Brassinosteroids dominate hormonal regulation of plant thermosmorphogenesis via BZR1., 2018, 28(2): 303–310.

[65] Liang T, Mei S, Shi C, Yang Y, Peng Y, Ma L, Wang F, Li X, Huang X, Yin Y, Liu H. UVR8 interacts with BES1 and BIM1 to regulate transcription and photomorphogenesis in., 2018, 44(4): 512–523.e5.

[66] Wang W, Lu X, Li L, Lian HL, Mao ZL, Xu PB, Guo T, Xu F, Du SS, Cao XL, Wang S, Shen H, Yang HQ. Photoexcited CRYPTOCHROME1 interacts with dephosphorylated BES1 to regulate Brassinosteroid signaling and photomorphogenesis in., 2018, doi: 10.1105/tpc.17.00994.

[67] Li QF, Huang LC, Wei K, Yu JW, Zhang CQ, Liu QQ. Light involved regulation of BZR1 stability and phosphorylation status to coordinate plant growth in., 2017, 37(2), doi: 10.1042/ BSR20170069.

[68] Kim B, Jeong YJ, Corvalán C, Fujioka S, Cho S, Park T, Choe S. Darkness and gulliver2/phyB mutation decrease the abundance of phosphorylated BZR1 to activate brassinosteroid signaling in., 2014, 77(5): 737–747.

[69] Yang M, Li C, Cai Z, Hu Y, Nolan T, Yu F, Yin Y, Xie Q, Tang G, Wang X. SINAT E3 ligases control the light-mediated stability of the Brassinosteroid-activated transcription factor BES1 in., 2017, 41(1): 47–58.e4.

[70] Guo R, Qian H, Shen W, Liu L, Zhang M, Cai C, Zhao Y, Qiao J, Wang Q. BZR1 and BES1 participate in regulation of glucosinolate biosynthesis by brassinosteroids in., 2013, 64(8): 2401–2412.

[71] Miyaji T, Yamagami A, Kume N, Sakuta M, Osada H, Asami T, Arimoto Y, Nakano T. Brassinosteroid-related transcription factor BIL1/BZR1 increases plant resistance to insect feeding., 2014, 78(6): 960–968.

[72] Kang S, Yang F, Li L, Chen H, Chen S, Zhang J. Thetranscription factor BES1 is a direct substrate of MPK6 and regulates immunity., 2015, 167(3): 1076–1086.

[73] Singh AP, Fridman Y, Friedlander-Shani L, Tarkowska D, Strnad M, Savaldi-Goldstein S. Activity of the brassinosteroid transcription factors BRASSINAZOLE RESISTANT1 and BRASSINOSTEROID INSENSITIVE1-ETHYL METHA-NESULFONATE-SUPPRESSOR1/BRASSINAZOLE RE-SISTANT2 blocks developmental reprogramming in response to low phosphate availability., 2014, 166(2): 678–688.

[74] Chen J, Nolan TM, Ye H, Zhang M, Tong H, Xin P, Chu J, Chu C, Li Z, Yin Y.WRKY46, WRKY54, and WRKY70 Transcription factors are involved in brassinosteroid-regulated plant growth and drought responses., 2017, 29(6): 1425–1439.

[75] Ye H, Liu S, Tang B, Chen J, Xie Z, Nolan TM, Jiang H, Guo H, Lin HY, Li L, Wang Y, Tong H, Zhang M, Chu C, Li Z, Aluru M, Aluru S, Schnable PS, Yin Y. RD26 mediates crosstalk between drought and brassinosteroid signalling pathways., 2017, 8: 14573.

[76] Nolan TM, Brennan B, Yang M, Chen J, Zhang M, Li Z, Wang X, Bassham DC, Walley J, Yin Y. Selective autophagy of BES1 mediated by DSK2 balances plant growth and survival., 2017, 41(1): 33–46.e7.

