宋曉琳
摘?要?利用T-X變換技巧將威布爾分布及帕累托(Ⅳ)分布組合,構(gòu)建了威布爾帕累托(Ⅳ)分布并研究極限,單峰性,香農(nóng)熵,力矩等相關(guān)統(tǒng)計(jì)性質(zhì);利用R語(yǔ)言對(duì)兩組經(jīng)典數(shù)據(jù)進(jìn)行分布擬合;給出幾種模型的參數(shù)估計(jì)及擬合優(yōu)度的比較,并根據(jù)似然比檢驗(yàn),對(duì)威布爾帕累托(Ⅳ)分布和其他幾種分布做對(duì)比分析,結(jié)果表明威布爾帕累托(Ⅳ)分布具有更優(yōu)的擬合效果.
關(guān)鍵詞?威布爾分布; 帕累托(Ⅳ)分布; T-X分布; EM算法
中圖分類(lèi)號(hào)?O212?文獻(xiàn)標(biāo)識(shí)碼?A
Abstract?We used ?T-X transform techniques to combine the two distributions, built ?the Weibull-Pareto (Ⅳ) distribution and studied ?the related statistical properties, including the limit, unimodal, shannon entropy and moment etc. Two groups of classic data distribution were fitting by using the R language.The comparison of parameter estimation and fit optimization of several models were given.And according to the likelihood ratio test for Weibull-Pareto (Ⅳ) distribution and several other distribution analysis of the contrast,the results show that Weibull-Pareto(Ⅳ) distribution has a better fitting effect.
Key words?Weibull distribution; Pareto(Ⅳ) distribution; T-X family of distributions;EM algorithm
1?引?言
威布爾分布有單調(diào)的失效率,常用來(lái)模擬生命周期數(shù)據(jù).帕累托分布及其推廣提供了非常靈活的厚尾分布族,可以用來(lái)模擬收入分配、金融、保險(xiǎn)等相關(guān)領(lǐng)域的數(shù)據(jù).威布爾分布廣泛應(yīng)用于各種類(lèi)型的數(shù)據(jù)建模,尤其在生存分析和可靠性分析中得到了廣泛的關(guān)注.然而,它無(wú)法刻畫(huà)具有非單調(diào)失效率函數(shù)的數(shù)據(jù)集,因此統(tǒng)計(jì)文獻(xiàn)對(duì)威布爾分布進(jìn)行了各種形式的推廣[1-2].經(jīng)典的帕累托分布是一類(lèi)具有冪律概率尾的統(tǒng)計(jì)模型,常被用來(lái)模擬具有高度正傾斜和右厚尾數(shù)據(jù)[3].但是,帕累托分布的密度函數(shù)是單調(diào)遞減的,因而無(wú)法處理具有駝峰形狀的數(shù)據(jù)集.在各種類(lèi)型的帕累托模型中,帕累托(Ⅳ)更值得關(guān)注,它是由Cronin[4]最早提出的.值得注意的是,大多數(shù)關(guān)于帕累托(Ⅳ)分布的分布理論都可以通過(guò)使用KOTZ等[5]提出的布爾分布獲得,也可以參考Harris[6]的早期文獻(xiàn).帕累托(IV)模型的一個(gè)顯著特征是,它包含了帕累托密度族的最大參數(shù).
最近,統(tǒng)計(jì)學(xué)家和應(yīng)用研究人員對(duì)構(gòu)建靈活的分布族非常感興趣,以便更好地對(duì)實(shí)踐中數(shù)據(jù)進(jìn)行建模.Alzaatreh等[7]提出了一種生成連續(xù)分布族的新方法,并提供了幾種使用該技術(shù)構(gòu)建的廣義族的例子.Kong等[8]提出貝塔-伽瑪分布,并考察了它的性質(zhì),如分布的可靠性、失效函數(shù)和應(yīng)用.Akinsete等[9]研究了一個(gè)四參數(shù)的貝塔帕累托分布,該分布具有單峰和單調(diào)遞減的風(fēng)險(xiǎn)率,討論了其均值、均值偏差、方差、偏度、峰度和熵的表達(dá)式.Alzaatreh等[10]構(gòu)造了威布爾帕累托分布,給出了威布爾帕累托分布的各種性質(zhì).Alzaatreh等[11]提出了伽瑪帕累托(IV)分布并研究了該分布的各種性質(zhì)和分布特征.
參考文獻(xiàn)
[1]?KHAN M S, KING R . Transmuted modified weibull distribution: a generalization of the modified weibull probability distribution[J]. European Journal of Pure and Apllied Mathematics.2013, 6(1): 66-88.
[2]?IBRAHIM B, ABDUL M.Transmuted burr type III distribution[J]. Journal of Statistics: Advances in Theory and Applications.2015, 14 (1):37-47.
[3]?KLUGMAN S A, PANJER ?H H,WILLMOT G E. Loss models from data to decisions[M].New York: John Wiley & Sons, Inc,1998.
[4]?CRONIN D C. Function for size distribution of incomes: a further comment[J]. Econometrica, 1979, 47(3): 773-774.
[5]?KOTZ S,BALAKRISHNAN N,JOHNSON N L.Continuous multivariate distributions.[M]. New York: John Wiley & Sons, Inc,2000.