邊彩蓮 黃立宏 王佳伏
摘?要?在經(jīng)典傳染病模型的基礎上,通過考慮閾值策略,研究了一類基于媒體報道的不連續(xù)的傳染病模型.利用Filippov意義下的右端不連續(xù)微分方程理論,對閾值策略下傳染病模型的動力學行為進行了定性分析,并利用Poincaré映射研究了無病平衡點、地方病平衡點及偽平衡點的全局漸近穩(wěn)定性.
關鍵詞?媒體報道;Poincaré映射;全局漸近穩(wěn)定
中圖分類號?O193?文獻標識碼?A
Abstract?Based on the classical epidemic model,by considering the threshold policy,a class of discontinuous epidemic model based on the media coverage was studied. The dynamical behaviors of the epidemic model under the threshold policy were qualitatively analyzed by using the theory of the differential equation with a discontinuous right-hand side in Filippov sense.In addition,the global asymptotical stability of a free equilibrium ,endemic equilibrium or pesudo-equilibrium was investigated by Poincaré maps as well.
Key words?media coverage ;Poincaré map; global asymptotical stability
1?引?言
傳染病的流行對人類的生活甚至生存帶來了極大的危害.媒體報道可通過降低疾病的傳染率有效控制疾病的傳播.近年來,媒體報道對疾病傳播的影響越來越受到人們的關注[1-2],諸多學者開始研究媒體報道對流行病傳播過程的影響[3-6].Collinson和Heffernan[3]研究了媒體報道對SEIR流感病毒的影響,陳瑤[4]等研究了帶有媒體報道的H7N9傳染病模型等.鑒于前人所做的工作[7-11],本文考慮了閾值策略,研究了在媒體報道影響下的Filippov傳染病模型.
參考文獻
[1]?LIU Y,CUI J. The impact of media coverage on the dynamics of infectious dIsease[J]. International Journal of Biomathematics, 2008, 1(1):65-74.
[2] CUI J, SUN Y, ZHU H. The impact of media on the control of infectious diseases[J]. Journal of Dynamics and Differential Equations, 2008, 20(1):31-53.
[3] COLLINSON S,HEFFERNANJ M. Modelling the effects of media during an influenza epidemic[J]. Bmc Public Health, 2014, 14(1):1-10.
[4] 陳瑤,孫法國,胡新利,劉艷.帶有媒體報道的H7N9傳染病模型的研究[J].應用數(shù)學進展, 2015, 4(3):285-291.
[5] CUI J, TAO X, ZHU H. An SIS infection model incorporating media coverage[J]. Rocky Mountain Journal of Mathematics, 2008, 38(5):1323-1334.
[6] LIU R, WU J, ZHU H. Media/Psychological impact on multiple outbreaks of emerging infectious diseases[J]. Computational and Mathematical Methodds in Medicine, 2007, 8(3):153-164.
[7] BERNFELD S R. Differential equations with discontinuous righthand sides (A. F. Filippov)[J]. SIAM Review, 1990, 32(2):312-315.
[8] BACCIOTTI A, CERAGIOLI F. Stability and stabilization of ?discontinuous systems, and nonsmooth, lyapunov functions[J]. Esaim Control Optimisation and Calculus of Variations, 1999, 4(4):361-376.
[9] CLARKE F H. Optimization and nonsmooth analysis[M]. New York :Wiley, 1983.
[10]GUO Z, HUANG L, ZOU X. Impact of ?discontinuous treatments on an SIR disease model[J]. Mathematical Biosciences and Engineering, 2012, 9(1):97-110.
[11]WANG W. Backward bifurcation of an epidemic model with treatment[J]. Mathematical Biosciences, 2006,201(1/2):58-71.
[12]黃立宏,郭振遠,王佳伏.右端不連續(xù)微分方程理論與應用[M].北京:科學出版社,2011.
[13]WANG J, ZHANG F, WANG L. Equilibrium, pseudoequilibrium and sliding-mode heteroclinic orbit in a Filippov-type plant disease model [J]. Nonlinear Analysis Real World Applications, 2016, 31:308-324.