[77] Oh E, Zhu JY, Bai MY, Arenhart RA, Sun Y, Wang ZY. Cell elongation is regulated through a central circuit of interacting transcription factors in thehypocotyl., 2014, 3, doi: 10.7554/eLife.03031.

[78] Liu K, Li Y, Chen X, Li L, Liu K, Zhao H, Wang Y, Han S. ERF72 interacts with ARF6 and BZR1 to regulate hypocotyl elongation in., 2018, 69(16): 3933–3947.

The BES1/BZR1 transcription factors regulate growth, development and stress resistance in plants

Haoqiang Yu, Fuai Sun, Wenqi Feng, Fengzhong Lu, Wanchen Li, Fengling Fu

Brassinosteroid (BR) is a class of plant-specific steroidal hormone and plays vital roles in plant growth, developmental and stress response. As the core component of BR signaling, the BES1/BZR1 transcription factors are activated by the BR signal, bind to the E-box (CANNTG) or BRRE element (CGTGT/CG) enriched in the promoter of downstream target genes and regulate their expression. Besides BR signal transduction, BES1/BZR1s are also involved in other signaling pathways such as abscisic acid, gibberellin and light to co-regulate plant growth and development. Recently, BES1/BZR1s were found to be related to stress resistance. In this review, we summarize recent advances of molecular mechanism of the BES1/BZR1 transcription factors regulating plant growth, development and stress resistance through signal transduction to provide a reference for related researches.

brassinosteroid; growth and development; signal transduction; stress resistance; BES1/BZR1 transcription factors

2018-09-07;

2019-02-20

四川省科技計(jì)劃應(yīng)用基礎(chǔ)項(xiàng)目(編號(hào):2018JY0470)資助[Supported by the Sichuan Science and Technology Program (No.2018JY0470)]

于好強(qiáng),博士,講師,研究方向:植物分子生物學(xué)。E-mail: yhq1801@sicau.edu.cn

付鳳玲,博士,教授,研究方向:玉米遺傳育種與生物技術(shù)。E-mail: ffl@sicau.edu.cn

10.16288/j.yczz.18-253

2019/2/25 15:23:43

URI: http://kns.cnki.net/kcms/detail/11.1913.R.20190225.1523.004.html

(責(zé)任編委: 張憲省)

猜你喜歡
信號(hào)轉(zhuǎn)導(dǎo)磷酸化調(diào)控
Wnt/β-catenin信號(hào)轉(zhuǎn)導(dǎo)通路在瘢痕疙瘩形成中的作用機(jī)制研究
如何調(diào)控困意
經(jīng)濟(jì)穩(wěn)中有進(jìn) 調(diào)控托而不舉
ITSN1蛋白磷酸化的研究進(jìn)展
順勢(shì)而導(dǎo) 靈活調(diào)控
MAPK抑制因子對(duì)HSC中Smad2/3磷酸化及Smad4核轉(zhuǎn)位的影響
SUMO修飾在細(xì)胞凋亡中的調(diào)控作用
HGF/c—Met信號(hào)轉(zhuǎn)導(dǎo)通路在結(jié)直腸癌肝轉(zhuǎn)移中的作用
組蛋白磷酸化修飾與精子發(fā)生
遺傳(2014年3期)2014-02-28 20:59:01
鈣敏感受體及其與MAPK信號(hào)轉(zhuǎn)導(dǎo)通路的關(guān)系
安国市| 象州县| 博客| 平陆县| 闻喜县| 黔西县| 吴桥县| 民权县| 德江县| 汾西县| 郓城县| 松潘县| 乌什县| 清水河县| 青神县| 夏河县| 沛县| 周至县| 贵德县| 临泽县| 顺义区| 赤峰市| 吴忠市| 开阳县| 贵德县| 象州县| 陕西省| 安顺市| 沂源县| 大埔区| 舞阳县| 万荣县| 阳东县| 盐城市| 永仁县| 常山县| 德昌县| 裕民县| 宝坻区| 司法| 万全县|